summaryrefslogtreecommitdiffstats
path: root/src/seastar/dpdk/examples/l3fwd/l3fwd_em.c
blob: 9cc44603ea004f2ac4e1e1c84d1f04f8b025d7df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <stdbool.h>
#include <netinet/in.h>

#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_cycles.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_hash.h>

#include "l3fwd.h"

#if defined(RTE_MACHINE_CPUFLAG_SSE4_2) || defined(RTE_MACHINE_CPUFLAG_CRC32)
#define EM_HASH_CRC 1
#endif

#ifdef EM_HASH_CRC
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC       rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC       rte_jhash
#endif

#define IPV6_ADDR_LEN 16

struct ipv4_5tuple {
	uint32_t ip_dst;
	uint32_t ip_src;
	uint16_t port_dst;
	uint16_t port_src;
	uint8_t  proto;
} __attribute__((__packed__));

union ipv4_5tuple_host {
	struct {
		uint8_t  pad0;
		uint8_t  proto;
		uint16_t pad1;
		uint32_t ip_src;
		uint32_t ip_dst;
		uint16_t port_src;
		uint16_t port_dst;
	};
	xmm_t xmm;
};

#define XMM_NUM_IN_IPV6_5TUPLE 3

struct ipv6_5tuple {
	uint8_t  ip_dst[IPV6_ADDR_LEN];
	uint8_t  ip_src[IPV6_ADDR_LEN];
	uint16_t port_dst;
	uint16_t port_src;
	uint8_t  proto;
} __attribute__((__packed__));

union ipv6_5tuple_host {
	struct {
		uint16_t pad0;
		uint8_t  proto;
		uint8_t  pad1;
		uint8_t  ip_src[IPV6_ADDR_LEN];
		uint8_t  ip_dst[IPV6_ADDR_LEN];
		uint16_t port_src;
		uint16_t port_dst;
		uint64_t reserve;
	};
	xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
};



struct ipv4_l3fwd_em_route {
	struct ipv4_5tuple key;
	uint8_t if_out;
};

struct ipv6_l3fwd_em_route {
	struct ipv6_5tuple key;
	uint8_t if_out;
};

static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
	{{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
	{{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
	{{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
	{{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
};

static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
	{{
	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	101, 11, IPPROTO_TCP}, 0},

	{{
	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	102, 12, IPPROTO_TCP}, 1},

	{{
	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	101, 11, IPPROTO_TCP}, 2},

	{{
	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	102, 12, IPPROTO_TCP}, 3},
};

struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];

static inline uint32_t
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
		uint32_t init_val)
{
	const union ipv4_5tuple_host *k;
	uint32_t t;
	const uint32_t *p;

	k = data;
	t = k->proto;
	p = (const uint32_t *)&k->port_src;

#ifdef EM_HASH_CRC
	init_val = rte_hash_crc_4byte(t, init_val);
	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
	init_val = rte_hash_crc_4byte(*p, init_val);
#else
	init_val = rte_jhash_1word(t, init_val);
	init_val = rte_jhash_1word(k->ip_src, init_val);
	init_val = rte_jhash_1word(k->ip_dst, init_val);
	init_val = rte_jhash_1word(*p, init_val);
#endif

	return init_val;
}

static inline uint32_t
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
		uint32_t init_val)
{
	const union ipv6_5tuple_host *k;
	uint32_t t;
	const uint32_t *p;
#ifdef EM_HASH_CRC
	const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
	const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
#endif

	k = data;
	t = k->proto;
	p = (const uint32_t *)&k->port_src;

#ifdef EM_HASH_CRC
	ip_src0 = (const uint32_t *) k->ip_src;
	ip_src1 = (const uint32_t *)(k->ip_src+4);
	ip_src2 = (const uint32_t *)(k->ip_src+8);
	ip_src3 = (const uint32_t *)(k->ip_src+12);
	ip_dst0 = (const uint32_t *) k->ip_dst;
	ip_dst1 = (const uint32_t *)(k->ip_dst+4);
	ip_dst2 = (const uint32_t *)(k->ip_dst+8);
	ip_dst3 = (const uint32_t *)(k->ip_dst+12);
	init_val = rte_hash_crc_4byte(t, init_val);
	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
	init_val = rte_hash_crc_4byte(*p, init_val);
#else
	init_val = rte_jhash_1word(t, init_val);
	init_val = rte_jhash(k->ip_src,
			sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
	init_val = rte_jhash(k->ip_dst,
			sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
	init_val = rte_jhash_1word(*p, init_val);
#endif
	return init_val;
}

