1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
// Copyright (c) 2018-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/range_tombstone_fragmenter.h"
#include <algorithm>
#include <functional>
#include <set>
#include <inttypes.h>
#include <stdio.h>
#include "util/autovector.h"
#include "util/kv_map.h"
#include "util/vector_iterator.h"
namespace rocksdb {
FragmentedRangeTombstoneList::FragmentedRangeTombstoneList(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction,
const std::vector<SequenceNumber>& snapshots) {
if (unfragmented_tombstones == nullptr) {
return;
}
bool is_sorted = true;
int num_tombstones = 0;
InternalKey pinned_last_start_key;
Slice last_start_key;
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next(), num_tombstones++) {
if (num_tombstones > 0 &&
icmp.Compare(last_start_key, unfragmented_tombstones->key()) > 0) {
is_sorted = false;
break;
}
if (unfragmented_tombstones->IsKeyPinned()) {
last_start_key = unfragmented_tombstones->key();
} else {
pinned_last_start_key.DecodeFrom(unfragmented_tombstones->key());
last_start_key = pinned_last_start_key.Encode();
}
}
if (is_sorted) {
FragmentTombstones(std::move(unfragmented_tombstones), icmp, for_compaction,
snapshots);
return;
}
// Sort the tombstones before fragmenting them.
std::vector<std::string> keys, values;
keys.reserve(num_tombstones);
values.reserve(num_tombstones);
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next()) {
keys.emplace_back(unfragmented_tombstones->key().data(),
unfragmented_tombstones->key().size());
values.emplace_back(unfragmented_tombstones->value().data(),
unfragmented_tombstones->value().size());
}
// VectorIterator implicitly sorts by key during construction.
auto iter = std::unique_ptr<VectorIterator>(
new VectorIterator(std::move(keys), std::move(values), &icmp));
FragmentTombstones(std::move(iter), icmp, for_compaction, snapshots);
}
void FragmentedRangeTombstoneList::FragmentTombstones(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction,
const std::vector<SequenceNumber>& snapshots) {
Slice cur_start_key(nullptr, 0);
auto cmp = ParsedInternalKeyComparator(&icmp);
// Stores the end keys and sequence numbers of range tombstones with a start
// key less than or equal to cur_start_key. Provides an ordering by end key
// for use in flush_current_tombstones.
std::set<ParsedInternalKey, ParsedInternalKeyComparator> cur_end_keys(cmp);
// Given the next start key in unfragmented_tombstones,
// flush_current_tombstones writes every tombstone fragment that starts
// and ends with a key before next_start_key, and starts with a key greater
// than or equal to cur_start_key.
auto flush_current_tombstones = [&](const Slice& next_start_key) {
auto it = cur_end_keys.begin();
bool reached_next_start_key = false;
for (; it != cur_end_keys.end() && !reached_next_start_key; ++it) {
Slice cur_end_key = it->user_key;
if (icmp.user_comparator()->Compare(cur_start_key, cur_end_key) == 0) {
// Empty tombstone.
continue;
}
if (icmp.user_comparator()->Compare(next_start_key, cur_end_key) <= 0) {
// All of the end keys in [it, cur_end_keys.end()) are after
// next_start_key, so the tombstones they represent can be used in
// fragments that start with keys greater than or equal to
// next_start_key. However, the end keys we already passed will not be
// used in any more tombstone fragments.
//
// Remove the fully fragmented tombstones and stop iteration after a
// final round of flushing to preserve the tombstones we can create more
// fragments from.
reached_next_start_key = true;
cur_end_keys.erase(cur_end_keys.begin(), it);
cur_end_key = next_start_key;
}
// Flush a range tombstone fragment [cur_start_key, cur_end_key), which
// should not overlap with the last-flushed tombstone fragment.
assert(tombstones_.empty() ||
icmp.user_comparator()->Compare(tombstones_.back().end_key,
cur_start_key) <= 0);
// Sort the sequence numbers of the tombstones being fragmented in
// descending order, and then flush them in that order.
autovector<SequenceNumber> seqnums_to_flush;
for (auto flush_it = it; flush_it != cur_end_keys.end(); ++flush_it) {
seqnums_to_flush.push_back(flush_it->sequence);
}
std::sort(seqnums_to_flush.begin(), seqnums_to_flush.end(),
std::greater<SequenceNumber>());
size_t start_idx = tombstone_seqs_.size();
size_t end_idx = start_idx + seqnums_to_flush.size();
if (for_compaction) {
// Drop all tombstone seqnums that are not preserved by a snapshot.
