1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#include "db/db_impl.h"
#include "rocksdb/cache.h"
#include "rocksdb/table.h"
#include "rocksdb/utilities/memory_util.h"
#include "rocksdb/utilities/stackable_db.h"
#include "table/block_based_table_factory.h"
#include "util/string_util.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace rocksdb {
class MemoryTest : public testing::Test {
public:
MemoryTest() : kDbDir(test::PerThreadDBPath("memory_test")), rnd_(301) {
assert(Env::Default()->CreateDirIfMissing(kDbDir).ok());
}
std::string GetDBName(int id) { return kDbDir + "db_" + ToString(id); }
std::string RandomString(int len) {
std::string r;
test::RandomString(&rnd_, len, &r);
return r;
}
void UpdateUsagesHistory(const std::vector<DB*>& dbs) {
std::map<MemoryUtil::UsageType, uint64_t> usage_by_type;
ASSERT_OK(GetApproximateMemoryUsageByType(dbs, &usage_by_type));
for (int i = 0; i < MemoryUtil::kNumUsageTypes; ++i) {
usage_history_[i].push_back(
usage_by_type[static_cast<MemoryUtil::UsageType>(i)]);
}
}
void GetCachePointersFromTableFactory(
const TableFactory* factory,
std::unordered_set<const Cache*>* cache_set) {
const BlockBasedTableFactory* bbtf =
dynamic_cast<const BlockBasedTableFactory*>(factory);
if (bbtf != nullptr) {
const auto bbt_opts = bbtf->table_options();
cache_set->insert(bbt_opts.block_cache.get());
cache_set->insert(bbt_opts.block_cache_compressed.get());
}
}
void GetCachePointers(const std::vector<DB*>& dbs,
std::unordered_set<const Cache*>* cache_set) {
cache_set->clear();
for (auto* db : dbs) {
// Cache from DBImpl
StackableDB* sdb = dynamic_cast<StackableDB*>(db);
DBImpl* db_impl = dynamic_cast<DBImpl*>(sdb ? sdb->GetBaseDB() : db);
if (db_impl != nullptr) {
cache_set->insert(db_impl->TEST_table_cache());
}
// Cache from DBOptions
cache_set->insert(db->GetDBOptions().row_cache.get());
// Cache from table factories
std::unordered_map<std::string, const ImmutableCFOptions*> iopts_map;
if (db_impl != nullptr) {
ASSERT_OK(db_impl->TEST_GetAllImmutableCFOptions(&iopts_map));
}
for (auto pair : iopts_map) {
GetCachePointersFromTableFactory(pair.second->table_factory, cache_set);
}
}
}
Status GetApproximateMemoryUsageByType(
const std::vector<DB*>& dbs,
std::map<MemoryUtil::UsageType, uint64_t>* usage_by_type) {
std::unordered_set<const Cache*> cache_set;
GetCachePointers(dbs, &cache_set);
return MemoryUtil::GetApproximateMemoryUsageByType(dbs, cache_set,
usage_by_type);
}
const std::string kDbDir;
Random rnd_;
std::vector<uint64_t> usage_history_[MemoryUtil::kNumUsageTypes];
};
TEST_F(MemoryTest, SharedBlockCacheTotal) {
std::vector<DB*> dbs;
std::vector<uint64_t> usage_by_type;
const int kNumDBs = 10;
const int kKeySize = 100;
const int kValueSize = 500;
Options opt;
opt.create_if_missing = true;
opt.write_buffer_size = kKeySize + kValueSize;
opt.max_write_buffer_number = 10;
opt.min_write_buffer_number_to_merge = 10;
opt.disable_auto_compactions = true;
BlockBasedTableOptions bbt_opts;
bbt_opts.block_cache = NewLRUCache(4096 * 1000 * 10);
for (int i = 0; i < kNumDBs; ++i) {
DestroyDB(GetDBName(i), opt);
DB* db = nullptr;
ASSERT_OK(DB::Open(opt, GetDBName(i), &db));
dbs.push_back(db);
}
std::vector<std::string> keys_by_db[kNumDBs];
// Fill one memtable per Put to make memtable use more memory.
for (int p = 0; p < opt.min_write_buffer_number_to_merge / 2; ++p) {
for (int i = 0; i < kNumDBs; ++i) {
for (int j = 0; j < 100; ++j) {
keys_by_db[i].emplace_back(RandomString(kKeySize));
dbs[i]->Put(WriteOptions(), keys_by_db[i].back(),
RandomString(kValueSize));
}
dbs[i]->Flush(FlushOptions());
}
}
for (int i = 0; i < kNumDBs; ++i) {
for (auto& key : keys_by_db[i]) {
std::string value;
dbs[i]->Get(ReadOptions(), key, &value);
}
UpdateUsagesHistory(dbs);
}
for (size_t i = 1; i < usage_history_[MemoryUtil::kMemTableTotal].size();
++i) {
// Expect EQ as we didn't flush more memtables.
