1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
// (C) Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/tools/test.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/special_functions/ulp.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <iostream>
#include <iomanip>
#ifdef BOOST_MSVC
#pragma warning(disable:4127)
#endif
#if !defined(_CRAYC) && !defined(__CUDACC__) && (!defined(__GNUC__) || (__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ > 3)))
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(__SSE2__) || defined(TEST_SSE2)
#include <float.h>
#include "xmmintrin.h"
#define TEST_SSE2
#endif
#endif
template <class T>
void test_value(const T& val, const char* name)
{
using namespace boost::math;
T upper = tools::max_value<T>();
T lower = -upper;
std::cout << "Testing type " << name << " with initial value " << val << std::endl;
BOOST_CHECK_EQUAL(float_distance(float_next(val), val), -1);
BOOST_CHECK(float_next(val) > val);
BOOST_CHECK_EQUAL(float_distance(float_prior(val), val), 1);
BOOST_CHECK(float_prior(val) < val);
BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, upper), val), -1);
BOOST_CHECK((boost::math::nextafter)(val, upper) > val);
BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, lower), val), 1);
BOOST_CHECK((boost::math::nextafter)(val, lower) < val);
BOOST_CHECK_EQUAL(float_distance(float_next(float_next(val)), val), -2);
BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), val), 2);
BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), float_next(float_next(val))), 4);
BOOST_CHECK_EQUAL(float_distance(float_prior(float_next(val)), val), 0);
BOOST_CHECK_EQUAL(float_distance(float_next(float_prior(val)), val), 0);
BOOST_CHECK_EQUAL(float_prior(float_next(val)), val);
BOOST_CHECK_EQUAL(float_next(float_prior(val)), val);
BOOST_CHECK_EQUAL(float_distance(float_advance(val, 4), val), -4);
BOOST_CHECK_EQUAL(float_distance(float_advance(val, -4), val), 4);
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present))
{
BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), 4), float_next(float_next(val))), -4);
BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), -4), float_next(float_next(val))), 4);
}
if(val > 0)
{
T n = val + ulp(val);
T fn = float_next(val);
if(n > fn)
{
BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value<T>());
}
else
{
BOOST_CHECK_EQUAL(fn, n);
}
}
else if(val == 0)
{
BOOST_CHECK_GE(boost::math::tools::min_value<T>(), ulp(val));
}
else
{
T n = val - ulp(val);
T fp = float_prior(val);
if(n < fp)
{
BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value<T>());
}
else
{
BOOST_CHECK_EQUAL(fp, n);
}
}
}
template <class T>
void test_values(const T& val, const char* name)
{
static const T a = static_cast<T>(1.3456724e22);
static const T b = static_cast<T>(1.3456724e-22);
static const T z = 0;
static const T one = 1;
static const T two = 2;
std::cout << "Testing type " << name << std::endl;
T den = (std::numeric_limits<T>::min)() / 4;
if(den != 0)
{
std::cout << "Denormals are active\n";
}
else
{
std::cout << "Denormals are flushed to zero.\n";
}
test_value(a, name);
test_value(-a, name);
test_value(b, name);
test_value(-b, name);
test_value(boost::math::tools::epsilon<T>(), name);
test_value(-boost::math::tools::epsilon<T>(), name);
test_value(boost::math::tools::min_value<T>(), name);
test_value(-boost::math::tools::min_value<T>(), name);
if (std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present) && ((std::numeric_limits<T>::min)() / 2 != 0))
{
test_value(z, name);
test_value(-z, name);
}
test_value(one, name);
test_value(-one, name);
test_value(two, name);
test_value(-two, name);
#if defined(TEST_SSE2)
if((_mm_getcsr() & (_MM_FLUSH_ZERO_ON | 0x40)) == 0)
{
#endif
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present) && ((std::numeric_limits<T>::min)() / 2 != 0))
{
test_value(std::numeric_limits<T>::denorm_min(), name);
test_value(-std::numeric_limits<T>::denorm_min(), name);
test_value(2 * std::numeric_limits<T>::denorm_min(), name);
test_value(-2 * std::numeric_limits<T>::denorm_min(), name);
}
#if defined(TEST_SSE2)
}
#endif
static const int primes[] = {
11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
};
for(unsigned i = 0; i < sizeof(primes)/sizeof(primes[0]); ++i)
{
