1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
//[ Mixed
///////////////////////////////////////////////////////////////////////////////
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This is an example of using BOOST_PROTO_DEFINE_OPERATORS to Protofy
// expressions using std::vector<> and std::list, non-proto types. It is a port
// of the Mixed example from PETE.
// (http://www.codesourcery.com/pooma/download.html).
#include <list>
#include <cmath>
#include <vector>
#include <complex>
#include <iostream>
#include <stdexcept>
#include <boost/proto/core.hpp>
#include <boost/proto/debug.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/transform.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/typeof/std/list.hpp>
#include <boost/typeof/std/vector.hpp>
#include <boost/typeof/std/complex.hpp>
#include <boost/type_traits/remove_reference.hpp>
namespace proto = boost::proto;
namespace mpl = boost::mpl;
using proto::_;
template<typename Expr>
struct MixedExpr;
template<typename Iter>
struct iterator_wrapper
{
typedef Iter iterator;
explicit iterator_wrapper(Iter iter)
: it(iter)
{}
mutable Iter it;
};
struct begin : proto::callable
{
template<class Sig>
struct result;
template<class This, class Cont>
struct result<This(Cont)>
: proto::result_of::as_expr<
iterator_wrapper<typename boost::remove_reference<Cont>::type::const_iterator>
>
{};
template<typename Cont>
typename result<begin(Cont const &)>::type
operator ()(Cont const &cont) const
{
iterator_wrapper<typename Cont::const_iterator> it(cont.begin());
return proto::as_expr(it);
}
};
// Here is a grammar that replaces vector and list terminals with their
// begin iterators
struct Begin
: proto::or_<
proto::when< proto::terminal< std::vector<_, _> >, begin(proto::_value) >
, proto::when< proto::terminal< std::list<_, _> >, begin(proto::_value) >
, proto::when< proto::terminal<_> >
, proto::when< proto::nary_expr<_, proto::vararg<Begin> > >
>
{};
// Here is an evaluation context that dereferences iterator
// terminals.
struct DereferenceCtx
{
// Unless this is an iterator terminal, use the
// default evaluation context
template<typename Expr, typename EnableIf = void>
struct eval
: proto::default_eval<Expr, DereferenceCtx const>
{};
// Dereference iterator terminals.
template<typename Expr>
struct eval<
Expr
, typename boost::enable_if<
proto::matches<Expr, proto::terminal<iterator_wrapper<_> > >
>::type
>
{
typedef typename proto::result_of::value<Expr>::type IteratorWrapper;
typedef typename IteratorWrapper::iterator iterator;
typedef typename std::iterator_traits<iterator>::reference result_type;
result_type operator ()(Expr &expr, DereferenceCtx const &) const
{
return *proto::value(expr).it;
}
};
};
// Here is an evaluation context that increments iterator
// terminals.
struct IncrementCtx
{
// Unless this is an iterator terminal, use the
// default evaluation context
template<typename Expr, typename EnableIf = void>
struct eval
: proto::null_eval<Expr, IncrementCtx const>
{};
// advance iterator terminals.
template<typename Expr>
struct eval<
Expr
, typename boost::enable_if<
proto::matches<Expr, proto::terminal<iterator_wrapper<_> > >
>::type
>
{
typedef void result_type;
result_type operator ()(Expr &expr, IncrementCtx const &) const
{
++proto::value(expr).it;
}
};
};
// A grammar which matches all the assignment operators,
// so we can easily disable them.
struct AssignOps
: proto::switch_<struct AssignOpsCases>
{};
// Here are the cases used by the switch_ above.
struct AssignOpsCases
{
template<typename Tag, int D = 0> struct case_ : proto::not_<_> {};
template<int D> struct case_< proto::tag::plus_assign, D > : _ {};
template<int D> struct case_< proto::tag::minus_assign, D > : _ {};
template<int D> struct case_< proto::tag::multiplies_assign, D > : _ {};
template<int D> struct case_< proto::tag::divides_assign, D > : _ {};
template<int D> struct case_< proto::tag::modulus_assign, D > : _ {};
template<int D> struct case_< proto::tag::shift_left_assign, D > : _ {};
template<int D> struct case_< proto::tag::shift_right_assign, D > : _ {};
template<int D> struct case_< proto::tag::bitwise_and_assign, D > : _ {};
template<int D> struct case_< proto::tag::bitwise_or_assign, D > : _ {};
template<int D> struct case_< proto::tag::bitwise_xor_assign, D > : _ {};
};
// An expression conforms to the MixedGrammar if it is a terminal or some
// op that is not an assignment op. (Assignment will be handled specially.)
struct MixedGrammar
: proto::or_<
proto::terminal<_>
, proto::and_<
proto::nary_expr<_, proto::vararg<MixedGrammar> >
, proto::not_<AssignOps>
>
>
{};
// Expressions in the MixedDomain will be wrapped in MixedExpr<>
// and must conform to the MixedGrammar
struct MixedDomain
: proto::domain<proto::generator<MixedExpr>, MixedGrammar>
{};
// Here is MixedExpr, a wrapper for expression types in the MixedDomain.
