1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#include <boost/math/special_functions/hypergeometric_pFq.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#ifdef BOOST_MSVC
#pragma warning(disable:4127)
#endif
#ifndef SC_
#define SC_(x) BOOST_MATH_BIG_CONSTANT(T, 1000000, x)
#endif
template <class Seq>
bool is_small_a(const Seq& a)
{
if (a.size() == 1)
{
auto v = *a.begin();
if ((v > -14) && (v < 1))
return true;
}
return false;
}
template <class Seq>
bool has_negative_ab(const Seq& a, const Seq& b)
{
for(auto p = a.begin(); p != a.end(); ++p)
{
if(*p < 0)
return true;
}
for(auto p = b.begin(); p != b.end(); ++p)
{
if(*p < 0)
return true;
}
return false;
}
template <class T>
void check_pFq_result(const T& result, const T& norm, const T& expect, const std::initializer_list<T>& a, const std::initializer_list<T>& b, const T& z)
{
//
// Ideally the error rate we calculate from comparing norm to result
// should be larger than the actual error. However, in practice even
// if all the terms are positive and norm == result there will still
// be a small error from the actual summation (we could work out how
// much from the number of terms summed, but that's overkill for this)
// so we add a small fudge factor when comparing errors:
//
T err = boost::math::relative_difference(result, expect);
T found_err = norm / fabs(result);
T fudge_factor = 25;
if (is_small_a(a))
fudge_factor *= 4; // not sure why??
if ((has_negative_ab(a, b)) || ((a.size() == 2) && (b.size() == 1)) || (boost::math::tools::epsilon<T>() < boost::math::tools::epsilon<double>()))
{
T min_err = boost::math::tools::epsilon<T>() * 600 / found_err;
fudge_factor = (std::max)(fudge_factor, min_err);
}
if ((((err > fudge_factor * found_err) && (found_err < 1)) || (boost::math::isnan)(found_err)) && (!(boost::math::isinf)(result)))
{
std::cout << "Found error = " << err << " error from norm = " << found_err << std::endl;
std::cout << "Testing fudge factor = " << fudge_factor << std::endl;
std::cout << " a = ";
for (auto pa = a.begin(); pa != a.end(); ++pa)
std::cout << *pa << ",";
std::cout << "\n b = ";
for (auto pb = b.begin(); pb != b.end(); ++pb)
std::cout << *pb << ",";
std::cout << "\n z = " << z << std::endl;
//
// This will fail if we've got here:
//
BOOST_CHECK_LE(err, fudge_factor * found_err);
BOOST_CHECK(!(boost::math::isnan)(found_err));
}
}
template <class T>
void test_spots_1F0(T, const char*)
{
using std::pow;
T tolerance = boost::math::tools::epsilon<T>() * 1000;
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(2)), T(-1), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(4)), T(-27), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(0.5)), T(0.125), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(0.5)), T(8), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(2)), T(-1), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(4)), T(T(-1) / 27), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(-0.5)), pow(T(1.5), -3), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(-2)), T(1 / T(27)), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(3) }, {}, T(-4)), T(T(1) / 125), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(-0.5)), pow(T(1.5), 3), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(-2)), T(27), tolerance);
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(-4)), T(125), tolerance);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(3) }, {}, T(1)), std::domain_error);
//BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(-3) }, {}, T(1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(3.25) }, {}, T(1)), std::domain_error);
//BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(-3.25) }, {}, T(1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(3.25) }, {}, T(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({ T(-3.25) }, {}, T(2)), std::domain_error);
}
template <class T>
void test_spots_0F1(T, const char*)
