1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
// (C) Copyright Nick Thompson, 2018
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE numerical_differentiation_test
#include <cmath>
#include <limits>
#include <iostream>
#include <boost/type_index.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/bessel_prime.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/differentiation/finite_difference.hpp>
using std::abs;
using std::pow;
using boost::math::differentiation::finite_difference_derivative;
using boost::math::differentiation::complex_step_derivative;
using boost::math::cyl_bessel_j;
using boost::math::cyl_bessel_j_prime;
using boost::math::constants::half;
template<class Real, size_t order>
void test_order(size_t points_to_test)
{
std::cout << "Testing order " << order << " derivative error estimate on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << std::fixed << std::scientific;
auto f = [](Real t) { return boost::math::cyl_bessel_j<Real>(1, t); };
Real min = -100000.0;
Real max = -min;
Real x = min;
Real max_error = 0;
Real max_relative_error_in_error = 0;
size_t j = 0;
size_t failures = 0;
while (j < points_to_test)
{
x = min + (Real) 2*j*max/ (Real) points_to_test;
Real error_estimate;
Real computed = finite_difference_derivative<decltype(f), Real, order>(f, x, &error_estimate);
Real expected = (Real) cyl_bessel_j_prime<Real>(1, x);
Real error = abs(computed - expected);
// The error estimate is provided under the assumption that the function is evaluated to 1 ULP.
// Presumably no one will be too offended by this estimate being off by a factor of 2 or so.
if (error > 2*error_estimate)
{
++failures;
Real relative_error_in_error = abs(error - error_estimate)/ error;
if (relative_error_in_error > max_relative_error_in_error)
{
max_relative_error_in_error = relative_error_in_error;
}
if (relative_error_in_error > 2)
{
throw std::logic_error("Relative error in error is too high!");
}
}
if (error > max_error)
{
max_error = error;
}
++j;
}
//std::cout << "Maximum error :" << max_error << "\n";
//std::cout << "Error estimate failed " << failures << " times out of " << points_to_test << "\n";
//std::cout << "Failure rate: " << (double) failures / (double) points_to_test << "\n";
//std::cout << "Maximum error in estimated error = " << max_relative_error_in_error << "\n";
//Real convergence_rate = (Real) order/ (Real) (order + 1);
//std::cout << "eps^(order/order+1) = " << pow(std::numeric_limits<Real>::epsilon(), convergence_rate) << "\n\n\n";
bool max_error_good = max_error < 2*sqrt(std::numeric_limits<Real>::epsilon());
BOOST_TEST(max_error_good);
bool error_estimate_good = max_relative_error_in_error < (Real) 2;
BOOST_TEST(error_estimate_good);
double failure_rate = (double) failures / (double) points_to_test;
BOOST_CHECK_SMALL(failure_rate, 0.05);
}
template<class Real>
void test_bessel()
{
std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
Real eps = std::numeric_limits<Real>::epsilon();
Real x = static_cast<Real>(25.1);
auto f = [](Real t) { return boost::math::cyl_bessel_j(12, t); };
Real computed = finite_difference_derivative<decltype(f), Real, 1>(f, x);
Real expected = cyl_bessel_j_prime(12, x);
Real error_estimate = 4*abs(f(x))*sqrt(eps);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "First order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 10*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 2>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, boost::math::constants::two_thirds<Real>());
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Second order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 50*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 4>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 4 / (Real) 5);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Fourth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 6>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 6/ (Real) 7);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Sixth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 100*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 8>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 8/ (Real) 9);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Eighth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
}
// Example of a function which is subject to catastrophic cancellation using finite-differences, but is almost perfectly stable using complex step:
template<class RealOrComplex>
RealOrComplex moler_example(RealOrComplex x)
{
using std::sin;
using std::cos;
using std::exp;
RealOrComplex cosx = cos(x);
RealOrComplex sinx = sin(x);
return exp(x)/(cosx*cosx*cosx + sinx*sinx*sinx);
}
template<class RealOrComplex>
RealOrComplex moler_example_derivative(RealOrComplex x)
{
using std::sin;
using std::cos;
using std::exp;
RealOrComplex expx = exp(x);
RealOrComplex cosx = cos(x);
RealOrComplex sinx = sin(x);
RealOrComplex coscubed_sincubed = cosx*cosx*cosx + sinx*sinx*sinx;
return (expx/coscubed_sincubed)*(1 - 3*(sinx*sinx*cosx - sinx*cosx*cosx)/ (coscubed_sincubed));
}
template<class Real>
void test_complex_step()
{
using std::abs;
using std::complex;
using std::isfinite;
using std::isnormal;
std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
Real x = -100;
while ( x < 100 )
{
if (!isfinite(moler_example(x)))
{
x += 1;
continue;
}
Real expected = moler_example_derivative<Real>(x);
Real computed = complex_step_derivative(moler_example<complex<Real>>, x);
if (!isfinite(expected))
{
x += 1;
continue;
}
if (abs(expected) <= std::numeric_limits<Real>::epsilon())
{
bool issmall = computed < std::numeric_limits<Real>::epsilon();
BOOST_TEST(issmall);
}
else
{
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 200*std::numeric_limits<Real>::epsilon());
}
x += 1;
}
}
BOOST_AUTO_TEST_CASE(numerical_differentiation_test)
{
test_complex_step<float>();
test_complex_step<double>();
test_bessel<float>();
test_bessel<double>();
size_t points_to_test = 1000;
test_order<float, 1>(points_to_test);
test_order<double, 1>(points_to_test);
test_order<float, 2>(points_to_test);
test_order<double, 2>(points_to_test);
test_order<float, 4>(points_to_test);
test_order<double, 4>(points_to_test);
test_order<float, 6>(points_to_test);
test_order<double, 6>(points_to_test);
test_order<float, 8>(points_to_test);
test_order<double, 8>(points_to_test);
}
|