1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
//[ Vec3
///////////////////////////////////////////////////////////////////////////////
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This is a simple example using proto::extends to extend a terminal type with
// additional behaviors, and using custom contexts and proto::eval for
// evaluating expressions. It is a port of the Vec3 example
// from PETE (http://www.codesourcery.com/pooma/download.html).
#include <iostream>
#include <functional>
#include <boost/assert.hpp>
#include <boost/mpl/int.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/proto_typeof.hpp>
#include <boost/proto/transform.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
using proto::_;
// Here is an evaluation context that indexes into a Vec3
// expression, and combines the result.
struct Vec3SubscriptCtx
: proto::callable_context< Vec3SubscriptCtx const >
{
typedef int result_type;
Vec3SubscriptCtx(int i)
: i_(i)
{}
// Index array terminals with our subscript. Everything
// else will be handled by the default evaluation context.
int operator ()(proto::tag::terminal, int const (&arr)[3]) const
{
return arr[this->i_];
}
int i_;
};
// Here is an evaluation context that counts the number
// of Vec3 terminals in an expression.
struct CountLeavesCtx
: proto::callable_context< CountLeavesCtx, proto::null_context >
{
CountLeavesCtx()
: count(0)
{}
typedef void result_type;
void operator ()(proto::tag::terminal, int const(&)[3])
{
++this->count;
}
int count;
};
struct iplus : std::plus<int>, proto::callable {};
// Here is a transform that does the same thing as the above context.
// It demonstrates the use of the std::plus<> function object
// with the fold transform. With minor modifications, this
// transform could be used to calculate the leaf count at compile
// time, rather than at runtime.
struct CountLeaves
: proto::or_<
// match a Vec3 terminal, return 1
proto::when<proto::terminal<int[3]>, mpl::int_<1>() >
// match a terminal, return int() (which is 0)
, proto::when<proto::terminal<_>, int() >
// fold everything else, using std::plus<> to add
// the leaf count of each child to the accumulated state.
, proto::otherwise< proto::fold<_, int(), iplus(CountLeaves, proto::_state) > >
>
{};
// Here is the Vec3 struct, which is a vector of 3 integers.
struct Vec3
: proto::extends<proto::terminal<int[3]>::type, Vec3>
{
explicit Vec3(int i=0, int j=0, int k=0)
{
(*this)[0] = i;
(*this)[1] = j;
(*this)[2] = k;
}
int &operator [](int i)
{
return proto::value(*this)[i];
}
int const &operator [](int i) const
{
return proto::value(*this)[i];
}
// Here we define a operator = for Vec3 terminals that
// takes a Vec3 expression.
template< typename Expr >
Vec3 &operator =(Expr const & expr)
{
typedef Vec3SubscriptCtx const CVec3SubscriptCtx;
(*this)[0] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(0));
(*this)[1] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(1));
(*this)[2] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(2));
return *this;
}
// This copy-assign is needed because a template is never
// considered for copy assignment.
Vec3 &operator=(Vec3 const &that)
{
(*this)[0] = that[0];
(*this)[1] = that[1];
(*this)[2] = that[2];
return *this;
}
void print() const
{
std::cout << '{' << (*this)[0]
<< ", " << (*this)[1]
<< ", " << (*this)[2]
<< '}' << std::endl;
}
};
// The count_leaves() function uses the CountLeaves transform and
// to count the number of leaves in an expression.
template<typename Expr>
int count_leaves(Expr const &expr)
{
// Count the number of Vec3 terminals using the
// CountLeavesCtx evaluation context.
CountLeavesCtx ctx;
proto::eval(expr, ctx);
// This is another way to count the leaves using a transform.
int i = 0;
BOOST_ASSERT( CountLeaves()(expr, i, i) == ctx.count );
return ctx.count;
}
int main()
{
Vec3 a, b, c;
c = 4;
b[0] = -1;
b[1] = -2;
b[2] = -3;
a = b + c;
a.print();
Vec3 d;
BOOST_PROTO_AUTO(expr1, b + c);
d = expr1;
d.print();
int num = count_leaves(expr1);
std::cout << num << std::endl;
BOOST_PROTO_AUTO(expr2, b + 3 * c);
num = count_leaves(expr2);
std::cout << num << std::endl;
BOOST_PROTO_AUTO(expr3, b + c * d);
num = count_leaves(expr3);
std::cout << num << std::endl;
return 0;
}
//]
|