summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_negative_binomial.cpp
blob: 069ebf87987377fc630a8f1a0bf0b7e225c262cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
// test_negative_binomial.cpp

// Copyright Paul A. Bristow 2007.
// Copyright John Maddock 2006.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// Tests for Negative Binomial Distribution.

// Note that these defines must be placed BEFORE #includes.
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
// because several tests overflow & underflow by design.
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

#ifdef _MSC_VER
#  pragma warning(disable: 4127) // conditional expression is constant.
#endif

#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
#  define TEST_FLOAT
#  define TEST_DOUBLE
#  define TEST_LDOUBLE
#  define TEST_REAL_CONCEPT
#endif

#include <boost/math/tools/test.hpp> // for real_concept
#include <boost/math/concepts/real_concept.hpp> // for real_concept
using ::boost::math::concepts::real_concept;

#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution;

#include <boost/math/special_functions/gamma.hpp>
  using boost::math::lgamma;  // log gamma

#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // for test_main
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "table_type.hpp"
#include "test_out_of_range.hpp"

#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
using std::showpoint;
#include <limits>
using std::numeric_limits;

template <class RealType>
void test_spot( // Test a single spot value against 'known good' values.
               RealType N,    // Number of successes.
               RealType k,    // Number of failures.
               RealType p,    // Probability of success_fraction.
               RealType P,    // CDF probability.
               RealType Q,    // Complement of CDF.
               RealType tol)  // Test tolerance.
{
   boost::math::negative_binomial_distribution<RealType> bn(N, p);
   BOOST_CHECK_EQUAL(N, bn.successes());
   BOOST_CHECK_EQUAL(p, bn.success_fraction());
   BOOST_CHECK_CLOSE(
     cdf(bn, k), P, tol);

  if((P < 0.99) && (Q < 0.99))
  {
    // We can only check this if P is not too close to 1,
    // so that we can guarantee that Q is free of error:
    //
    BOOST_CHECK_CLOSE(
      cdf(complement(bn, k)), Q, tol);
    if(k != 0)
    {
      BOOST_CHECK_CLOSE(
        quantile(bn, P), k, tol);
    }
    else
    {
      // Just check quantile is very small:
      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
        && (boost::is_floating_point<RealType>::value))
      {
        // Limit where this is checked: if exponent range is very large we may
        // run out of iterations in our root finding algorithm.
        BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
      }
    }
    if(k != 0)
    {
      BOOST_CHECK_CLOSE(
        quantile(complement(bn, Q)), k, tol);
    }
    else
    {
      // Just check quantile is very small:
      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
        && (boost::is_floating_point<RealType>::value))
      {
        // Limit where this is checked: if exponent range is very large we may
        // run out of iterations in our root finding algorithm.
        BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
      }
    }
    // estimate success ratio:
    BOOST_CHECK_CLOSE(
      negative_binomial_distribution<RealType>::find_lower_bound_on_p(
      N+k, N, P),
      p, tol);
    // Note we bump up the sample size here, purely for the sake of the test,
    // internally the function has to adjust the sample size so that we get
    // the right upper bound, our test undoes this, so we can verify the result.
    BOOST_CHECK_CLOSE(
      negative_binomial_distribution<RealType>::find_upper_bound_on_p(
      N+k+1, N, Q),
      p, tol);

    if(Q < P)
    {
       //
       // We check two things here, that the upper and lower bounds
       // are the right way around, and that they do actually bracket
       // the naive estimate of p = successes / (sample size)
       //
      BOOST_CHECK(
        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
        N+k, N, Q)
        <=
        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
        N+k, N, Q)
        );
      BOOST_CHECK(
        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
        N+k, N, Q)
        <=
        N / (N+k)
        );
      BOOST_CHECK(
        N / (N+k)
        <=
        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
        N+k, N, Q)
        );
    }
    else
    {
       // As above but when P is small.
      BOOST_CHECK(
        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
        N+k, N, P)
        <=
        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
        N+k, N, P)
        );
      BOOST_CHECK(
        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
        N+k, N, P)
        <=
        N / (N+k)
        );
      BOOST_CHECK(
        N / (N+k)
        <=
        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
        N+k, N, P)
        );
    }

    // Estimate sample size:
    BOOST_CHECK_CLOSE(
      negative_binomial_distribution<RealType>::find_minimum_number_of_trials(
      k, p, P),
      N+k, tol);
    BOOST_CHECK_CLOSE(
      negative_binomial_distribution<RealType>::find_maximum_number_of_trials(
         k, p, Q),
      N+k, tol);

    // Double check consistency of CDF and PDF by computing the finite sum:
    RealType sum = 0;
    for(unsigned i = 0; i <= k; ++i)
    {
      sum += pdf(bn, RealType(i));
    }
    BOOST_CHECK_CLOSE(sum, P, tol);

    // Complement is not possible since sum is to infinity.
  } //
} // test_spot

template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
  // Basic sanity checks, test data is to double precision only
  // so set tolerance to 1000 eps expressed as a percent, or
  // 1000 eps of type double expressed as a percent, whichever
  // is the larger.

