summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/examples/qos_sched/app_thread.c
blob: a5927423604c31d103f47bfa25bab3a199c38314 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stdint.h>

#include <rte_log.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_memcpy.h>
#include <rte_byteorder.h>
#include <rte_branch_prediction.h>
#include <rte_sched.h>

#include "main.h"

/*
 * QoS parameters are encoded as follows:
 *		Outer VLAN ID defines subport
 *		Inner VLAN ID defines pipe
 *		Destination IP 0.0.XXX.0 defines traffic class
 *		Destination IP host (0.0.0.XXX) defines queue
 * Values below define offset to each field from start of frame
 */
#define SUBPORT_OFFSET	7
#define PIPE_OFFSET		9
#define TC_OFFSET		20
#define QUEUE_OFFSET	20
#define COLOR_OFFSET	19

static inline int
get_pkt_sched(struct rte_mbuf *m, uint32_t *subport, uint32_t *pipe,
			uint32_t *traffic_class, uint32_t *queue, uint32_t *color)
{
	uint16_t *pdata = rte_pktmbuf_mtod(m, uint16_t *);

	*subport = (rte_be_to_cpu_16(pdata[SUBPORT_OFFSET]) & 0x0FFF) &
			(port_params.n_subports_per_port - 1); /* Outer VLAN ID*/
	*pipe = (rte_be_to_cpu_16(pdata[PIPE_OFFSET]) & 0x0FFF) &
			(port_params.n_pipes_per_subport - 1); /* Inner VLAN ID */
	*traffic_class = (pdata[QUEUE_OFFSET] & 0x0F) &
			(RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1); /* Destination IP */
	*queue = ((pdata[QUEUE_OFFSET] >> 8) & 0x0F) &
			(RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS - 1) ; /* Destination IP */
	*color = pdata[COLOR_OFFSET] & 0x03; 	/* Destination IP */

	return 0;
}

void
app_rx_thread(struct thread_conf **confs)
{
	uint32_t i, nb_rx;
	struct rte_mbuf *rx_mbufs[burst_conf.rx_burst] __rte_cache_aligned;
	struct thread_conf *conf;
	int conf_idx = 0;

	uint32_t subport;
	uint32_t pipe;
	uint32_t traffic_class;
	uint32_t queue;
	uint32_t color;

	while ((conf = confs[conf_idx])) {
		nb_rx = rte_eth_rx_burst(conf->rx_port, conf->rx_queue, rx_mbufs,
				burst_conf.rx_burst);

		if (likely(nb_rx != 0)) {
			APP_STATS_ADD(conf->stat.nb_rx, nb_rx);

			for(i = 0; i < nb_rx; i++) {
				get_pkt_sched(rx_mbufs[i],
						&subport, &pipe, &traffic_class, &queue, &color);
				rte_sched_port_pkt_write(rx_mbufs[i], subport, pipe,
						traffic_class, queue, (enum rte_meter_color) color);
			}

			if (unlikely(rte_ring_sp_enqueue_bulk(conf->rx_ring,
					(void **)rx_mbufs, nb_rx, NULL) == 0)) {
				for(i = 0; i < nb_rx; i++) {
					rte_pktmbuf_free(rx_mbufs[i]);

					APP_STATS_ADD(conf->stat.nb_drop, 1);
				}
			}
		}
		conf_idx++;
		if (confs[conf_idx] == NULL)
			conf_idx = 0;
	}
}



/* Send the packet to an output interface
 * For performance reason function returns number of packets dropped, not sent,
 * so 0 means that all packets were sent successfully
 */

static inline void
app_send_burst(struct thread_conf *qconf)
{
	struct rte_mbuf **mbufs;
	uint32_t n, ret;

	mbufs = (struct rte_mbuf **)qconf->m_table;
	n = qconf->n_mbufs;

	do {
		ret = rte_eth_tx_burst(qconf->tx_port, qconf->tx_queue, mbufs, (uint16_t)n);
		/* we cannot drop the packets, so re-send */
		/* update number of packets to be sent */
		n -= ret;
		mbufs = (struct rte_mbuf **)&mbufs[ret];
	} while (n);
}


/* Send the packet to an output interface */
static void
app_send_packets(struct thread_conf *qconf, struct rte_mbuf **mbufs, uint32_t nb_pkt)
{
	uint32_t i, len;

	len = qconf->n_mbufs;
	for(i = 0; i < nb_pkt; i++) {
		qconf->m_table[len] = mbufs[i];
		len++;
		/* enough pkts to be sent */
		if (unlikely(len == burst_conf.tx_burst)) {
			qconf->n_mbufs = len;
			app_send_burst(qconf);
			len = 0;
		}
	}

	qconf->n_mbufs = len;
}

void
app_tx_thread(struct thread_conf **confs)
{
	struct rte_mbuf *mbufs[burst_conf.qos_dequeue];
	struct thread_conf *conf;
	int conf_idx = 0;
	int retval;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;

	while ((conf = confs[conf_idx])) {
		retval = rte_ring_sc_dequeue_bulk(conf->tx_ring, (void **)mbufs,
					burst_conf.qos_dequeue, NULL);
		if (likely(retval != 0)) {
			app_send_packets(conf, mbufs, burst_conf.qos_dequeue);

			conf->counter = 0; /* reset empty read loop counter */
		}

		conf->counter++;

		/* drain ring and TX queues */
		if (unlikely(conf->counter > drain_tsc)) {
			/* now check is there any packets left to be transmitted */
			if (conf->n_mbufs != 0) {
				app_send_burst(conf);

				conf->n_mbufs = 0;
			}
			conf->counter = 0;
		}

		conf_idx++;
		if (confs[conf_idx] == NULL)
			conf_idx = 0;
	}
}


void
app_worker_thread(struct thread_conf **confs)
{
	struct rte_mbuf *mbufs[burst_conf.ring_burst];
	struct thread_conf *conf;
	int conf_idx = 0;

	while ((conf = confs[conf_idx])) {
		uint32_t nb_pkt;

		/* Read packet from the ring */
		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
					burst_conf.ring_burst, NULL);
		if (likely(nb_pkt)) {
			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
					nb_pkt);

			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
		}

		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
					burst_conf.qos_dequeue);
		if (likely(nb_pkt > 0))
			while (rte_ring_sp_enqueue_bulk(conf->tx_ring,
					(void **)mbufs, nb_pkt, NULL) == 0)
				; /* empty body */

		conf_idx++;
		if (confs[conf_idx] == NULL)
			conf_idx = 0;
	}
}


void
app_mixed_thread(struct thread_conf **confs)
{
	struct rte_mbuf *mbufs[burst_conf.ring_burst];
	struct thread_conf *conf;
	int conf_idx = 0;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;

	while ((conf = confs[conf_idx])) {
		uint32_t nb_pkt;

		/* Read packet from the ring */
		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
					burst_conf.ring_burst, NULL);
		if (likely(nb_pkt)) {
			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
					nb_pkt);

			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
		}


		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
					burst_conf.qos_dequeue);
		if (likely(nb_pkt > 0)) {
			app_send_packets(conf, mbufs, nb_pkt);

			conf->counter = 0; /* reset empty read loop counter */
		}

		conf->counter++;

		/* drain ring and TX queues */
		if (unlikely(conf->counter > drain_tsc)) {

			/* now check is there any packets left to be transmitted */
			if (conf->n_mbufs != 0) {
				app_send_burst(conf);

				conf->n_mbufs = 0;
			}
			conf->counter = 0;
		}

		conf_idx++;
		if (confs[conf_idx] == NULL)
			conf_idx = 0;
	}
}