#define IPV4_L3FWD_EM_NUM_ROUTES \
	(sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))

#define IPV6_L3FWD_EM_NUM_ROUTES \
	(sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))

static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;

static rte_xmm_t mask0;
static rte_xmm_t mask1;
static rte_xmm_t mask2;

#if defined(__SSE2__)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
	__m128i data = _mm_loadu_si128((__m128i *)(key));

	return _mm_and_si128(data, mask);
}
#elif defined(RTE_MACHINE_CPUFLAG_NEON)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
	int32x4_t data = vld1q_s32((int32_t *)key);

	return vandq_s32(data, mask);
}
#elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
	xmm_t data = vec_ld(0, (xmm_t *)(key));

	return vec_and(data, mask);
}
#else
#error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
#endif

static inline uint8_t
em_get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, void *lookup_struct)
{
	int ret = 0;
	union ipv4_5tuple_host key;
	struct rte_hash *ipv4_l3fwd_lookup_struct =
		(struct rte_hash *)lookup_struct;

	ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);

	/*
	 * Get 5 tuple: dst port, src port, dst IP address,
	 * src IP address and protocol.
	 */
	key.xmm = em_mask_key(ipv4_hdr, mask0.x);

	/* Find destination port */
	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
	return (uint8_t)((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
}

static inline uint8_t
em_get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, void *lookup_struct)
{
	int ret = 0;
	union ipv6_5tuple_host key;
	struct rte_hash *ipv6_l3fwd_lookup_struct =
		(struct rte_hash *)lookup_struct;

	ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
	void *data0 = ipv6_hdr;
	void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
	void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);

	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
	key.xmm[0] = em_mask_key(data0, mask1.x);

	/*
	 * Get part of 5 tuple: dst IP address lower 96 bits
	 * and src IP address higher 32 bits.
	 */
	key.xmm[1] = *(xmm_t *)data1;

	/*
	 * Get part of 5 tuple: dst port and src port
	 * and dst IP address higher 32 bits.
	 */
	key.xmm[2] = em_mask_key(data2, mask2.x);

	/* Find destination port */
	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
	return (uint8_t)((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
}

#if defined(__SSE4_1__)
#if defined(NO_HASH_MULTI_LOOKUP)
#include "l3fwd_em_sse.h"
#else
#include "l3fwd_em_hlm_sse.h"
#endif
#else
#include "l3fwd_em.h"
#endif

static void
convert_ipv4_5tuple(struct ipv4_5tuple *key1,
		union ipv4_5tuple_host *key2)
{
	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
	key2->port_src = rte_cpu_to_be_16(key1->port_src);
	key2->proto = key1->proto;
	key2->pad0 = 0;
	key2->pad1 = 0;
}

static void
convert_ipv6_5tuple(struct ipv6_5tuple *key1,
		union ipv6_5tuple_host *key2)
{
	uint32_t i;

	for (i = 0; i < 16; i++) {
		key2->ip_dst[i] = key1->ip_dst[i];
		key2->ip_src[i] = key1->ip_src[i];
	}
	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
	key2->port_src = rte_cpu_to_be_16(key1->port_src);
	key2->proto = key1->proto;
	key2->pad0 = 0;
	key2->pad1 = 0;
	key2->reserve = 0;
}

#define BYTE_VALUE_MAX 256
#define ALL_32_BITS 0xffffffff
#define BIT_8_TO_15 0x0000ff00

static inline void
populate_ipv4_few_flow_into_table(const struct rte_hash *h)
{
	uint32_t i;
	int32_t ret;

	mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
				ALL_32_BITS, ALL_32_BITS} };

	for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
		struct ipv4_l3fwd_em_route  entry;
		union ipv4_5tuple_host newkey;

		entry = ipv4_l3fwd_em_route_array[i];
		convert_ipv4_5tuple(&entry.key, &newkey);
		ret = rte_hash_add_key(h, (void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
				" to the l3fwd hash.\n", i);
		}
		ipv4_l3fwd_out_if[ret] = entry.if_out;
	}
	printf("Hash: Adding 0x%" PRIx64 " keys\n",
		(uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
}

