1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/**********************************************************************
Copyright(c) 2011-2016 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#include "sha256_mb.h"
#include "memcpy_inline.h"
#ifdef _MSC_VER
# include <intrin.h>
# define inline __inline
#endif
static inline void hash_init_digest(SHA256_WORD_T * digest);
static inline uint32_t hash_pad(uint8_t padblock[SHA256_BLOCK_SIZE * 2], uint32_t total_len);
static SHA256_HASH_CTX *sha256_ctx_mgr_resubmit(SHA256_HASH_CTX_MGR * mgr,
SHA256_HASH_CTX * ctx);
void sha256_ctx_mgr_init_avx(SHA256_HASH_CTX_MGR * mgr)
{
sha256_mb_mgr_init_avx(&mgr->mgr);
}
SHA256_HASH_CTX *sha256_ctx_mgr_submit_avx(SHA256_HASH_CTX_MGR * mgr, SHA256_HASH_CTX * ctx,
const void *buffer, uint32_t len,
HASH_CTX_FLAG flags)
{
if (flags & (~HASH_ENTIRE)) {
// User should not pass anything other than FIRST, UPDATE, or LAST
ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
return ctx;
}
if (ctx->status & HASH_CTX_STS_PROCESSING) {
// Cannot submit to a currently processing job.
ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
return ctx;
}
if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
// Cannot update a finished job.
ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
return ctx;
}
if (flags & HASH_FIRST) {
// Init digest
hash_init_digest(ctx->job.result_digest);
// Reset byte counter
ctx->total_length = 0;
// Clear extra blocks
ctx->partial_block_buffer_length = 0;
}
// If we made it here, there were no errors during this call to submit
ctx->error = HASH_CTX_ERROR_NONE;
// Store buffer ptr info from user
ctx->incoming_buffer = buffer;
ctx->incoming_buffer_length = len;
// Store the user's request flags and mark this ctx as currently being processed.
ctx->status = (flags & HASH_LAST) ?
(HASH_CTX_STS) (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
HASH_CTX_STS_PROCESSING;
// Advance byte counter
ctx->total_length += len;
// If there is anything currently buffered in the extra blocks, append to it until it contains a whole block.
// Or if the user's buffer contains less than a whole block, append as much as possible to the extra block.
if ((ctx->partial_block_buffer_length) | (len < SHA256_BLOCK_SIZE)) {
// Compute how many bytes to copy from user buffer into extra block
uint32_t copy_len = SHA256_BLOCK_SIZE - ctx->partial_block_buffer_length;
if (len < copy_len)
copy_len = len;
if (copy_len) {
// Copy and update relevant pointers and counters
memcpy_varlen(&ctx->partial_block_buffer
[ctx->partial_block_buffer_length], buffer, copy_len);
ctx->partial_block_buffer_length += copy_len;
ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
ctx->incoming_buffer_length = len - copy_len;
}
// The extra block should never contain more than 1 block here
assert(ctx->partial_block_buffer_length <= SHA256_BLOCK_SIZE);
// If the extra block buffer contains exactly 1 block, it can be hashed.
if (ctx->partial_block_buffer_length >= SHA256_BLOCK_SIZE) {
ctx->partial_block_buffer_length = 0;
ctx->job.buffer = ctx->partial_block_buffer;
ctx->job.len = 1;
ctx = (SHA256_HASH_CTX *) sha256_mb_mgr_submit_avx(&mgr->mgr,
&ctx->job);
}
}
return sha256_ctx_mgr_resubmit(mgr, ctx);
}
SHA256_HASH_CTX *sha256_ctx_mgr_flush_avx(SHA256_HASH_CTX_MGR * mgr)
{
SHA256_HASH_CTX *ctx;
while (1) {
ctx = (SHA256_HASH_CTX *) sha256_mb_mgr_flush_avx(&mgr->mgr);
// If flush returned 0, there are no more jobs in flight.
if (!ctx)
return NULL;
// If flush returned a job, verify that it is safe to return to the user.
// If it is not ready, resubmit the job to finish processing.
ctx = sha256_ctx_mgr_resubmit(mgr, ctx);
// If sha256_ctx_mgr_resubmit returned a job, it is ready to be returned.
if (ctx)
return ctx;
// Otherwise, all jobs currently being managed by the SHA256_HASH_CTX_MGR still need processing. Loop.