SequenceNumber next_snapshot = kMaxSequenceNumber;
for (auto seq : seqnums_to_flush) {
if (seq <= next_snapshot) {
// This seqnum is visible by a lower snapshot.
tombstone_seqs_.push_back(seq);
seq_set_.insert(seq);
auto upper_bound_it =
std::lower_bound(snapshots.begin(), snapshots.end(), seq);
if (upper_bound_it == snapshots.begin()) {
// This seqnum is the topmost one visible by the earliest
// snapshot. None of the seqnums below it will be visible, so we
// can skip them.
break;
}
next_snapshot = *std::prev(upper_bound_it);
}
}
end_idx = tombstone_seqs_.size();
} else {
// The fragmentation is being done for reads, so preserve all seqnums.
tombstone_seqs_.insert(tombstone_seqs_.end(), seqnums_to_flush.begin(),
seqnums_to_flush.end());
seq_set_.insert(seqnums_to_flush.begin(), seqnums_to_flush.end());
}
assert(start_idx < end_idx);
tombstones_.emplace_back(cur_start_key, cur_end_key, start_idx, end_idx);
cur_start_key = cur_end_key;
}
if (!reached_next_start_key) {
// There is a gap between the last flushed tombstone fragment and
// the next tombstone's start key. Remove all the end keys in
// the working set, since we have fully fragmented their corresponding
// tombstones.
cur_end_keys.clear();
}
cur_start_key = next_start_key;
};
pinned_iters_mgr_.StartPinning();
bool no_tombstones = true;
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next()) {
const Slice& ikey = unfragmented_tombstones->key();
Slice tombstone_start_key = ExtractUserKey(ikey);
SequenceNumber tombstone_seq = GetInternalKeySeqno(ikey);
if (!unfragmented_tombstones->IsKeyPinned()) {
pinned_slices_.emplace_back(tombstone_start_key.data(),
tombstone_start_key.size());
tombstone_start_key = pinned_slices_.back();
}
no_tombstones = false;
Slice tombstone_end_key = unfragmented_tombstones->value();
if (!unfragmented_tombstones->IsValuePinned()) {
pinned_slices_.emplace_back(tombstone_end_key.data(),
tombstone_end_key.size());
tombstone_end_key = pinned_slices_.back();
}
if (!cur_end_keys.empty() && icmp.user_comparator()->Compare(
cur_start_key, tombstone_start_key) != 0) {
// The start key has changed. Flush all tombstones that start before
// this new start key.
flush_current_tombstones(tombstone_start_key);
}
cur_start_key = tombstone_start_key;
cur_end_keys.emplace(tombstone_end_key, tombstone_seq, kTypeRangeDeletion);
}
if (!cur_end_keys.empty()) {
ParsedInternalKey last_end_key = *std::prev(cur_end_keys.end());
flush_current_tombstones(last_end_key.user_key);
}
if (!no_tombstones) {
pinned_iters_mgr_.PinIterator(unfragmented_tombstones.release(),
false /* arena */);
}
}
bool FragmentedRangeTombstoneList::ContainsRange(SequenceNumber lower,
SequenceNumber upper) const {
auto seq_it = seq_set_.lower_bound(lower);
return seq_it != seq_set_.end() && *seq_it <= upper;
}
FragmentedRangeTombstoneIterator::FragmentedRangeTombstoneIterator(
const FragmentedRangeTombstoneList* tombstones,
const InternalKeyComparator& icmp, SequenceNumber _upper_bound,
SequenceNumber _lower_bound)
: tombstone_start_cmp_(icmp.user_comparator()),
tombstone_end_cmp_(icmp.user_comparator()),
icmp_(&icmp),
ucmp_(icmp.user_comparator()),
tombstones_(tombstones),
upper_bound_(_upper_bound),
lower_bound_(_lower_bound) {
assert(tombstones_ != nullptr);
Invalidate();
}
FragmentedRangeTombstoneIterator::FragmentedRangeTombstoneIterator(
const std::shared_ptr<const FragmentedRangeTombstoneList>& tombstones,
const InternalKeyComparator& icmp, SequenceNumber _upper_bound,
SequenceNumber _lower_bound)
: tombstone_start_cmp_(icmp.user_comparator()),
tombstone_end_cmp_(icmp.user_comparator()),
icmp_(&icmp),
ucmp_(icmp.user_comparator()),
tombstones_ref_(tombstones),
tombstones_(tombstones_ref_.get()),
upper_bound_(_upper_bound),
lower_bound_(_lower_bound) {
assert(tombstones_ != nullptr);
Invalidate();
}
void FragmentedRangeTombstoneIterator::SeekToFirst() {
pos_ = tombstones_->begin();
seq_pos_ = tombstones_->seq_begin();
}
void FragmentedRangeTombstoneIterator::SeekToTopFirst() {
if (tombstones_->empty()) {
Invalidate();
return;
}
pos_ = tombstones_->begin();
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
ScanForwardToVisibleTombstone();
}
void FragmentedRangeTombstoneIterator::SeekToLast() {
pos_ = std::prev(tombstones_->end());
seq_pos_ = std::prev(tombstones_->seq_end());
}
void FragmentedRangeTombstoneIterator::SeekToTopLast() {
if (tombstones_->empty()) {
Invalidate();
return;
}
pos_ = std::prev(tombstones_->end());
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
ScanBackwardToVisibleTombstone();
}
void FragmentedRangeTombstoneIterator::Seek(const Slice& target) {
if (tombstones_->empty()) {
Invalidate();
return;
}
SeekToCoveringTombstone(target);
ScanForwardToVisibleTombstone();
}
void FragmentedRangeTombstoneIterator::SeekForPrev(const Slice& target) {
if (tombstones_->empty()) {
Invalidate();
return;
}
SeekForPrevToCoveringTombstone(target);
ScanBackwardToVisibleTombstone();
}
void FragmentedRangeTombstoneIterator::SeekToCoveringTombstone(
const Slice& target) {
pos_ = std::upper_bound(tombstones_->begin(), tombstones_->end(), target,
tombstone_end_cmp_);
if (pos_ == tombstones_->end()) {
// All tombstones end before target.
