1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/*
* autodiff.h
*
* Created on: 16 Apr 2013
* Author: s0965328
*/
#ifndef AUTODIFF_H_
#define AUTODIFF_H_
#include <boost/unordered_set.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/io.hpp>
#include "auto_diff_types.h"
#include "Node.h"
#include "VNode.h"
#include "OPNode.h"
#include "PNode.h"
#include "ActNode.h"
#include "EdgeSet.h"
/*
* + Function and Gradient Evaluation
* The tapeless implementation for function and derivative evaluation
* Advantage for tapeless:
* Low memory usage
* Function evaluation use one stack
* Gradient evaluation use two stack.
* Disadvantage for tapeless:
* Inefficient if the expression tree have repeated nodes.
* for example:
* root
* / \
* * *
* / \ / \
* x1 x1 x1 x1
* Tapeless implementation will go through all the edges.
* ie. adjoint of x will be updated 4 times for the correct
* gradient of x1.While the tape implemenation can discovery this
* dependence and update adjoint of x1 just twice. The computational
* graph (DAG) for a taped implemenation will be look like bellow.
* root
* /\
* *
* /\
* x1
*
* + Forward Hessian Evaluation:
* This is an inefficient implementation of the forward Hessian method. It will evaluate the diagonal
* and upper triangular of the Hessian. The gradient is also evaluation in the same routine. The result
* will be returned in an array.
* To use this method, one have to provide a len parameter. len = (nvar+3)*nvar/2 where nvar is the number
* of independent variables. ie. x_1 x_2 ... x_nvar. And the varaible id need to be a consequent integer start
* with 0.
* ret_vec will contains len number of doubles. Where the first nvar elements is the gradient vector,
* and the rest of (nvar+1)*nvar/2 elements are the upper/lower plus the diagonal part of the Hessian matrix
* in row format.
* This algorithm is inefficient, because at each nodes, it didn't check the dependency of the independent
* variables up to the current node. (or it is hard to do so for this setup). Therefore, it computes a full
* for loops over each independent variable (ie. assume they are all dependent), for those independent
* variables that are not dependent at the current node, zero will be produced by computation.
* By default the forward mode hessian routing is disabled. To enable the forward hessian interface, the
* compiler marco FORWARD_ENABLED need to be set equal to 1 in auto_diff_types.h
*
* + Reverse Hessian*Vector Evaluation:
* Simple, building a tape in the forward pass, and a reverse pass will evaluate the Hessian*vector. The implemenation
* also discovery the repeated subexpression and use one piece of memory on the tape for the same subexpression. This
* allow efficient evaluation, because the repeated subexpression only evaluate once in the forward and reverse pass.
* This algorithm can be called n times to compute a full Hessian, where n equals the number of independent
* variables.
* */
typedef boost::numeric::ublas::compressed_matrix<double,boost::numeric::ublas::column_major,0,std::vector<std::size_t>,std::vector<double> > col_compress_matrix;
typedef boost::numeric::ublas::matrix_row<col_compress_matrix > col_compress_matrix_row;
typedef boost::numeric::ublas::matrix_column<col_compress_matrix > col_compress_matrix_col;
namespace AutoDiff{
//node creation methods
extern PNode* create_param_node(double value);
extern VNode* create_var_node(double v=NaN_Double);
extern OPNode* create_uary_op_node(OPCODE code, Node* left);
extern OPNode* create_binary_op_node(OPCODE code, Node* left,Node* right);
//single constraint version
extern double eval_function(Node* root);
extern unsigned int nzGrad(Node* root);
extern double grad_reverse(Node* root,vector<Node*>& nodes, vector<double>& grad);
extern unsigned int nzHess(EdgeSet&);
extern double hess_reverse(Node* root, vector<Node*>& nodes, vector<double>& dhess);
//multiple constraints version
extern unsigned int nzGrad(Node* root, boost::unordered_set<Node*>& vnodes);
extern double grad_reverse(Node* root, vector<Node*>& nodes, col_compress_matrix_row& rgrad);
extern unsigned int nzHess(EdgeSet&,boost::unordered_set<Node*>& set1, boost::unordered_set<Node*>& set2);
extern double hess_reverse(Node* root, vector<Node*>& nodes, col_compress_matrix_col& chess);
#if FORWARD_ENDABLED
//forward methods
extern void hess_forward(Node* root, unsigned int nvar, double** hess_mat);
#endif
//utiliy methods
extern void nonlinearEdges(Node* root, EdgeSet& edges);
extern unsigned int numTotalNodes(Node*);
extern string tree_expr(Node* root);
extern void print_tree(Node* root);
extern void autodiff_setup();
extern void autodiff_cleanup();
};
#endif /* AUTODIFF_H_ */
|