1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_beta.hpp>
#include <boost/math/distributions/poisson.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
template <class T>
T nc_beta_cdf(T a, T b, T nc, T x)
{
#ifdef NC_BETA_CDF_FUNCTION_TO_TEST
return NC_BETA_CDF_FUNCTION_TO_TEST(a, b, nc, x);
#else
return cdf(boost::math::non_central_beta_distribution<T>(a, b, nc), x);
#endif
}
template <class T>
T nc_beta_ccdf(T a, T b, T nc, T x)
{
#ifdef NC_BETA_CCDF_FUNCTION_TO_TEST
return NC_BETA_CCDF_FUNCTION_TO_TEST(a, b, nc, x);
#else
return cdf(complement(boost::math::non_central_beta_distribution<T>(a, b, nc), x));
#endif
}
template <typename Real, typename T>
void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
{
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
value_type(*fp1)(value_type, value_type, value_type, value_type) = nc_beta_cdf;
boost::math::tools::test_result<value_type> result;
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_BETA_CDF_FUNCTION_TO_TEST))
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2, 3),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central beta CDF", test);
#endif
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_BETA_CCDF_FUNCTION_TO_TEST))
fp1 = nc_beta_ccdf;
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2, 3),
extract_result<Real>(5));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central beta CDF complement", test);
#endif
std::cout << std::endl;
}
template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
typedef Real value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
//
// Test case 493 fails at float precision: not enough bits to get
// us back where we started:
//
if((i == 493) && boost::is_same<float, value_type>::value)
continue;
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][4]));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][4]);
value_type pt = data[i][3];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][5] == 0)
{
BOOST_CHECK(1 == quantile(complement(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][5])));
}
else if(data[i][5] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][5]));
value_type pt = data[i][3];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
value_type m = mode(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]));
if((m == 1) || (m == 0))
break;
value_type p = pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m);
if(m * (1 + sqrt(precision) * 10) < 1)
{
BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m * (1 + sqrt(precision) * 10)) <= p, i);
}
if(m * (1 - sqrt(precision)) * 10 > boost::math::tools::min_value<value_type>())
{
BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m * (1 - sqrt(precision)) * 10) <= p, i);
}
}
}
#endif
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#if !defined(TEST_DATA) || (TEST_DATA == 1)
#include "ncbeta.ipp"
do_test_nc_chi_squared<T>(ncbeta, type_name, "Non Central Beta, medium parameters");
quantile_sanity_check<T>(ncbeta, type_name, "Non Central Beta, medium parameters");
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 2)
#include "ncbeta_big.ipp"
do_test_nc_chi_squared<T>(ncbeta_big, type_name, "Non Central Beta, large parameters");
// Takes too long to run:
// quantile_sanity_check(ncbeta_big, type_name, "Non Central Beta, large parameters");
#endif
}
|