1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2014-2015 Cloudius Systems, Ltd.
*/
#include <seastar/testing/test_case.hh>
#include <seastar/core/semaphore.hh>
#include <seastar/core/condition-variable.hh>
#include <seastar/core/file.hh>
#include <seastar/core/reactor.hh>
#include <seastar/core/thread.hh>
#include <seastar/core/stall_sampler.hh>
#include <iostream>
using namespace seastar;
SEASTAR_TEST_CASE(open_flags_test) {
open_flags flags = open_flags::rw | open_flags::create | open_flags::exclusive;
BOOST_REQUIRE(std::underlying_type_t<open_flags>(flags) ==
(std::underlying_type_t<open_flags>(open_flags::rw) |
std::underlying_type_t<open_flags>(open_flags::create) |
std::underlying_type_t<open_flags>(open_flags::exclusive)));
open_flags mask = open_flags::create | open_flags::exclusive;
BOOST_REQUIRE((flags & mask) == mask);
return make_ready_future<>();
}
struct file_test {
file_test(file&& f) : f(std::move(f)) {}
file f;
semaphore sem = { 0 };
semaphore par = { 1000 };
};
SEASTAR_TEST_CASE(test1) {
// Note: this tests generates a file "testfile.tmp" with size 4096 * max (= 40 MB).
static constexpr auto max = 10000;
return open_file_dma("testfile.tmp", open_flags::rw | open_flags::create).then([] (file f) {
auto ft = new file_test{std::move(f)};
for (size_t i = 0; i < max; ++i) {
ft->par.wait().then([ft, i] {
auto wbuf = allocate_aligned_buffer<unsigned char>(4096, 4096);
std::fill(wbuf.get(), wbuf.get() + 4096, i);
auto wb = wbuf.get();
ft->f.dma_write(i * 4096, wb, 4096).then(
[ft, i, wbuf = std::move(wbuf)] (size_t ret) mutable {
BOOST_REQUIRE(ret == 4096);
auto rbuf = allocate_aligned_buffer<unsigned char>(4096, 4096);
auto rb = rbuf.get();
ft->f.dma_read(i * 4096, rb, 4096).then(
[ft, rbuf = std::move(rbuf), wbuf = std::move(wbuf)] (size_t ret) mutable {
BOOST_REQUIRE(ret == 4096);
BOOST_REQUIRE(std::equal(rbuf.get(), rbuf.get() + 4096, wbuf.get()));
ft->sem.signal(1);
ft->par.signal();
});
});
});
}
return ft->sem.wait(max).then([ft] () mutable {
return ft->f.flush();
}).then([ft] {
return ft->f.close();
}).then([ft] () mutable {
std::cout << "done\n";
delete ft;
});
});
}
SEASTAR_TEST_CASE(parallel_write_fsync) {
return internal::report_reactor_stalls([] {
return async([] {
// Plan: open a file and write to it like crazy. In parallel fsync() it all the time.
auto fname = "testfile.tmp";
auto sz = uint64_t(32*1024*1024);
auto buffer_size = 32768;
auto write_concurrency = 16;
auto fsync_every = 1024*1024;
auto max_write_ahead_of_fsync = 4*1024*1024; // ensures writes don't complete too quickly
auto written = uint64_t(0);
auto fsynced_at = uint64_t(0);
file f = open_file_dma(fname, open_flags::rw | open_flags::create | open_flags::truncate).get0();
// Avoid filesystem problems with size-extending operations
f.truncate(sz).get();
auto fsync_semaphore = semaphore(0);
auto may_write_condvar = condition_variable();
auto fsync_thread = thread([&] {
auto fsynced = uint64_t(0);
while (fsynced < sz) {
fsync_semaphore.wait(fsync_every).get();
fsynced_at = written;
// Signal the condition variable now so that writes proceed
// in parallel with the fsync
may_write_condvar.broadcast();
f.flush().get();
fsynced += fsync_every;
}
});
auto write_semaphore = semaphore(write_concurrency);
while (written < sz) {
write_semaphore.wait().get();
may_write_condvar.wait([&] {
return written <= fsynced_at + max_write_ahead_of_fsync;
}).get();
auto buf = temporary_buffer<char>::aligned(f.memory_dma_alignment(), buffer_size);
f.dma_write(written, buf.get(), buf.size()).then([&fsync_semaphore, &write_semaphore, buf = std::move(buf)] (size_t w) {
fsync_semaphore.signal(buf.size());
write_semaphore.signal();
});
written += buffer_size;
}
write_semaphore.wait(write_concurrency).get();
fsync_thread.join().get();
f.close().get();
remove_file(fname).get();
});
}).then([] (internal::stall_report sr) {
std::cout << "parallel_write_fsync: " << sr << "\n";
});
}
|