1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
// Copyright 2010 Christophe Henry
// henry UNDERSCORE christophe AT hotmail DOT com
// This is an extended version of the state machine available in the boost::mpl library
// Distributed under the same license as the original.
// Copyright for the original version:
// Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
// back-end
#include <boost/msm/back/state_machine.hpp>
//front-end
#include <boost/msm/front/state_machine_def.hpp>
#include <boost/msm/front/functor_row.hpp>
#include <boost/test/unit_test.hpp>
namespace msm = boost::msm;
namespace mpl = boost::mpl;
using namespace boost::msm::front;
namespace
{
// events
struct eventResolve {};
struct eventConnect {};
struct eventResolved {};
struct eventRead {};
struct eventd {};
// front-end: define the FSM structure
struct player_ : public msm::front::state_machine_def<player_>
{
player_()
:expected_action_counter(0)
{}
struct enqueue_action1
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
fsm.template process_event(eventResolve());
}
};
struct enqueue_action2
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
fsm.template process_event(eventConnect());
}
};
struct expected_action
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
++fsm.expected_action_counter;
//std::cout << "expected action called" << std::endl;
}
};
struct unexpected_action
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
std::cout << "unexpected action called" << std::endl;
}
};
// The list of FSM states
struct Unresolved : public msm::front::state<>
{
typedef mpl::vector<eventRead > deferred_events;
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
// Transition table for Empty
struct internal_transition_table : mpl::vector<
// Start Event Next Action Guard
Internal < eventConnect , msm::front::ActionSequence_<mpl::vector<enqueue_action1,enqueue_action2>> >
// +---------+-------------+---------+---------------------+----------------------+
> {};
};
struct Resolving : public msm::front::state<>
{
typedef mpl::vector<eventConnect > deferred_events;
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct Resolved : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct Connecting : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct State22 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
// the initial state of the player SM. Must be defined
typedef mpl::vector<Unresolved,State22> initial_state;
// Transition table for player
struct transition_table : mpl::vector<
// Start Event Next Action Guard
// +---------+-------------+---------+---------------------+----------------------+
Row < Unresolved , eventResolve , Resolving >,
Row < Resolving , eventResolved , Resolved >,
Row < Resolved , eventConnect , Connecting , expected_action >,
Row < State22 , eventd , State22 >
// +---------+-------------+---------+---------------------+----------------------+
> {};
// Replaces the default no-transition response.
template <class FSM,class Event>
void no_transition(Event const& , FSM&,int )
{
BOOST_FAIL("no_transition called!");
}
// init counters
template <class Event,class FSM>
void on_entry(Event const&,FSM& fsm)
{
fsm.template get_state<player_::Unresolved&>().entry_counter=0;
fsm.template get_state<player_::Unresolved&>().exit_counter=0;
fsm.template get_state<player_::Resolving&>().entry_counter=0;
fsm.template get_state<player_::Resolving&>().exit_counter=0;
fsm.template get_state<player_::Resolved&>().entry_counter=0;
fsm.template get_state<player_::Resolved&>().exit_counter=0;
fsm.template get_state<player_::Connecting&>().entry_counter=0;
fsm.template get_state<player_::Connecting&>().exit_counter=0;
}
int expected_action_counter;
};
// Pick a back-end
typedef msm::back::state_machine<player_> player;
BOOST_AUTO_TEST_CASE( TestDeferAndMessageQueue )
{
player p;
// needed to start the highest-level SM. This will call on_entry and mark the start of the SM
p.start();
p.process_event(eventConnect());
BOOST_CHECK_MESSAGE(p.current_state()[0] == 1,"Resolving should be active");
BOOST_CHECK_MESSAGE(p.current_state()[1] == 3,"State22 should be active");
BOOST_CHECK_MESSAGE(p.get_state<player_::Unresolved&>().exit_counter == 1,"Unresolved exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<player_::Unresolved&>().entry_counter == 1,"Unresolved entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<player_::Resolving&>().entry_counter == 1,"Resolving entry not called correctly");
p.process_event(eventResolved());
BOOST_CHECK_MESSAGE(p.current_state()[0] == 4,"Connecting should be active");
BOOST_CHECK_MESSAGE(p.current_state()[1] == 3,"State22 should be active");
BOOST_CHECK_MESSAGE(p.get_state<player_::Resolved&>().exit_counter == 1,"Resolved exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<player_::Resolved&>().entry_counter == 1,"Resolved entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<player_::Resolving&>().exit_counter == 1,"Resolving exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<player_::Connecting&>().entry_counter == 1,"Connecting entry not called correctly");
BOOST_CHECK_MESSAGE(p.expected_action_counter == 1,"expected_action should have been called");
}
}
|