}
}
static SHA256_HASH_CTX *sha256_ctx_mgr_resubmit(SHA256_HASH_CTX_MGR * mgr,
SHA256_HASH_CTX * ctx)
{
while (ctx) {
if (ctx->status & HASH_CTX_STS_COMPLETE) {
ctx->status = HASH_CTX_STS_COMPLETE; // Clear PROCESSING bit
return ctx;
}
// If the extra blocks are empty, begin hashing what remains in the user's buffer.
if (ctx->partial_block_buffer_length == 0 && ctx->incoming_buffer_length) {
const void *buffer = ctx->incoming_buffer;
uint32_t len = ctx->incoming_buffer_length;
// Only entire blocks can be hashed. Copy remainder to extra blocks buffer.
uint32_t copy_len = len & (SHA256_BLOCK_SIZE - 1);
if (copy_len) {
len -= copy_len;
memcpy_varlen(ctx->partial_block_buffer,
((const char *)buffer + len), copy_len);
ctx->partial_block_buffer_length = copy_len;
}
ctx->incoming_buffer_length = 0;
// len should be a multiple of the block size now
assert((len % SHA256_BLOCK_SIZE) == 0);
// Set len to the number of blocks to be hashed in the user's buffer
len >>= SHA256_LOG2_BLOCK_SIZE;
if (len) {
ctx->job.buffer = (uint8_t *) buffer;
ctx->job.len = len;
ctx = (SHA256_HASH_CTX *) sha256_mb_mgr_submit_avx(&mgr->mgr,
&ctx->job);
continue;
}
}
// If the extra blocks are not empty, then we are either on the last block(s)
// or we need more user input before continuing.
if (ctx->status & HASH_CTX_STS_LAST) {
uint8_t *buf = ctx->partial_block_buffer;
uint32_t n_extra_blocks = hash_pad(buf, ctx->total_length);
ctx->status =
(HASH_CTX_STS) (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_COMPLETE);
ctx->job.buffer = buf;
ctx->job.len = (uint32_t) n_extra_blocks;
ctx = (SHA256_HASH_CTX *) sha256_mb_mgr_submit_avx(&mgr->mgr,
&ctx->job);
continue;
}
if (ctx)
ctx->status = HASH_CTX_STS_IDLE;
return ctx;
}
return NULL;
}
static inline void hash_init_digest(SHA256_WORD_T * digest)
{
static const SHA256_WORD_T hash_initial_digest[SHA256_DIGEST_NWORDS] =
{ SHA256_INITIAL_DIGEST };
memcpy_fixedlen(digest, hash_initial_digest, sizeof(hash_initial_digest));
}
static inline uint32_t hash_pad(uint8_t padblock[SHA256_BLOCK_SIZE * 2], uint32_t total_len)
{
uint32_t i = total_len & (SHA256_BLOCK_SIZE - 1);
memclr_fixedlen(&padblock[i], SHA256_BLOCK_SIZE);
padblock[i] = 0x80;
// Move i to the end of either 1st or 2nd extra block depending on length
i += ((SHA256_BLOCK_SIZE - 1) & (0 - (total_len + SHA256_PADLENGTHFIELD_SIZE + 1))) +
1 + SHA256_PADLENGTHFIELD_SIZE;
#if SHA256_PADLENGTHFIELD_SIZE == 16
*((uint64_t *) & padblock[i - 16]) = 0;
#endif
*((uint64_t *) & padblock[i - 8]) = _byteswap_uint64((uint64_t) total_len << 3);
return i >> SHA256_LOG2_BLOCK_SIZE; // Number of extra blocks to hash
}
struct slver {
uint16_t snum;
uint8_t ver;
uint8_t core;
};
struct slver sha256_ctx_mgr_init_avx_slver_02020154;
struct slver sha256_ctx_mgr_init_avx_slver = { 0x0154, 0x02, 0x02 };
struct slver sha256_ctx_mgr_submit_avx_slver_02020155;
struct slver sha256_ctx_mgr_submit_avx_slver = { 0x0155, 0x02, 0x02 };
struct slver sha256_ctx_mgr_flush_avx_slver_02020156;
struct slver sha256_ctx_mgr_flush_avx_slver = { 0x0156, 0x02, 0x02 };
|