{
T tolerance = boost::math::tools::epsilon<T>() * 50000;
BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq({}, { T(3) }, T(0)), 1);
BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq({}, { T(-3) }, T(0)), 1);
//BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq({}, { T(0) }, T(0)), 1);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({}, { T(0) }, T(-1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({}, { T(-1) }, T(-1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::hypergeometric_pFq({}, { T(-10) }, T(-5)), std::domain_error);
static const boost::array<boost::array<T, 3>, 35> hypergeometric_pFq_integer_data = { {
{ SC_(4.0), SC_(-20.0), SC_(-0.012889714201783047561923257996127233830940165138385) },
{ SC_(8.0), SC_(-20.0), SC_(0.046498609282365144223175012935939437508273248399881) },
{ SC_(12.0), SC_(-20.0), SC_(0.16608847431869756642136191351311569335145459224622) },
{ SC_(16.0), SC_(-20.0), SC_(0.27230484709157170329168048388841880599105216477631) },
//{ SC_(20.0), SC_(-20.0), SC_(0.35865872656868844615709101792040025253126126604266) },
{ SC_(4.0), SC_(-16.0), SC_(-0.027293644412433023379286103818840667403690937153604) },
{ SC_(8.0), SC_(-16.0), SC_(0.098618710511372349330666801041676087431136532039702) },
{ SC_(12.0), SC_(-16.0), SC_(0.24360114226383905073379763460037817885919457531523) },
//{ SC_(16.0), SC_(-16.0), SC_(0.35635186318802906043824855864337727878754460163525) },
//{ SC_(20.0), SC_(-16.0), SC_(0.44218381382689101428948260613085371477815110358789) },
{ SC_(4.0), SC_(-12.0), SC_(-0.021743572290699436419371120781513860006290363262907) },
{ SC_(8.0), SC_(-12.0), SC_(0.19025625754362006866949730683824627505504067855043) },
//{ SC_(12.0), SC_(-12.0), SC_(0.35251228238278927379621049815222218665165551016489) },
//{ SC_(16.0), SC_(-12.0), SC_(0.46415411486674623230458980010115972932474705884865) },
//{ SC_(20.0), SC_(-12.0), SC_(0.54394918325286018927327004362535051310016558628741) },
{ SC_(4.0), SC_(-8.0), SC_(0.056818744289274872033266550620647787396712125304880) },
//{ SC_(8.0), SC_(-8.0), SC_(0.34487371876996263249797701802458885718691612997456) },
//{ SC_(12.0), SC_(-8.0), SC_(0.50411654015891701804499796523449656998841355305043) },
//{ SC_(16.0), SC_(-8.0), SC_(0.60191459981670594041254437708158847428118361245442) },
//{ SC_(20.0), SC_(-8.0), SC_(0.66770752550930138035694866478078941681114294465418) },
//{ SC_(4.0), SC_(-4.0), SC_(0.32262860540671645526863760914000166725449779629143) },
//{ SC_(8.0), SC_(-4.0), SC_(0.59755773349355150397404772151441126513126998265958) },
//{ SC_(12.0), SC_(-4.0), SC_(0.71337465206009117934071859694314971137807212605147) },
//{ SC_(16.0), SC_(-4.0), SC_(0.77734333649378860739496954157535257278092349684783) },
//{ SC_(20.0), SC_(-4.0), SC_(0.81794177985447769150469288350369205683856312760890) },
{ SC_(4.0), SC_(4.0), SC_(2.5029568338152582758923890008139391395035041790831) },
{ SC_(8.0), SC_(4.0), SC_(1.6273673128576761227855719910743734060605725722129) },
{ SC_(12.0), SC_(4.0), SC_(1.3898419290864057799739567227851793491657442624207) },
{ SC_(16.0), SC_(4.0), SC_(1.2817098157957427946677711269410726972209834860612) },
{ SC_(20.0), SC_(4.0), SC_(1.2202539302152377230940386181201477276788392792437) },
{ SC_(4.0), SC_(8.0), SC_(5.5616961007411965409200003309686924059253894118586) },
{ SC_(8.0), SC_(8.0), SC_(2.5877053985451664722152913482683136948296873738479) },
{ SC_(12.0), SC_(8.0), SC_(1.9166410733572697158003086323981583993970490592046) },
{ SC_(16.0), SC_(8.0), SC_(1.6370675016890669952237854163997946987362497613701) },
{ SC_(20.0), SC_(8.0), SC_(1.4862852701827990444915220582410007454379891584086) },
{ SC_(4.0), SC_(12.0), SC_(11.419268276211177842169936131590385979116019595164) },
{ SC_(8.0), SC_(12.0), SC_(4.0347215359576567066789638314925802225312840819037) },
{ SC_(12.0), SC_(12.0), SC_(2.6242497527837800417573064942486918368886996538285) },