  RealType tolerance = (std::max)
    (boost::math::tools::epsilon<RealType>(),
    static_cast<RealType>(std::numeric_limits<double>::epsilon()));
  tolerance *= 100 * 100000.0f;

  cout << "Tolerance = " << tolerance << "%." << endl;

  RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
  //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
  RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
  cout << "Tolerance 5 eps = " << tol5eps << "%." << endl;

  // Sources of spot test values:

  // MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
  // returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
  // 0 <= k
  // r > 0
  // 0 <= p <= 1
  // P = pbinom(30, 500, 0.05) = 0.869147702104609

  // And functions.wolfram.com

  using boost::math::negative_binomial_distribution;
  using  ::boost::math::negative_binomial;
  using  ::boost::math::cdf;
  using  ::boost::math::pdf;

  // Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
  // These test quantiles and complements as well.

  test_spot(  // pnbinom(1,2,0.5) = 0.5
  static_cast<RealType>(2),   // successes r
  static_cast<RealType>(1),   // Number of failures, k
  static_cast<RealType>(0.5), // Probability of success as fraction, p
  static_cast<RealType>(0.5), // Probability of result (CDF), P
  static_cast<RealType>(0.5),  // complement CCDF Q = 1 - P
  tolerance);

  test_spot( // pbinom(0, 2, 0.25)
  static_cast<RealType>(2),    // successes r
  static_cast<RealType>(0),    // Number of failures, k
  static_cast<RealType>(0.25),
  static_cast<RealType>(0.0625),                    // Probability of result (CDF), P
  static_cast<RealType>(0.9375),                    // Q = 1 - P
  tolerance);

  test_spot(  // pbinom(48,8,0.25)
  static_cast<RealType>(8),     // successes r
  static_cast<RealType>(48),    // Number of failures, k
  static_cast<RealType>(0.25),                    // Probability of success, p
  static_cast<RealType>(9.826582228110670E-1),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 9.826582228110670E-1),   // Q = 1 - P
  tolerance);

  test_spot(  // pbinom(2,5,0.4)
  static_cast<RealType>(5),     // successes r
  static_cast<RealType>(2),     // Number of failures, k
  static_cast<RealType>(0.4),                    // Probability of success, p
  static_cast<RealType>(9.625600000000020E-2),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 9.625600000000020E-2),   // Q = 1 - P
  tolerance);

  test_spot(  // pbinom(10,100,0.9)
  static_cast<RealType>(100),     // successes r
  static_cast<RealType>(10),     // Number of failures, k
  static_cast<RealType>(0.9),                    // Probability of success, p
  static_cast<RealType>(4.535522887695670E-1),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 4.535522887695670E-1),   // Q = 1 - P
  tolerance);

  test_spot(  // pbinom(1,100,0.991)
  static_cast<RealType>(100),     // successes r
  static_cast<RealType>(1),     // Number of failures, k
  static_cast<RealType>(0.991),                    // Probability of success, p
  static_cast<RealType>(7.693413044217000E-1),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 7.693413044217000E-1),   // Q = 1 - P
  tolerance);

  test_spot(  // pbinom(10,100,0.991)
  static_cast<RealType>(100),     // successes r
  static_cast<RealType>(10),     // Number of failures, k
  static_cast<RealType>(0.991),                    // Probability of success, p
  static_cast<RealType>(9.999999940939000E-1),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 9.999999940939000E-1),   // Q = 1 - P
  tolerance);

if(std::numeric_limits<RealType>::is_specialized)
{ // An extreme value test that takes 3 minutes using the real concept type
  // for which numeric_limits<RealType>::is_specialized == false, deliberately
  // and for which there is no Lanczos approximation defined (also deliberately)
  // giving a very slow computation, but with acceptable accuracy.
  // A possible enhancement might be to use a normal approximation for
  // extreme values, but this is not implemented.
  test_spot(  // pbinom(100000,100,0.001)
  static_cast<RealType>(100),     // successes r
  static_cast<RealType>(100000),     // Number of failures, k
  static_cast<RealType>(0.001),                    // Probability of success, p
  static_cast<RealType>(5.173047534260320E-1),     // Probability of result (CDF), P
  static_cast<RealType>(1 - 5.173047534260320E-1),   // Q = 1 - P
  tolerance*1000); // *1000 is OK 0.51730475350664229  versus

  // functions.wolfram.com
  //   for I[0.001](100, 100000+1) gives:
  // Wolfram       0.517304753506834882009032744488738352004003696396461766326713
  // JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
  // MathCAD       0.51730475342603199 differs at 10th decimal digit.

