summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_owens_t.hpp
blob: d16ebd38682b28a1ad5401314be2dc75d1706d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//  (C) Copyright John Maddock 2007.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"
#include "table_type.hpp"
#include "owens_t_T7.hpp"


template <class RealType>
void test_spot(
   RealType h,    //
   RealType a,    //
   RealType tol)   // Test tolerance
{
   BOOST_CHECK_CLOSE_FRACTION(owens_t(h, a), 3.89119302347013668966224771378e-2L, tol);
}

template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
   using namespace std;
   // Basic sanity checks, test data is as accurate as long double,
   // so set tolerance to a few epsilon expressed as a fraction.
   RealType tolerance = boost::math::tools::epsilon<RealType>() * 30; // most OK with 3 eps tolerance.
   cout << "Tolerance = " << tolerance << "." << endl;

   using  ::boost::math::owens_t;
   using ::boost::math::normal_distribution;
   BOOST_MATH_STD_USING // ADL of std names.

      // Checks of six sub-methods T1 to T6.
      BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.0625L), static_cast<RealType>(0.25L)), static_cast<RealType>(3.89119302347013668966224771378e-2L), tolerance);  // T1
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(6.5L), static_cast<RealType>(0.4375L)), static_cast<RealType>(2.00057730485083154100907167685E-11L), tolerance); // T2
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(7L), static_cast<RealType>(0.96875L)), static_cast<RealType>(6.39906271938986853083219914429E-13L), tolerance); // T3
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(4.78125L), static_cast<RealType>(0.0625L)), static_cast<RealType>(1.06329748046874638058307112826E-7L), tolerance); // T4
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(2.L), static_cast<RealType>(0.5L)), static_cast<RealType>(8.62507798552150713113488319155E-3L), tolerance); // T5
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(1.L), static_cast<RealType>(0.9999975L)), static_cast<RealType>(6.67418089782285927715589822405E-2L), tolerance); // T6
   //BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(L), static_cast<RealType>(L)), static_cast<RealType>(L), tolerance);

   //   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(L), static_cast<RealType>(L)), static_cast<RealType>(L), tolerance);

   // Spots values using Mathematica
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(6.5L), static_cast<RealType>(0.4375L)), static_cast<RealType>(2.00057730485083154100907167684918851101649922551817956120806662022118024594547E-11L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.4375L), static_cast<RealType>(6.5L)), static_cast<RealType>(0.16540130125449396247498691826626273249659241838438244251206819782787761751256L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(7.L), static_cast<RealType>(0.96875L)), static_cast<RealType>(6.39906271938986853083219914428916013764797190941459233223182225724846022843930e-13L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.96875L), static_cast<RealType>(7.L)), static_cast<RealType>(0.08316748474602973770533230453272140919966614259525787470390475393923633179072L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(4.78125L), static_cast<RealType>(0.0625L)), static_cast<RealType>(1.06329748046874638058307112826015825291136503488102191050906959246644942646701e-7L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.0625L), static_cast<RealType>(4.78125L)), static_cast<RealType>(0.21571185819897989857261253680409017017649352928888660746045361855686569265171L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(2.L), static_cast<RealType>(0.5L)), static_cast<RealType>(0.00862507798552150713113488319154637187875641190390854291100809449487812876461L), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), static_cast<RealType>(0.14158060365397839346662819588111542648867283386549027383784843786494855594607L), tolerance);

   // check basic properties
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), owens_t(static_cast<RealType>(-0.5L), static_cast<RealType>(2L)));
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), -owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(-2L)));
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), -owens_t(static_cast<RealType>(-0.5L), static_cast<RealType>(-2L)));

   // Special relations from Owen's original paper:
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5), static_cast<RealType>(0)), static_cast<RealType>(0));
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(10), static_cast<RealType>(0)), static_cast<RealType>(0));
   BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(10000), static_cast<RealType>(0)), static_cast<RealType>(0));

