summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_normal.cpp
blob: 757e942c688857c7c536d723dfb6d2f101426e4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright Paul A. Bristow 2010.
// Copyright John Maddock 2007.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// test_normal.cpp

// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html

#include <pch.hpp> // include directory /libs/math/src/tr1/ is needed.

#ifdef _MSC_VER
#  pragma warning (disable: 4127) // conditional expression is constant
// caused by using   if(std::numeric_limits<RealType>::has_infinity)
// and   if (std::numeric_limits<RealType>::has_quiet_NaN)
#endif

#include <boost/math/tools/test.hpp>
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>

#include <boost/math/distributions/normal.hpp>
    using boost::math::normal_distribution;
#include <boost/math/tools/test.hpp>
#include "test_out_of_range.hpp"

#include <iostream>
#include <iomanip>
   using std::cout;
   using std::endl;
   using std::setprecision;
#include <limits>
  using std::numeric_limits;

template <class RealType>
RealType NaivePDF(RealType mean, RealType sd, RealType x)
{
   // Deliberately naive PDF calculator again which
   // we'll compare our pdf function.  However some
   // published values to compare against would be better....
   using namespace std;
   return exp(-(x-mean)*(x-mean)/(2*sd*sd))/(sd * sqrt(2*boost::math::constants::pi<RealType>()));
}

template <class RealType>
void check_normal(RealType mean, RealType sd, RealType x, RealType p, RealType q, RealType tol)
{
   BOOST_CHECK_CLOSE(
      ::boost::math::cdf(
         normal_distribution<RealType>(mean, sd),       // distribution.
         x),                                            // random variable.
         p,                                             // probability.
         tol);                                          // %tolerance.
   BOOST_CHECK_CLOSE(
      ::boost::math::cdf(
         complement(
            normal_distribution<RealType>(mean, sd),    // distribution.
            x)),                                        // random variable.
         q,                                             // probability complement.
         tol);                                          // %tolerance.
   BOOST_CHECK_CLOSE(
      ::boost::math::quantile(
         normal_distribution<RealType>(mean, sd),       // distribution.
         p),                                            // probability.
         x,                                             // random variable.
         tol);                                          // %tolerance.
   BOOST_CHECK_CLOSE(
      ::boost::math::quantile(
         complement(
            normal_distribution<RealType>(mean, sd),    // distribution.
            q)),                                        // probability complement.
         x,                                             // random variable.
         tol);                                          // %tolerance.
}

template <class RealType>
void test_spots(RealType)
{
   // Basic sanity checks
   RealType tolerance = 1e-2f; // 1e-4 (as %)
   // Some tests only pass at 1e-4 because values generated by
   // http://faculty.vassar.edu/lowry/VassarStats.html
   // give only 5 or 6 *fixed* places, so small values have fewer digits.

  // Check some bad parameters to the distribution,
#ifndef BOOST_NO_EXCEPTIONS
   BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
   BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
#else
   BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType>(0, 0), std::domain_error); // zero sd
   BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType>(0, -1), std::domain_error); // negative sd
#endif

  // Tests on extreme values of random variate x, if has std::numeric_limits infinity etc.
    normal_distribution<RealType> N01;
  if(std::numeric_limits<RealType>::has_infinity)
  {
    BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0
    BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0
    BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1
    BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0
    BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0
    BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1
#ifndef BOOST_NO_EXCEPTIONS
    BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
     BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
     BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#else
    BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType>(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
     BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType>(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
     BOOST_MATH_CHECK_THROW(boost::math::normal_distribution<RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#endif
  }

  if (std::numeric_limits<RealType>::has_quiet_NaN)
  {
    // No longer allow x to be NaN, then these tests should throw.
    BOOST_MATH_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
    BOOST_MATH_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
    BOOST_MATH_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity
    BOOST_MATH_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity
    BOOST_MATH_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
  }

   cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;

   check_normal(
      static_cast<RealType>(5),
      static_cast<RealType>(2),
      static_cast<RealType>(4.8),
      static_cast<RealType>(0.46017),
      static_cast<RealType>(1 - 0.46017),
      tolerance);

   check_normal(
      static_cast<RealType>(5),
      static_cast<RealType>(2),
      static_cast<RealType>(5.2),
      static_cast<RealType>(1 - 0.46017),
      static_cast<RealType>(0.46017),
      tolerance);