T v1 = val;
T v2 = val;
for(int j = 0; j < primes[i]; ++j)
{
v1 = boost::math::float_next(v1);
v2 = boost::math::float_prior(v2);
}
BOOST_CHECK_EQUAL(boost::math::float_distance(v1, val), -primes[i]);
BOOST_CHECK_EQUAL(boost::math::float_distance(v2, val), primes[i]);
BOOST_CHECK_EQUAL(boost::math::float_advance(val, primes[i]), v1);
BOOST_CHECK_EQUAL(boost::math::float_advance(val, -primes[i]), v2);
}
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_infinity))
{
BOOST_CHECK_EQUAL(boost::math::float_prior(std::numeric_limits<T>::infinity()), (std::numeric_limits<T>::max)());
BOOST_CHECK_EQUAL(boost::math::float_next(-std::numeric_limits<T>::infinity()), -(std::numeric_limits<T>::max)());
BOOST_MATH_CHECK_THROW(boost::math::float_prior(-std::numeric_limits<T>::infinity()), std::domain_error);
BOOST_MATH_CHECK_THROW(boost::math::float_next(std::numeric_limits<T>::infinity()), std::domain_error);
if(boost::math::policies:: BOOST_MATH_OVERFLOW_ERROR_POLICY == boost::math::policies::throw_on_error)
{
BOOST_MATH_CHECK_THROW(boost::math::float_prior(-(std::numeric_limits<T>::max)()), std::overflow_error);
BOOST_MATH_CHECK_THROW(boost::math::float_next((std::numeric_limits<T>::max)()), std::overflow_error);
}
else
{
BOOST_CHECK_EQUAL(boost::math::float_prior(-(std::numeric_limits<T>::max)()), -std::numeric_limits<T>::infinity());
BOOST_CHECK_EQUAL(boost::math::float_next((std::numeric_limits<T>::max)()), std::numeric_limits<T>::infinity());
}
}
//
// We need to test float_distance over mulyiple orders of magnitude,
// the only way to get an accurate true result is to count the representations
// between the two end points, but we can only really do this for type float:
//
if (std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::digits < 30) && (std::numeric_limits<T>::radix == 2))
{
T left, right, dist, fresult;
boost::uintmax_t result;
left = static_cast<T>(0.1);
right = left * static_cast<T>(4.2);
dist = boost::math::float_distance(left, right);
// We have to use a wider integer type for the accurate count, since there
// aren't enough bits in T to get a true result if the values differ
// by more than a factor of 2:
result = 0;
for (; left != right; ++result, left = boost::math::float_next(left));
fresult = static_cast<T>(result);
BOOST_CHECK_EQUAL(fresult, dist);
left = static_cast<T>(-0.1);
right = left * static_cast<T>(4.2);
dist = boost::math::float_distance(right, left);
result = 0;
for (; left != right; ++result, left = boost::math::float_prior(left));
fresult = static_cast<T>(result);
BOOST_CHECK_EQUAL(fresult, dist);
left = static_cast<T>(-1.1) * (std::numeric_limits<T>::min)();
right = static_cast<T>(-4.1) * left;
dist = boost::math::float_distance(left, right);
result = 0;
for (; left != right; ++result, left = boost::math::float_next(left));
fresult = static_cast<T>(result);
BOOST_CHECK_EQUAL(fresult, dist);
}
}
BOOST_AUTO_TEST_CASE( test_main )
{
test_values(1.0f, "float");
test_values(1.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_values(1.0L, "long double");
test_values(boost::math::concepts::real_concept(0), "real_concept");
#endif
//
// Test some multiprecision types:
//
test_values(boost::multiprecision::cpp_bin_float_quad(0), "cpp_bin_float_quad");
// This is way to slow to test routinely:
//test_values(boost::multiprecision::cpp_bin_float_single(0), "cpp_bin_float_single");
test_values(boost::multiprecision::cpp_bin_float_50(0), "cpp_bin_float_50");
#if defined(TEST_SSE2)
int mmx_flags = _mm_getcsr(); // We'll restore these later.
#ifdef _WIN32
// These tests fail pretty badly on Linux x64, especially with Intel-12.1
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
std::cout << "Testing again with Flush-To-Zero set" << std::endl;
std::cout << "SSE2 control word is: " << std::hex << _mm_getcsr() << std::endl;
test_values(1.0f, "float");
test_values(1.0, "double");
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF);
#endif
BOOST_ASSERT((_mm_getcsr() & 0x40) == 0);
_mm_setcsr(_mm_getcsr() | 0x40);
std::cout << "Testing again with Denormals-Are-Zero set" << std::endl;
std::cout << "SSE2 control word is: " << std::hex << _mm_getcsr() << std::endl;
test_values(1.0f, "float");
test_values(1.0, "double");
// Restore the MMX flags:
_mm_setcsr(mmx_flags);
#endif
}
|