  // Error tests:
  check_out_of_range<negative_binomial_distribution<RealType> >(20, 0.5);
  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(0, 0.5), std::domain_error);
  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(-2, 0.5), std::domain_error);
  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, -0.5), std::domain_error);
  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, 1.5), std::domain_error);
}
 // End of single spot tests using RealType


  // Tests on PDF:
  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
  static_cast<RealType>(0) ),  // k = 0.
  static_cast<RealType>(0.25), // 0
  tolerance);

  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)),
  static_cast<RealType>(0)),  // k = 0.
  static_cast<RealType>(0.0625), // exact 1/16
  tolerance);

  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)),  // k = 0
  static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
  tolerance);

  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)),
  static_cast<RealType>(0)),  // k = 0
  static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
  tolerance);

  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)),
  static_cast<RealType>(0)),  // k = 0.
  static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
  tolerance);

  BOOST_CHECK_CLOSE(
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)),
  static_cast<RealType>(0)),  // k = 0.
  static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
  tolerance);


  BOOST_CHECK_CLOSE( // .
  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)),
  static_cast<RealType>(0)),  // k.
  static_cast<RealType>(1.215766545905690E-1), // k=20  p = 0.9
  tolerance);

  // Tests on cdf:
  // MathCAD pbinom k, r, p) == failures, successes, probability.

  BOOST_CHECK_CLOSE(cdf(
    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
    static_cast<RealType>(0) ), // k = 0
    static_cast<RealType>(0.25), // probability 1/4
    tolerance);

  BOOST_CHECK_CLOSE(cdf(complement(
    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
    static_cast<RealType>(0) )), // k = 0
    static_cast<RealType>(0.75), // probability 3/4
    tolerance);
  BOOST_CHECK_CLOSE( // k = 1.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
  static_cast<RealType>(1)),  // k =1.
  static_cast<RealType>(1.455191522836700E-11),
  tolerance);

  BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
  static_cast<RealType>(1)) -
  static_cast<RealType>(1.455191522836700E-11),
  tolerance );

  // Some exact (probably - judging by trailing zeros) values.
  BOOST_CHECK_CLOSE(
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)),  // k.
  static_cast<RealType>(1.525878906250000E-5),
  tolerance);

  BOOST_CHECK_CLOSE(
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)),  // k.
  static_cast<RealType>(1.525878906250000E-5),
  tolerance);

  BOOST_CHECK_SMALL(
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)) -
  static_cast<RealType>(1.525878906250000E-5),
  tolerance );

  BOOST_CHECK_CLOSE( // k = 1.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(1)),  // k.
  static_cast<RealType>(1.068115234375010E-4),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 2.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(2)),  // k.
  static_cast<RealType>(4.158020019531300E-4),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 3.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(3)),  // k.bristow
  static_cast<RealType>(1.188278198242200E-3),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 4.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(4)),  // k.
  static_cast<RealType>(2.781510353088410E-3),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 5.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(5)),  // k.
  static_cast<RealType>(5.649328231811500E-3),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 6.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(6)),  // k.
  static_cast<RealType>(1.030953228473680E-2),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 7.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(7)),  // k.
  static_cast<RealType>(1.729983836412430E-2),
  tolerance);

  BOOST_CHECK_CLOSE( // k = 8.
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(8)),  // k = n.
  static_cast<RealType>(2.712995628826370E-2),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(48)),  // k
  static_cast<RealType>(9.826582228110670E-1),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(64)),  // k
  static_cast<RealType>(9.990295004935590E-1),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
  static_cast<RealType>(26)),  // k
  static_cast<RealType>(9.989686246611190E-1),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
  static_cast<RealType>(2)),  // k failures
  static_cast<RealType>(9.625600000000020E-2),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)),
  static_cast<RealType>(20)),  // k
  static_cast<RealType>(9.999970854144170E-1),
  tolerance);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)),
  static_cast<RealType>(200)),  // k
  static_cast<RealType>(2.172846379930550E-1),
  tolerance* 2);