ASSERT_EQ(usage_history_[MemoryUtil::kTableReadersTotal][i],
usage_history_[MemoryUtil::kTableReadersTotal][i - 1]);
}
for (int i = 0; i < kNumDBs; ++i) {
delete dbs[i];
}
}
TEST_F(MemoryTest, MemTableAndTableReadersTotal) {
std::vector<DB*> dbs;
std::vector<uint64_t> usage_by_type;
std::vector<std::vector<ColumnFamilyHandle*>> vec_handles;
const int kNumDBs = 10;
const int kKeySize = 100;
const int kValueSize = 500;
Options opt;
opt.create_if_missing = true;
opt.create_missing_column_families = true;
opt.write_buffer_size = kKeySize + kValueSize;
opt.max_write_buffer_number = 10;
opt.min_write_buffer_number_to_merge = 10;
opt.disable_auto_compactions = true;
std::vector<ColumnFamilyDescriptor> cf_descs = {
{kDefaultColumnFamilyName, ColumnFamilyOptions(opt)},
{"one", ColumnFamilyOptions(opt)},
{"two", ColumnFamilyOptions(opt)},
};
for (int i = 0; i < kNumDBs; ++i) {
DestroyDB(GetDBName(i), opt);
std::vector<ColumnFamilyHandle*> handles;
dbs.emplace_back();
vec_handles.emplace_back();
ASSERT_OK(DB::Open(DBOptions(opt), GetDBName(i), cf_descs,
&vec_handles.back(), &dbs.back()));
}
// Fill one memtable per Put to make memtable use more memory.
for (int p = 0; p < opt.min_write_buffer_number_to_merge / 2; ++p) {
for (int i = 0; i < kNumDBs; ++i) {
for (auto* handle : vec_handles[i]) {
dbs[i]->Put(WriteOptions(), handle, RandomString(kKeySize),
RandomString(kValueSize));
UpdateUsagesHistory(dbs);
}
}
}
// Expect the usage history is monotonically increasing
for (size_t i = 1; i < usage_history_[MemoryUtil::kMemTableTotal].size();
++i) {
ASSERT_GT(usage_history_[MemoryUtil::kMemTableTotal][i],
usage_history_[MemoryUtil::kMemTableTotal][i - 1]);
ASSERT_GT(usage_history_[MemoryUtil::kMemTableUnFlushed][i],
usage_history_[MemoryUtil::kMemTableUnFlushed][i - 1]);
ASSERT_EQ(usage_history_[MemoryUtil::kTableReadersTotal][i],
usage_history_[MemoryUtil::kTableReadersTotal][i - 1]);
}
size_t usage_check_point = usage_history_[MemoryUtil::kMemTableTotal].size();
std::vector<Iterator*> iters;
// Create an iterator and flush all memtables for each db
for (int i = 0; i < kNumDBs; ++i) {
iters.push_back(dbs[i]->NewIterator(ReadOptions()));
dbs[i]->Flush(FlushOptions());
for (int j = 0; j < 100; ++j) {
std::string value;
dbs[i]->Get(ReadOptions(), RandomString(kKeySize), &value);
}
UpdateUsagesHistory(dbs);
}
for (size_t i = usage_check_point;
i < usage_history_[MemoryUtil::kMemTableTotal].size(); ++i) {
// Since memtables are pinned by iterators, we don't expect the
// memory usage of all the memtables decreases as they are pinned
// by iterators.
ASSERT_GE(usage_history_[MemoryUtil::kMemTableTotal][i],
usage_history_[MemoryUtil::kMemTableTotal][i - 1]);
// Expect the usage history from the "usage_decay_point" is
// monotonically decreasing.
ASSERT_LT(usage_history_[MemoryUtil::kMemTableUnFlushed][i],
usage_history_[MemoryUtil::kMemTableUnFlushed][i - 1]);
// Expect the usage history of the table readers increases
// as we flush tables.
ASSERT_GT(usage_history_[MemoryUtil::kTableReadersTotal][i],
usage_history_[MemoryUtil::kTableReadersTotal][i - 1]);
ASSERT_GT(usage_history_[MemoryUtil::kCacheTotal][i],
usage_history_[MemoryUtil::kCacheTotal][i - 1]);
}
usage_check_point = usage_history_[MemoryUtil::kMemTableTotal].size();
for (int i = 0; i < kNumDBs; ++i) {
delete iters[i];
UpdateUsagesHistory(dbs);
}
for (size_t i = usage_check_point;
i < usage_history_[MemoryUtil::kMemTableTotal].size(); ++i) {
// Expect the usage of all memtables decreasing as we delete iterators.
ASSERT_LT(usage_history_[MemoryUtil::kMemTableTotal][i],
usage_history_[MemoryUtil::kMemTableTotal][i - 1]);
// Since the memory usage of un-flushed memtables is only affected
// by Put and flush, we expect EQ here as we only delete iterators.
ASSERT_EQ(usage_history_[MemoryUtil::kMemTableUnFlushed][i],
usage_history_[MemoryUtil::kMemTableUnFlushed][i - 1]);
// Expect EQ as we didn't flush more memtables.
ASSERT_EQ(usage_history_[MemoryUtil::kTableReadersTotal][i],
usage_history_[MemoryUtil::kTableReadersTotal][i - 1]);
}
for (int i = 0; i < kNumDBs; ++i) {
for (auto* handle : vec_handles[i]) {
delete handle;
}
delete dbs[i];
}
}
} // namespace rocksdb
int main(int argc, char** argv) {
#if !(defined NDEBUG) || !defined(OS_WIN)
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
#else
return 0;
#endif
}
#else
#include <cstdio>
int main(int /*argc*/, char** /*argv*/) {
printf("Skipped in RocksDBLite as utilities are not supported.\n");
return 0;
}
#endif // !ROCKSDB_LITE
|