   check_normal(
      static_cast<RealType>(5),
      static_cast<RealType>(2),
      static_cast<RealType>(2.2),
      static_cast<RealType>(0.08076),
      static_cast<RealType>(1 - 0.08076),
      tolerance);

   check_normal(
      static_cast<RealType>(5),
      static_cast<RealType>(2),
      static_cast<RealType>(7.8),
      static_cast<RealType>(1 - 0.08076),
      static_cast<RealType>(0.08076),
      tolerance);

   check_normal(
      static_cast<RealType>(-3),
      static_cast<RealType>(5),
      static_cast<RealType>(-4.5),
      static_cast<RealType>(0.38209),
      static_cast<RealType>(1 - 0.38209),
      tolerance);

   check_normal(
      static_cast<RealType>(-3),
      static_cast<RealType>(5),
      static_cast<RealType>(-1.5),
      static_cast<RealType>(1 - 0.38209),
      static_cast<RealType>(0.38209),
      tolerance);

   check_normal(
      static_cast<RealType>(-3),
      static_cast<RealType>(5),
      static_cast<RealType>(-8.5),
      static_cast<RealType>(0.13567),
      static_cast<RealType>(1 - 0.13567),
      tolerance);

   check_normal(
      static_cast<RealType>(-3),
      static_cast<RealType>(5),
      static_cast<RealType>(2.5),
      static_cast<RealType>(1 - 0.13567),
      static_cast<RealType>(0.13567),
      tolerance);

   //
   // Tests for PDF: we know that the peak value is at 1/sqrt(2*pi)
   //
   tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
   BOOST_CHECK_CLOSE(
      pdf(normal_distribution<RealType>(), static_cast<RealType>(0)),
      static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)
      tolerance);
   BOOST_CHECK_CLOSE(
      pdf(normal_distribution<RealType>(3), static_cast<RealType>(3)),
      static_cast<RealType>(0.3989422804014326779399460599343818684759L),
      tolerance);
   BOOST_CHECK_CLOSE(
      pdf(normal_distribution<RealType>(3, 5), static_cast<RealType>(3)),
      static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),
      tolerance);

   //
   // Spot checks for mean = -5, sd = 6:
   //
   for(RealType x = -15; x < 5; x += 0.125)
   {
      BOOST_CHECK_CLOSE(
         pdf(normal_distribution<RealType>(-5, 6), x),
         NaivePDF(RealType(-5), RealType(6), x),
         tolerance);
   }

    RealType tol2 = boost::math::tools::epsilon<RealType>() * 5;
    normal_distribution<RealType> dist(8, 3);
    RealType x = static_cast<RealType>(0.125);

    BOOST_MATH_STD_USING // ADL of std math lib names

    // mean:
    BOOST_CHECK_CLOSE(
       mean(dist)
       , static_cast<RealType>(8), tol2);
    // variance:
    BOOST_CHECK_CLOSE(
       variance(dist)
       , static_cast<RealType>(9), tol2);
    // std deviation:
    BOOST_CHECK_CLOSE(
       standard_deviation(dist)
       , static_cast<RealType>(3), tol2);
    // hazard:
    BOOST_CHECK_CLOSE(
       hazard(dist, x)
       , pdf(dist, x) / cdf(complement(dist, x)), tol2);
    // cumulative hazard:
    BOOST_CHECK_CLOSE(
       chf(dist, x)
       , -log(cdf(complement(dist, x))), tol2);
    // coefficient_of_variation:
    BOOST_CHECK_CLOSE(
       coefficient_of_variation(dist)
       , standard_deviation(dist) / mean(dist), tol2);
    // mode:
    BOOST_CHECK_CLOSE(
       mode(dist)
       , static_cast<RealType>(8), tol2);

    BOOST_CHECK_CLOSE(
       median(dist)
       , static_cast<RealType>(8), tol2);

    // skewness:
    BOOST_CHECK_CLOSE(
       skewness(dist)
       , static_cast<RealType>(0), tol2);
    // kertosis:
    BOOST_CHECK_CLOSE(
       kurtosis(dist)
       , static_cast<RealType>(3), tol2);
    // kertosis excess:
    BOOST_CHECK_CLOSE(
       kurtosis_excess(dist)
       , static_cast<RealType>(0), tol2);

    normal_distribution<RealType> norm01(0, 1); // Test default (0, 1)
    BOOST_CHECK_CLOSE(
       mean(norm01),
       static_cast<RealType>(0), 0); // Mean == zero

    normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1)
    BOOST_CHECK_CLOSE(
       mean(defsd_norm01),
       static_cast<RealType>(0), 0); // Mean == zero

    normal_distribution<RealType> def_norm01; // Test default (0, sd = 1)
    BOOST_CHECK_CLOSE(
       mean(def_norm01),
       static_cast<RealType>(0), 0); // Mean == zero