#define BIT_16_TO_23 0x00ff0000
static inline void
populate_ipv6_few_flow_into_table(const struct rte_hash *h)
{
	uint32_t i;
	int32_t ret;

	mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
				ALL_32_BITS, ALL_32_BITS} };

	mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };

	for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
		struct ipv6_l3fwd_em_route entry;
		union ipv6_5tuple_host newkey;

		entry = ipv6_l3fwd_em_route_array[i];
		convert_ipv6_5tuple(&entry.key, &newkey);
		ret = rte_hash_add_key(h, (void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
				" to the l3fwd hash.\n", i);
		}
		ipv6_l3fwd_out_if[ret] = entry.if_out;
	}
	printf("Hash: Adding 0x%" PRIx64 "keys\n",
		(uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
}

#define NUMBER_PORT_USED 4
static inline void
populate_ipv4_many_flow_into_table(const struct rte_hash *h,
		unsigned int nr_flow)
{
	unsigned i;

	mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
				ALL_32_BITS, ALL_32_BITS} };

	for (i = 0; i < nr_flow; i++) {
		struct ipv4_l3fwd_em_route entry;
		union ipv4_5tuple_host newkey;

		uint8_t a = (uint8_t)
			((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
		uint8_t b = (uint8_t)
			(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
		uint8_t c = (uint8_t)
			((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));

		/* Create the ipv4 exact match flow */
		memset(&entry, 0, sizeof(entry));
		switch (i & (NUMBER_PORT_USED - 1)) {
		case 0:
			entry = ipv4_l3fwd_em_route_array[0];
			entry.key.ip_dst = IPv4(101, c, b, a);
			break;
		case 1:
			entry = ipv4_l3fwd_em_route_array[1];
			entry.key.ip_dst = IPv4(201, c, b, a);
			break;
		case 2:
			entry = ipv4_l3fwd_em_route_array[2];
			entry.key.ip_dst = IPv4(111, c, b, a);
			break;
		case 3:
			entry = ipv4_l3fwd_em_route_array[3];
			entry.key.ip_dst = IPv4(211, c, b, a);
			break;
		};
		convert_ipv4_5tuple(&entry.key, &newkey);
		int32_t ret = rte_hash_add_key(h, (void *) &newkey);

		if (ret < 0)
			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);

		ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;

	}
	printf("Hash: Adding 0x%x keys\n", nr_flow);
}

static inline void
populate_ipv6_many_flow_into_table(const struct rte_hash *h,
		unsigned int nr_flow)
{
	unsigned i;

	mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
				ALL_32_BITS, ALL_32_BITS} };
	mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };

	for (i = 0; i < nr_flow; i++) {
		struct ipv6_l3fwd_em_route entry;
		union ipv6_5tuple_host newkey;

		uint8_t a = (uint8_t)
			((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
		uint8_t b = (uint8_t)
			(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
		uint8_t c = (uint8_t)
			((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));

		/* Create the ipv6 exact match flow */
		memset(&entry, 0, sizeof(entry));
		switch (i & (NUMBER_PORT_USED - 1)) {
		case 0:
			entry = ipv6_l3fwd_em_route_array[0];
			break;
		case 1:
			entry = ipv6_l3fwd_em_route_array[1];
			break;
		case 2:
			entry = ipv6_l3fwd_em_route_array[2];
			break;
		case 3:
			entry = ipv6_l3fwd_em_route_array[3];
			break;
		};
		entry.key.ip_dst[13] = c;
		entry.key.ip_dst[14] = b;
		entry.key.ip_dst[15] = a;
		convert_ipv6_5tuple(&entry.key, &newkey);
		int32_t ret = rte_hash_add_key(h, (void *) &newkey);

		if (ret < 0)
			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);

		ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;

	}
	printf("Hash: Adding 0x%x keys\n", nr_flow);
}

/* Requirements:
 * 1. IP packets without extension;
 * 2. L4 payload should be either TCP or UDP.
 */
int
em_check_ptype(int portid)
{
	int i, ret;
	int ptype_l3_ipv4_ext = 0;
	int ptype_l3_ipv6_ext = 0;
	int ptype_l4_tcp = 0;
	int ptype_l4_udp = 0;
	uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;

	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
	if (ret <= 0)
		return 0;

	uint32_t ptypes[ret];

	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
	for (i = 0; i < ret; ++i) {
		switch (ptypes[i]) {
		case RTE_PTYPE_L3_IPV4_EXT:
			ptype_l3_ipv4_ext = 1;
			break;
		case RTE_PTYPE_L3_IPV6_EXT:
			ptype_l3_ipv6_ext = 1;
			break;
		case RTE_PTYPE_L4_TCP:
			ptype_l4_tcp = 1;
			break;
		case RTE_PTYPE_L4_UDP:
			ptype_l4_udp = 1;
			break;
		}
	}

	if (ptype_l3_ipv4_ext == 0)
		printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
	if (ptype_l3_ipv6_ext == 0)
		printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
	if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
		return 0;

	if (ptype_l4_tcp == 0)
		printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
	if (ptype_l4_udp == 0)
		printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
	if (ptype_l4_tcp && ptype_l4_udp)
		return 1;

	return 0;
}

static inline void
em_parse_ptype(struct rte_mbuf *m)
{
	struct ether_hdr *eth_hdr;
	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
	uint16_t ether_type;
	void *l3;
	int hdr_len;
	struct ipv4_hdr *ipv4_hdr;
	struct ipv6_hdr *ipv6_hdr;

	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
	ether_type = eth_hdr->ether_type;
	l3 = (uint8_t *)eth_hdr + sizeof(struct ether_hdr);
	if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
		ipv4_hdr = (struct ipv4_hdr *)l3;
		hdr_len = (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
			  IPV4_IHL_MULTIPLIER;
		if (hdr_len == sizeof(struct ipv4_hdr)) {
			packet_type |= RTE_PTYPE_L3_IPV4;
			if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
				packet_type |= RTE_PTYPE_L4_TCP;
			else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
				packet_type |= RTE_PTYPE_L4_UDP;
		} else
			packet_type |= RTE_PTYPE_L3_IPV4_EXT;
	} else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
		ipv6_hdr = (struct ipv6_hdr *)l3;
		if (ipv6_hdr->proto == IPPROTO_TCP)
			packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
		else if (ipv6_hdr->proto == IPPROTO_UDP)
			packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
		else
			packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
	}

	m->packet_type = packet_type;
}

uint16_t
em_cb_parse_ptype(uint8_t port __rte_unused, uint16_t queue __rte_unused,
		  struct rte_mbuf *pkts[], uint16_t nb_pkts,
		  uint16_t max_pkts __rte_unused,
		  void *user_param __rte_unused)
{
	unsigned i;

	for (i = 0; i < nb_pkts; ++i)
		em_parse_ptype(pkts[i]);

	return nb_pkts;
}

/* main processing loop */
int
em_main_loop(__attribute__((unused)) void *dummy)
{
	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
	unsigned lcore_id;
	uint64_t prev_tsc, diff_tsc, cur_tsc;
	int i, nb_rx;
	uint8_t portid, queueid;
	struct lcore_conf *qconf;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
		US_PER_S * BURST_TX_DRAIN_US;

	prev_tsc = 0;

	lcore_id = rte_lcore_id();
	qconf = &lcore_conf[lcore_id];

	if (qconf->n_rx_queue == 0) {
		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
		return 0;
	}

	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);

	for (i = 0; i < qconf->n_rx_queue; i++) {

		portid = qconf->rx_queue_list[i].port_id;
		queueid = qconf->rx_queue_list[i].queue_id;
		RTE_LOG(INFO, L3FWD,
			" -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
			lcore_id, portid, queueid);
	}

	while (!force_quit) {

		cur_tsc = rte_rdtsc();

