1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
// Boost.Units - A C++ library for zero-overhead dimensional analysis and
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2007-2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/units/base_unit.hpp>
#include <boost/units/derived_dimension.hpp>
#include <boost/units/make_system.hpp>
#include <boost/units/operators.hpp>
#include <boost/units/reduce_unit.hpp>
#include <boost/units/unit.hpp>
#include <boost/units/physical_dimensions/current.hpp>
#include <boost/units/physical_dimensions/electric_potential.hpp>
#include <boost/units/physical_dimensions/energy.hpp>
#include <boost/units/physical_dimensions/force.hpp>
#include <boost/units/physical_dimensions/length.hpp>
#include <boost/units/physical_dimensions/mass.hpp>
#include <boost/units/physical_dimensions/time.hpp>
namespace test_system1 {
// the base units in the system will be:
//
// volts = m^2 kg s^-2 C^-1
// newtons = m kg s^-2
// joules = m^2 kg s^-2
// we will find the representation of m^-1 C^-1 = V N J^-2 = m^-1 C^-1
// reducing the system should generate the matrix equation
// 2 1 2
// 1 1 1 x = c
// -2 -2 -2
// -1 0 0
struct volt : boost::units::base_unit<volt, boost::units::electric_potential_dimension, 1> {};
struct newton : boost::units::base_unit<newton, boost::units::force_dimension, 2> {};
struct joule : boost::units::base_unit<joule, boost::units::energy_dimension, 3> {};
typedef boost::units::make_system<volt, newton, joule>::type complicated_system;
typedef boost::units::derived_dimension<
boost::units::length_base_dimension, -1,
boost::units::time_base_dimension, -1,
boost::units::current_base_dimension, -1
>::type dimension;
typedef boost::units::reduce_unit<boost::units::unit<dimension, complicated_system> >::type reduced;
typedef boost::units::divide_typeof_helper<
boost::units::multiply_typeof_helper<volt::unit_type, newton::unit_type>::type,
boost::units::power_typeof_helper<joule::unit_type, boost::units::static_rational<2> >::type
>::type expected;
void test() {
BOOST_MPL_ASSERT((boost::is_same<reduced, expected>));
}
}
namespace test_system2 {
// the base units in the system will be:
//
// kilograms = kg
// meters = m
// we will find the representation of m and kg
// reducing the system should generate the matrix equation
// 0 1
// 1 0 x = c
struct kilogram : boost::units::base_unit<kilogram, boost::units::mass_dimension, 4> {};
struct meter : boost::units::base_unit<meter, boost::units::length_dimension, 5> {};
typedef boost::units::make_system<meter, kilogram>::type mk_system;
typedef boost::units::reduce_unit<boost::units::unit<boost::units::mass_dimension, mk_system> >::type mass_unit;
typedef boost::units::reduce_unit<boost::units::unit<boost::units::length_dimension, mk_system> >::type length_unit;
void test() {
BOOST_MPL_ASSERT((boost::is_same<mass_unit, kilogram::unit_type>));
BOOST_MPL_ASSERT((boost::is_same<length_unit, meter::unit_type>));
}
}
|