seq_pos_ = tombstones_->seq_end();
return;
}
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
}
void FragmentedRangeTombstoneIterator::SeekForPrevToCoveringTombstone(
const Slice& target) {
if (tombstones_->empty()) {
Invalidate();
return;
}
pos_ = std::upper_bound(tombstones_->begin(), tombstones_->end(), target,
tombstone_start_cmp_);
if (pos_ == tombstones_->begin()) {
// All tombstones start after target.
Invalidate();
return;
}
--pos_;
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
}
void FragmentedRangeTombstoneIterator::ScanForwardToVisibleTombstone() {
while (pos_ != tombstones_->end() &&
(seq_pos_ == tombstones_->seq_iter(pos_->seq_end_idx) ||
*seq_pos_ < lower_bound_)) {
++pos_;
if (pos_ == tombstones_->end()) {
Invalidate();
return;
}
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
}
}
void FragmentedRangeTombstoneIterator::ScanBackwardToVisibleTombstone() {
while (pos_ != tombstones_->end() &&
(seq_pos_ == tombstones_->seq_iter(pos_->seq_end_idx) ||
*seq_pos_ < lower_bound_)) {
if (pos_ == tombstones_->begin()) {
Invalidate();
return;
}
--pos_;
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
}
}
void FragmentedRangeTombstoneIterator::Next() {
++seq_pos_;
if (seq_pos_ == tombstones_->seq_iter(pos_->seq_end_idx)) {
++pos_;
}
}
void FragmentedRangeTombstoneIterator::TopNext() {
++pos_;
if (pos_ == tombstones_->end()) {
return;
}
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
ScanForwardToVisibleTombstone();
}
void FragmentedRangeTombstoneIterator::Prev() {
if (seq_pos_ == tombstones_->seq_begin()) {
Invalidate();
return;
}
--seq_pos_;
if (pos_ == tombstones_->end() ||
seq_pos_ == tombstones_->seq_iter(pos_->seq_start_idx - 1)) {
--pos_;
}
}
void FragmentedRangeTombstoneIterator::TopPrev() {
if (pos_ == tombstones_->begin()) {
Invalidate();
return;
}
--pos_;
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
ScanBackwardToVisibleTombstone();
}
bool FragmentedRangeTombstoneIterator::Valid() const {
return tombstones_ != nullptr && pos_ != tombstones_->end();
}
SequenceNumber FragmentedRangeTombstoneIterator::MaxCoveringTombstoneSeqnum(
const Slice& user_key) {
SeekToCoveringTombstone(user_key);
return ValidPos() && ucmp_->Compare(start_key(), user_key) <= 0 ? seq() : 0;
}
std::map<SequenceNumber, std::unique_ptr<FragmentedRangeTombstoneIterator>>
FragmentedRangeTombstoneIterator::SplitBySnapshot(
const std::vector<SequenceNumber>& snapshots) {
std::map<SequenceNumber, std::unique_ptr<FragmentedRangeTombstoneIterator>>
splits;
SequenceNumber lower = 0;
SequenceNumber upper;
for (size_t i = 0; i <= snapshots.size(); i++) {
if (i >= snapshots.size()) {
upper = kMaxSequenceNumber;
} else {
upper = snapshots[i];
}
if (tombstones_->ContainsRange(lower, upper)) {
splits.emplace(upper, std::unique_ptr<FragmentedRangeTombstoneIterator>(
new FragmentedRangeTombstoneIterator(
tombstones_, *icmp_, upper, lower)));
}
lower = upper + 1;
}
return splits;
}
} // namespace rocksdb
|