		/*
		 * TX burst queue drain
		 */
		diff_tsc = cur_tsc - prev_tsc;
		if (unlikely(diff_tsc > drain_tsc)) {

			for (i = 0; i < qconf->n_tx_port; ++i) {
				portid = qconf->tx_port_id[i];
				if (qconf->tx_mbufs[portid].len == 0)
					continue;
				send_burst(qconf,
					qconf->tx_mbufs[portid].len,
					portid);
				qconf->tx_mbufs[portid].len = 0;
			}

			prev_tsc = cur_tsc;
		}

		/*
		 * Read packet from RX queues
		 */
		for (i = 0; i < qconf->n_rx_queue; ++i) {
			portid = qconf->rx_queue_list[i].port_id;
			queueid = qconf->rx_queue_list[i].queue_id;
			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
				MAX_PKT_BURST);
			if (nb_rx == 0)
				continue;

#if defined(__SSE4_1__)
			l3fwd_em_send_packets(nb_rx, pkts_burst,
							portid, qconf);
#else
			l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
							portid, qconf);
#endif /* __SSE_4_1__ */
		}
	}

	return 0;
}

/*
 * Initialize exact match (hash) parameters.
 */
void
setup_hash(const int socketid)
{
	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
		.name = NULL,
		.entries = L3FWD_HASH_ENTRIES,
		.key_len = sizeof(union ipv4_5tuple_host),
		.hash_func = ipv4_hash_crc,
		.hash_func_init_val = 0,
	};

	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
		.name = NULL,
		.entries = L3FWD_HASH_ENTRIES,
		.key_len = sizeof(union ipv6_5tuple_host),
		.hash_func = ipv6_hash_crc,
		.hash_func_init_val = 0,
	};

	char s[64];

	/* create ipv4 hash */
	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
	ipv4_l3fwd_hash_params.name = s;
	ipv4_l3fwd_hash_params.socket_id = socketid;
	ipv4_l3fwd_em_lookup_struct[socketid] =
		rte_hash_create(&ipv4_l3fwd_hash_params);
	if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
		rte_exit(EXIT_FAILURE,
			"Unable to create the l3fwd hash on socket %d\n",
			socketid);

	/* create ipv6 hash */
	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
	ipv6_l3fwd_hash_params.name = s;
	ipv6_l3fwd_hash_params.socket_id = socketid;
	ipv6_l3fwd_em_lookup_struct[socketid] =
		rte_hash_create(&ipv6_l3fwd_hash_params);
	if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
		rte_exit(EXIT_FAILURE,
			"Unable to create the l3fwd hash on socket %d\n",
			socketid);

	if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
		/* For testing hash matching with a large number of flows we
		 * generate millions of IP 5-tuples with an incremented dst
		 * address to initialize the hash table. */
		if (ipv6 == 0) {
			/* populate the ipv4 hash */
			populate_ipv4_many_flow_into_table(
				ipv4_l3fwd_em_lookup_struct[socketid],
				hash_entry_number);
		} else {
			/* populate the ipv6 hash */
			populate_ipv6_many_flow_into_table(
				ipv6_l3fwd_em_lookup_struct[socketid],
				hash_entry_number);
		}
	} else {
		/*
		 * Use data in ipv4/ipv6 l3fwd lookup table
		 * directly to initialize the hash table.
		 */
		if (ipv6 == 0) {
			/* populate the ipv4 hash */
			populate_ipv4_few_flow_into_table(
				ipv4_l3fwd_em_lookup_struct[socketid]);
		} else {
			/* populate the ipv6 hash */
			populate_ipv6_few_flow_into_table(
				ipv6_l3fwd_em_lookup_struct[socketid]);
		}
	}
}

/* Return ipv4/ipv6 em fwd lookup struct. */
void *
em_get_ipv4_l3fwd_lookup_struct(const int socketid)
{
	return ipv4_l3fwd_em_lookup_struct[socketid];
}

void *
em_get_ipv6_l3fwd_lookup_struct(const int socketid)
{
	return ipv6_l3fwd_em_lookup_struct[socketid];
}