  BOOST_CHECK_CLOSE( //
  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)),
  static_cast<RealType>(20)),  // k
  static_cast<RealType>(4.550203671301790E-1),
  tolerance);

  // Tests of other functions, mean and other moments ...

  negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
  using namespace std; // ADL of std names.
  // mean:
  BOOST_CHECK_CLOSE(
    mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps);
  BOOST_CHECK_CLOSE(
    mode(dist), static_cast<RealType>(21), tol1eps);
  // variance:
  BOOST_CHECK_CLOSE(
    variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps);
  // std deviation:
  BOOST_CHECK_CLOSE(
    standard_deviation(dist), // 9.79795897113271239270
    static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
    //                              9.79795897113271152534  == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
    tol5eps * 100);
  BOOST_CHECK_CLOSE(
    skewness(dist), //
    static_cast<RealType>(0.71443450831176036),
    // using http://mathworld.wolfram.com/skewness.html
    tolerance);
  BOOST_CHECK_CLOSE(
    kurtosis_excess(dist), //
    static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
    tol5eps * 100);
  BOOST_CHECK_CLOSE(
    kurtosis(dist), // true 
    static_cast<RealType>(3.76041666666666666666666666666666666666666L), // 
    tol5eps * 100);
  // hazard:
  RealType x = static_cast<RealType>(0.125);
  BOOST_CHECK_CLOSE(
  hazard(dist, x)
  , pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
  // cumulative hazard:
  BOOST_CHECK_CLOSE(
  chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
  // coefficient_of_variation:
  BOOST_CHECK_CLOSE(
  coefficient_of_variation(dist)
  , standard_deviation(dist) / mean(dist), tol5eps);

  // Special cases for PDF:
  BOOST_CHECK_EQUAL(
  pdf(
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
  static_cast<RealType>(0)),
  static_cast<RealType>(0) );

  BOOST_CHECK_EQUAL(
  pdf(
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
  static_cast<RealType>(0.0001)),
  static_cast<RealType>(0) );

  BOOST_CHECK_EQUAL(
  pdf(
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
  static_cast<RealType>(0.001)),
  static_cast<RealType>(0) );

  BOOST_CHECK_EQUAL(
  pdf(
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
  static_cast<RealType>(8)),
  static_cast<RealType>(0) );

  BOOST_CHECK_SMALL(
  pdf(
   negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)),
  static_cast<RealType>(0))-
  static_cast<RealType>(0.0625),
  2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
  // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!

  // Quantile boundary cases checks:
  BOOST_CHECK_EQUAL(
  quantile(  // zero P < cdf(0) so should be exactly zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)),
  static_cast<RealType>(0));

  BOOST_CHECK_EQUAL(
  quantile(  // min P < cdf(0) so should be exactly zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(boost::math::tools::min_value<RealType>())),
  static_cast<RealType>(0));

  BOOST_CHECK_CLOSE_FRACTION(
  quantile(  // Small P < cdf(0) so should be near zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(boost::math::tools::epsilon<RealType>())), // 
  static_cast<RealType>(0),
    tol5eps);

  BOOST_CHECK_CLOSE(
  quantile(  // Small P < cdf(0) so should be exactly zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0.0001)),
  static_cast<RealType>(0.95854156929288470),
    tolerance);

  //BOOST_CHECK(  // Fails with overflow for real_concept
  //quantile(  // Small P near 1 so k failures should be big.
  //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
  //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
  //);

  if(std::numeric_limits<RealType>::has_infinity)
  { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
    // Note that infinity is not implemented for real_concept, so these tests
    // are only done for types, like built-in float, double.. that have infinity.
    // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
    // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
    // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
    //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.

    BOOST_CHECK(
    quantile(  // At P == 1 so k failures should be infinite.
    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
    static_cast<RealType>(1)) ==
    //static_cast<RealType>(boost::math::tools::infinity<RealType>())
    static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );

    BOOST_CHECK_EQUAL(
    quantile(  // At 1 == P  so should be infinite.
    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
    static_cast<RealType>(1)), //
    std::numeric_limits<RealType>::infinity() );

    BOOST_CHECK_EQUAL(
    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
    static_cast<RealType>(0))),
    std::numeric_limits<RealType>::infinity() );
   } // test for infinity using std::numeric_limits<>::infinity()
  else
  { // real_concept case, so check it throws rather than returning infinity.
    BOOST_CHECK_EQUAL(
    quantile(  // At P == 1 so k failures should be infinite.
    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
    static_cast<RealType>(1)),
    boost::math::tools::max_value<RealType>() );

