1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_INTARITH_H
#define CEPH_INTARITH_H
#include <type_traits>
template<typename T, typename U>
constexpr inline std::make_unsigned_t<std::common_type_t<T, U>> div_round_up(T n, U d) {
return (n + d - 1) / d;
}
template<typename T, typename U>
constexpr inline std::make_unsigned_t<std::common_type_t<T, U>> round_up_to(T n, U d) {
return (n % d ? (n + d - n % d) : n);
}
template<typename T, typename U>
constexpr inline std::make_unsigned_t<std::common_type_t<T, U>> shift_round_up(T x, U y) {
return (x + (1 << y) - 1) >> y;
}
/*
* Wrapper to determine if value is a power of 2
*/
template<typename T>
constexpr inline bool isp2(T x) {
return (x & (x - 1)) == 0;
}
/*
* Wrappers for various sorts of alignment and rounding. The "align" must
* be a power of 2. Often times it is a block, sector, or page.
*/
/*
* return x rounded down to an align boundary
* eg, p2align(1200, 1024) == 1024 (1*align)
* eg, p2align(1024, 1024) == 1024 (1*align)
* eg, p2align(0x1234, 0x100) == 0x1200 (0x12*align)
* eg, p2align(0x5600, 0x100) == 0x5600 (0x56*align)
*/
template<typename T>
constexpr inline T p2align(T x, T align) {
return x & -align;
}
/*
* return x % (mod) align
* eg, p2phase(0x1234, 0x100) == 0x34 (x-0x12*align)
* eg, p2phase(0x5600, 0x100) == 0x00 (x-0x56*align)
*/
template<typename T>
constexpr inline T p2phase(T x, T align) {
return x & (align - 1);
}
/*
* return how much space is left in this block (but if it's perfectly
* aligned, return 0).
* eg, p2nphase(0x1234, 0x100) == 0xcc (0x13*align-x)
* eg, p2nphase(0x5600, 0x100) == 0x00 (0x56*align-x)
*/
template<typename T>
constexpr inline T p2nphase(T x, T align) {
return -x & (align - 1);
}
/*
* return x rounded up to an align boundary
* eg, p2roundup(0x1234, 0x100) == 0x1300 (0x13*align)
* eg, p2roundup(0x5600, 0x100) == 0x5600 (0x56*align)
*/
template<typename T>
constexpr inline T p2roundup(T x, T align) {
return -(-x & -align);
}
// count trailing zeros.
// NOTE: the builtin is nondeterministic on 0 input
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) <= sizeof(unsigned)),
unsigned>::type ctz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_ctz(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned int) &&
sizeof(T) <= sizeof(unsigned long)),
unsigned>::type ctz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_ctzl(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned long) &&
sizeof(T) <= sizeof(unsigned long long)),
unsigned>::type ctz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_ctzll(v);
}
// count leading zeros
// NOTE: the builtin is nondeterministic on 0 input
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) <= sizeof(unsigned)),
unsigned>::type clz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_clz(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned int) &&
sizeof(T) <= sizeof(unsigned long)),
unsigned>::type clz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_clzl(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned long) &&
sizeof(T) <= sizeof(unsigned long long)),
unsigned>::type clz(T v) {
if (v == 0)
return sizeof(v) * 8;
return __builtin_clzll(v);
}
// count bits (set + any 0's that follow)
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) <= sizeof(unsigned)),
unsigned>::type cbits(T v) {
if (v == 0)
return 0;
return (sizeof(v) * 8) - __builtin_clz(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned int) &&
sizeof(T) <= sizeof(unsigned long)),
unsigned>::type cbits(T v) {
if (v == 0)
return 0;
return (sizeof(v) * 8) - __builtin_clzl(v);
}
template<class T>
inline typename std::enable_if<
(std::is_integral<T>::value &&
sizeof(T) > sizeof(unsigned long) &&
sizeof(T) <= sizeof(unsigned long long)),
unsigned>::type cbits(T v) {
if (v == 0)
return 0;
return (sizeof(v) * 8) - __builtin_clzll(v);
}
#endif
|