{ SC_(16.0), SC_(12.0), SC_(2.0840468784170876805932772732753387258909164486511) },
{ SC_(20.0), SC_(12.0), SC_(1.8071042457762091748544382847762106786633952487005) },
{ SC_(4.0), SC_(16.0), SC_(22.132051970576036053853444648907108439504682530918) },
{ SC_(8.0), SC_(16.0), SC_(6.1850485247748975008808779795786699492711191898792) },
{ SC_(12.0), SC_(16.0), SC_(3.5694322843488018916484224923627864928705138154372) },
{ SC_(16.0), SC_(16.0), SC_(2.6447371137201451261118187672029372265909501355722) },
{ SC_(20.0), SC_(16.0), SC_(2.1934058398888071720297525592515838555602675797235) },
{ SC_(4.0), SC_(20.0), SC_(41.021743268279206331672552645354782698296383424328) },
{ SC_(8.0), SC_(20.0), SC_(9.3414225299809886395081381945971250426599939097753) },
{ SC_(12.0), SC_(20.0), SC_(4.8253866205826406499959001774187695527272168375992) },
{ SC_(16.0), SC_(20.0), SC_(3.3462305133519485784864062004430532216764447939942) },
{ SC_(20.0), SC_(20.0), SC_(2.6578698872220394617444624241257799193518140676691) },
} };
for (auto row = hypergeometric_pFq_integer_data.begin(); row != hypergeometric_pFq_integer_data.end(); ++row)
{
BOOST_CHECK_CLOSE(boost::math::hypergeometric_pFq({}, { (*row)[0] }, (*row)[1]), (*row)[2], tolerance);
}
}
template <class T>
void test_spots_1F1(T, const char*)
{
#include "hypergeometric_1F1.ipp"
for (auto row = hypergeometric_1F1.begin(); row != hypergeometric_1F1.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({ (*row)[0] }, { (*row)[1] }, (*row)[2], &norm);
check_pFq_result(result, norm, (*row)[3], { (*row)[0] }, { (*row)[1] }, (*row)[2]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots_1F1_b(T, const char*)
{
#include "hypergeometric_1F1_big.ipp"
for (auto row = hypergeometric_1F1_big.begin(); row != hypergeometric_1F1_big.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({ (*row)[0] }, { (*row)[1] }, (*row)[2], &norm);
check_pFq_result(result, norm, (*row)[3], { (*row)[0] }, { (*row)[1] }, (*row)[2]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots_2F1(T, const char*)
{
#include "hypergeometric_2F1.ipp"
for (auto row = hypergeometric_2F1.begin(); row != hypergeometric_2F1.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({ (*row)[0], (*row)[1] }, { (*row)[2] }, (*row)[3], &norm);
check_pFq_result(result, norm, (*row)[4], { (*row)[0], (*row)[1] }, { (*row)[2] }, (*row)[3]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots_0F2(T, const char*)
{
#include "hypergeometric_0F2.ipp"
for (auto row = hypergeometric_0F2.begin(); row != hypergeometric_0F2.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({}, { (*row)[0], (*row)[1] }, (*row)[2], &norm);
check_pFq_result(result, norm, (*row)[3], {}, { (*row)[0], (*row)[1] }, (*row)[2]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots_1F2(T, const char*)
{
#include "hypergeometric_1F2.ipp"
for (auto row = hypergeometric_1F2.begin(); row != hypergeometric_1F2.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({ (*row)[0] }, { (*row)[1], (*row)[2] }, (*row)[3], &norm);
check_pFq_result(result, norm, (*row)[4], { (*row)[0] }, { (*row)[1], (*row)[2] }, (*row)[3]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots_2F2(T, const char*)
{
#include "hypergeometric_2F2.ipp"
for (auto row = hypergeometric_2F2.begin(); row != hypergeometric_2F2.end(); ++row)
{
try {
T norm;
T result = boost::math::hypergeometric_pFq({ (*row)[0], (*row)[1] }, { (*row)[2], (*row)[3] }, (*row)[4], &norm);
check_pFq_result(result, norm, (*row)[5], { (*row)[0], (*row)[1] }, { (*row)[2], (*row)[3] }, (*row)[4]);
}
catch (const boost::math::evaluation_error&) {}
}
}
template <class T>
void test_spots(T z, const char* type_name)
{
test_spots_1F0(z, type_name);
test_spots_0F1(z, type_name);
test_spots_1F1(z, type_name);
test_spots_1F1_b(z, type_name);
test_spots_0F2(z, type_name);
test_spots_1F2(z, type_name);
test_spots_2F2(z, type_name);
test_spots_2F1(z, type_name);
}
|