    BOOST_CHECK_EQUAL(
    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
    static_cast<RealType>(0))),
    boost::math::tools::max_value<RealType>());
  }
  BOOST_CHECK( // Should work for built-in and real_concept.
  quantile(complement(  // Q very near to 1 so P nearly 1  < so should be large > 384.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(boost::math::tools::min_value<RealType>())))
   >= static_cast<RealType>(384) );

  BOOST_CHECK_EQUAL(
  quantile(  //  P ==  0 < cdf(0) so should be zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)),
  static_cast<RealType>(0));

  // Quantile Complement boundary cases:

  BOOST_CHECK_EQUAL(
  quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(1))),
  static_cast<RealType>(0)
  );

  BOOST_CHECK_EQUAL(
  quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
  static_cast<RealType>(0)
  );

  // Check that duff arguments throw domain_error:
  BOOST_MATH_CHECK_THROW(
  pdf( // Negative successes!
  negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  pdf( // Negative success_fraction!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  pdf( // Success_fraction > 1!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
  static_cast<RealType>(0)),
  std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  pdf( // Negative k argument !
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(-1)),
  std::domain_error
  );
  //BOOST_MATH_CHECK_THROW(
  //pdf( // Unlike binomial there is NO limit on k (failures)
  //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  //static_cast<RealType>(9)), std::domain_error
  //);
  BOOST_MATH_CHECK_THROW(
  cdf(  // Negative k argument !
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
  static_cast<RealType>(-1)),
  std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  cdf( // Negative success_fraction!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  cdf( // Success_fraction > 1!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  quantile(  // Negative success_fraction!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  BOOST_MATH_CHECK_THROW(
  quantile( // Success_fraction > 1!
  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
  static_cast<RealType>(0)), std::domain_error
  );
  // End of check throwing 'duff' out-of-domain values.

#define T RealType
#include "negative_binomial_quantile.ipp"

  for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i)
  {
     using namespace boost::math::policies;
     typedef policy<discrete_quantile<boost::math::policies::real> > P1;
     typedef policy<discrete_quantile<integer_round_down> > P2;
     typedef policy<discrete_quantile<integer_round_up> > P3;
     typedef policy<discrete_quantile<integer_round_outwards> > P4;
     typedef policy<discrete_quantile<integer_round_inwards> > P5;
     typedef policy<discrete_quantile<integer_round_nearest> > P6;
     RealType tol = boost::math::tools::epsilon<RealType>() * 700;
     if(!boost::is_floating_point<RealType>::value)
        tol *= 10;  // no lanczos approximation implies less accuracy
     //
     // Check full real value first:
     //
     negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     RealType x = quantile(p1, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol);
     x = quantile(complement(p1, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol);
     //
     // Now with round down to integer:
     //
     negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     x = quantile(p2, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3]));
     x = quantile(complement(p2, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4]));
     //
     // Now with round up to integer:
     //
     negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     x = quantile(p3, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3]));
     x = quantile(complement(p3, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4]));
     //
     // Now with round to integer "outside":
     //
     negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     x = quantile(p4, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3]));
     x = quantile(complement(p4, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4]));
     //
     // Now with round to integer "inside":
     //
     negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     x = quantile(p5, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3]));
     x = quantile(complement(p5, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4]));
     //
     // Now with round to nearest integer:
     //
     negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
     x = quantile(p6, negative_binomial_quantile_data[i][2]);
     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f));
     x = quantile(complement(p6, negative_binomial_quantile_data[i][2]));
     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f));
  }

  return;
} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.

BOOST_AUTO_TEST_CASE( test_main )
{
  // Check that can generate negative_binomial distribution using the two convenience methods:
  using namespace boost::math;
   negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
   negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.

  // Basic sanity-check spot values.

  // Test some simple double only examples.
  negative_binomial_distribution<double> my8dist(8., 0.25);
  // 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
  // Note: double values (matching the distribution definition) avoid the need for any casting.

  // Check accessor functions return exact values for double at least.
  BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8));
  BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));

  // (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
  test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
  test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
  test_spots(0.0L); // Test long double.
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
    test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
  #endif
#else
   std::cout << "<note>The long double tests have been disabled on this platform "
      "either because the long double overloads of the usual math functions are "
      "not available at all, or because they are too inaccurate for these tests "
      "to pass.</note>" << std::endl;
#endif

  
} // BOOST_AUTO_TEST_CASE( test_main )

/*

Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe"
Running 1 test case...
Tolerance = 0.0119209%.
Tolerance 5 eps = 5.96046e-007%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
*** No errors detected

*/