    BOOST_CHECK_CLOSE(
       standard_deviation(def_norm01),
       static_cast<RealType>(1), 0); // Mean == zero

    // Error tests:
    check_out_of_range<boost::math::normal_distribution<RealType> >(0, 1); // (All) valid constructor parameter values.
    
    BOOST_MATH_CHECK_THROW(pdf(normal_distribution<RealType>(0, 0), 0), std::domain_error);
    BOOST_MATH_CHECK_THROW(pdf(normal_distribution<RealType>(0, -1), 0), std::domain_error);
    BOOST_MATH_CHECK_THROW(quantile(normal_distribution<RealType>(0, 1), -1), std::domain_error);
    BOOST_MATH_CHECK_THROW(quantile(normal_distribution<RealType>(0, 1), 2), std::domain_error);
} // template <class RealType>void test_spots(RealType)

BOOST_AUTO_TEST_CASE( test_main )
{
    // Check that can generate normal distribution using the two convenience methods:
   boost::math::normal myf1(1., 2); // Using typedef
   normal_distribution<> myf2(1., 2); // Using default RealType double.
  boost::math::normal myn01; // Use default values.
  // Note NOT myn01() as the compiler will interpret as a function!

  // Check the synonyms, provided to allow generic use of find_location and find_scale.
  BOOST_CHECK_EQUAL(myn01.mean(), myn01.location());
  BOOST_CHECK_EQUAL(myn01.standard_deviation(), myn01.scale());

    // Basic sanity-check spot values.
   // (Parameter value, arbitrarily zero, only communicates the floating point type).
  test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
  test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
  test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
  test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
   std::cout << "<note>The long double tests have been disabled on this platform "
      "either because the long double overloads of the usual math functions are "
      "not available at all, or because they are too inaccurate for these tests "
      "to pass.</note>" << std::endl;
#endif

   
} // BOOST_AUTO_TEST_CASE( test_main )

/*

Output:

Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_normal.exe"
Running 1 test case...
Tolerance for type float is 0.01 %
Tolerance for type double is 0.01 %
Tolerance for type long double is 0.01 %
Tolerance for type class boost::math::concepts::real_concept is 0.01 %
*** No errors detected




------ Build started: Project: test_normal, Configuration: Release Win32 ------
  test_normal.cpp
  Generating code
  Finished generating code
  test_normal.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\test_normal.exe
  Running 1 test case...
  Tolerance for type float is 0.01 %
  Tolerance for type double is 0.01 %
  Tolerance for type long double is 0.01 %
  Tolerance for type class boost::math::concepts::real_concept is 0.01 %
  
  *** No errors detected
  Detected memory leaks!
  Dumping objects ->
  {2413} normal block at 0x00321190, 42 bytes long.
   Data: <class boost::mat> 63 6C 61 73 73 20 62 6F 6F 73 74 3A 3A 6D 61 74 
  {2412} normal block at 0x003231F0, 8 bytes long.
   Data: <  2  22 > 90 11 32 00 98 32 32 00 
  {1824} normal block at 0x00323180, 12 bytes long.
   Data: <long double > 6C 6F 6E 67 20 64 6F 75 62 6C 65 00 
  {1823} normal block at 0x00323298, 8 bytes long.
   Data: < 12 `22 > 80 31 32 00 60 32 32 00 
  {1227} normal block at 0x00323148, 7 bytes long.
   Data: <double > 64 6F 75 62 6C 65 00 
  {1226} normal block at 0x00323260, 8 bytes long.
   Data: <H12  02 > 48 31 32 00 A0 30 32 00 
  {633} normal block at 0x003230D8, 6 bytes long.
   Data: <float > 66 6C 6F 61 74 00 
  {632} normal block at 0x003230A0, 8 bytes long.
   Data: < 02     > D8 30 32 00 00 00 00 00 
  Object dump complete.
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========


*/