   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(2L)), atan(static_cast<RealType>(2L)) / (boost::math::constants::pi<RealType>() * 2), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(0.5L)), atan(static_cast<RealType>(0.5L)) / (boost::math::constants::pi<RealType>() * 2), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(2000L)), atan(static_cast<RealType>(2000L)) / (boost::math::constants::pi<RealType>() * 2), tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(5), static_cast<RealType>(1)), cdf(normal_distribution<RealType>(), 5) * cdf(complement(normal_distribution<RealType>(), 5)) / 2, tolerance);
   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.125), static_cast<RealType>(1)), cdf(normal_distribution<RealType>(), 0.125) * cdf(complement(normal_distribution<RealType>(), 0.125)) / 2, tolerance);
   if(std::numeric_limits<RealType>::has_infinity)
   {
      BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.125), std::numeric_limits<RealType>::infinity()), cdf(complement(normal_distribution<RealType>(), 0.125)) / 2, tolerance);
      BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(5), std::numeric_limits<RealType>::infinity()), cdf(complement(normal_distribution<RealType>(), 5)) / 2, tolerance);
      BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(-0.125), std::numeric_limits<RealType>::infinity()), cdf(normal_distribution<RealType>(), -0.125) / 2, tolerance);
      BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(-5), std::numeric_limits<RealType>::infinity()), cdf(normal_distribution<RealType>(), -5) / 2, tolerance);
   }
} // template <class RealType>void test_spots(RealType)

template <class RealType> // Any floating-point type RealType.
void check_against_T7(RealType)
{
   using namespace std;
   // Basic sanity checks, test data is as accurate as long double,
   // so set tolerance to a few epsilon expressed as a fraction.
   RealType tolerance = boost::math::tools::epsilon<RealType>() * 150; // most OK with 3 eps tolerance.
   cout << "Tolerance = " << tolerance << "." << endl;

   using  ::boost::math::owens_t;
   using namespace std; // ADL of std names.

   // apply log scale because points near zero are more interesting
   for(RealType a = static_cast<RealType>(-10.0l); a < static_cast<RealType>(3l); a += static_cast<RealType>(0.2l))
      for(RealType h = static_cast<RealType>(-10.0l); h < static_cast<RealType>(3.5l); h += static_cast<RealType>(0.2l))
      {
         const RealType expa = exp(a);
         const RealType exph = exp(h);
         const RealType t = boost::math::owens_t(exph, expa);
         RealType t7 = boost::math::owens_t_T7(exph, expa);
         //if(!(boost::math::isnormal)(t) || !(boost::math::isnormal)(t7))
         //   std::cout << "a = " << expa << " h = " << exph << " t = " << t << " t7 = " << t7 << std::endl;
         BOOST_CHECK_CLOSE_FRACTION(t, t7, tolerance);
      }

} // template <class RealType>void test_spots(RealType)

template <class Real, class T>
void do_test_owens_t(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(OWENS_T_FUNCTION_TO_TEST))
   typedef Real                   value_type;

   typedef value_type(*pg)(value_type, value_type);
#ifdef OWENS_T_FUNCTION_TO_TEST
   pg funcp = OWENS_T_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   pg funcp = boost::math::owens_t<value_type>;
#else
   pg funcp = boost::math::owens_t;
#endif

   boost::math::tools::test_result<value_type> result;

   std::cout << "Testing " << test_name << " with type " << type_name
      << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";

   //
   // test owens_t against data:
   //
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1),
      extract_result<Real>(2));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "owens_t", test_name);

   std::cout << std::endl;
#endif
}

template <class T>
void test_owens_t(T, const char* name)
{
   //
   // The actual test data is rather verbose, so it's in a separate file
   //
   // The contents are as follows, each row of data contains
   // three items, input value a, input value b and erf(a, b):
   //
#  include "owens_t.ipp"

   do_test_owens_t<T>(owens_t, name, "Owens T (medium small values)");

#include "owens_t_large_data.ipp"

   do_test_owens_t<T>(owens_t_large_data, name, "Owens T (large and diverse values)");
}