1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
libs/numeric/odeint/examples/stochastic_euler.hpp
Copyright 2012 Karsten Ahnert
Copyright 2012 Mario Mulansky
Stochastic euler stepper example and Ornstein-Uhlenbeck process
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <vector>
#include <iostream>
#include <boost/random.hpp>
#include <boost/array.hpp>
#include <boost/numeric/odeint.hpp>
/*
//[ stochastic_euler_class_definition
template< size_t N > class stochastic_euler
{
public:
typedef boost::array< double , N > state_type;
typedef boost::array< double , N > deriv_type;
typedef double value_type;
typedef double time_type;
typedef unsigned short order_type;
typedef boost::numeric::odeint::stepper_tag stepper_category;
static order_type order( void ) { return 1; }
// ...
};
//]
*/
/*
//[ stochastic_euler_do_step
template< size_t N > class stochastic_euler
{
public:
// ...
template< class System >
void do_step( System system , state_type &x , time_type t , time_type dt ) const
{
deriv_type det , stoch ;
system.first( x , det );
system.second( x , stoch );
for( size_t i=0 ; i<x.size() ; ++i )
x[i] += dt * det[i] + sqrt( dt ) * stoch[i];
}
};
//]
*/
//[ stochastic_euler_class
template< size_t N >
class stochastic_euler
{
public:
typedef boost::array< double , N > state_type;
typedef boost::array< double , N > deriv_type;
typedef double value_type;
typedef double time_type;
typedef unsigned short order_type;
typedef boost::numeric::odeint::stepper_tag stepper_category;
static order_type order( void ) { return 1; }
template< class System >
void do_step( System system , state_type &x , time_type t , time_type dt ) const
{
deriv_type det , stoch ;
system.first( x , det );
system.second( x , stoch );
for( size_t i=0 ; i<x.size() ; ++i )
x[i] += dt * det[i] + sqrt( dt ) * stoch[i];
}
};
//]
//[ stochastic_euler_ornstein_uhlenbeck_def
const static size_t N = 1;
typedef boost::array< double , N > state_type;
struct ornstein_det
{
void operator()( const state_type &x , state_type &dxdt ) const
{
dxdt[0] = -x[0];
}
};
struct ornstein_stoch
{
boost::mt19937 &m_rng;
boost::normal_distribution<> m_dist;
ornstein_stoch( boost::mt19937 &rng , double sigma ) : m_rng( rng ) , m_dist( 0.0 , sigma ) { }
void operator()( const state_type &x , state_type &dxdt )
{
dxdt[0] = m_dist( m_rng );
}
};
//]
struct streaming_observer
{
template< class State >
void operator()( const State &x , double t ) const
{
std::cout << t << "\t" << x[0] << "\n";
}
};
int main( int argc , char **argv )
{
using namespace std;
using namespace boost::numeric::odeint;
//[ ornstein_uhlenbeck_main
boost::mt19937 rng;
double dt = 0.1;
state_type x = {{ 1.0 }};
integrate_const( stochastic_euler< N >() , make_pair( ornstein_det() , ornstein_stoch( rng , 1.0 ) ),
x , 0.0 , 10.0 , dt , streaming_observer() );
//]
return 0;
}
|