template<typename Expr>
struct MixedExpr
: proto::extends<Expr, MixedExpr<Expr>, MixedDomain>
{
explicit MixedExpr(Expr const &expr)
: MixedExpr::proto_extends(expr)
{}
private:
// hide this:
using proto::extends<Expr, MixedExpr<Expr>, MixedDomain>::operator [];
};
// Define a trait type for detecting vector and list terminals, to
// be used by the BOOST_PROTO_DEFINE_OPERATORS macro below.
template<typename T>
struct IsMixed
: mpl::false_
{};
template<typename T, typename A>
struct IsMixed<std::list<T, A> >
: mpl::true_
{};
template<typename T, typename A>
struct IsMixed<std::vector<T, A> >
: mpl::true_
{};
namespace MixedOps
{
// This defines all the overloads to make expressions involving
// std::vector to build expression templates.
BOOST_PROTO_DEFINE_OPERATORS(IsMixed, MixedDomain)
struct assign_op
{
template<typename T, typename U>
void operator ()(T &t, U const &u) const
{
t = u;
}
};
struct plus_assign_op
{
template<typename T, typename U>
void operator ()(T &t, U const &u) const
{
t += u;
}
};
struct minus_assign_op
{
template<typename T, typename U>
void operator ()(T &t, U const &u) const
{
t -= u;
}
};
struct sin_
{
template<typename Sig>
struct result;
template<typename This, typename Arg>
struct result<This(Arg)>
: boost::remove_const<typename boost::remove_reference<Arg>::type>
{};
template<typename Arg>
Arg operator ()(Arg const &a) const
{
return std::sin(a);
}
};
template<typename A>
typename proto::result_of::make_expr<
proto::tag::function
, MixedDomain
, sin_ const
, A const &
>::type sin(A const &a)
{
return proto::make_expr<proto::tag::function, MixedDomain>(sin_(), boost::ref(a));
}
template<typename FwdIter, typename Expr, typename Op>
void evaluate(FwdIter begin, FwdIter end, Expr const &expr, Op op)
{
IncrementCtx const inc = {};
DereferenceCtx const deref = {};
typename boost::result_of<Begin(Expr const &)>::type expr2 = Begin()(expr);
for(; begin != end; ++begin)
{
op(*begin, proto::eval(expr2, deref));
proto::eval(expr2, inc);
}
}
// Add-assign to a vector from some expression.
template<typename T, typename A, typename Expr>
std::vector<T, A> &assign(std::vector<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), assign_op());
return arr;
}
// Add-assign to a list from some expression.
template<typename T, typename A, typename Expr>
std::list<T, A> &assign(std::list<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), assign_op());
return arr;
}
// Add-assign to a vector from some expression.
template<typename T, typename A, typename Expr>
std::vector<T, A> &operator +=(std::vector<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), plus_assign_op());
return arr;
}
// Add-assign to a list from some expression.
template<typename T, typename A, typename Expr>
std::list<T, A> &operator +=(std::list<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), plus_assign_op());
return arr;
}
// Minus-assign to a vector from some expression.
template<typename T, typename A, typename Expr>
std::vector<T, A> &operator -=(std::vector<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), minus_assign_op());
return arr;
}
// Minus-assign to a list from some expression.
template<typename T, typename A, typename Expr>
std::list<T, A> &operator -=(std::list<T, A> &arr, Expr const &expr)
{
evaluate(arr.begin(), arr.end(), proto::as_expr<MixedDomain>(expr), minus_assign_op());
return arr;
}
}
int main()
{
using namespace MixedOps;
int n = 10;
std::vector<int> a,b,c,d;
std::list<double> e;
std::list<std::complex<double> > f;
int i;
for(i = 0;i < n; ++i)
{
a.push_back(i);
b.push_back(2*i);
c.push_back(3*i);
d.push_back(i);
e.push_back(0.0);
f.push_back(std::complex<double>(1.0, 1.0));
}
MixedOps::assign(b, 2);
MixedOps::assign(d, a + b * c);
a += if_else(d < 30, b, c);
MixedOps::assign(e, c);
e += e - 4 / (c + 1);
f -= sin(0.1 * e * std::complex<double>(0.2, 1.2));
std::list<double>::const_iterator ei = e.begin();
std::list<std::complex<double> >::const_iterator fi = f.begin();
for (i = 0; i < n; ++i)
{
std::cout
<< "a(" << i << ") = " << a[i]
<< " b(" << i << ") = " << b[i]
<< " c(" << i << ") = " << c[i]
<< " d(" << i << ") = " << d[i]
<< " e(" << i << ") = " << *ei++
<< " f(" << i << ") = " << *fi++
<< std::endl;
}
}
//]
|