summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/lib/librte_sched/rte_approx.c
blob: 30620b83d0da2eb6e0edb78f0c6f2b49d59eb39a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stdlib.h>

#include "rte_approx.h"

/*
 * Based on paper "Approximating Rational Numbers by Fractions" by Michal
 * Forisek forisek@dcs.fmph.uniba.sk
 *
 * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
 * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
 * q is minimal.
 *
 * http://people.ksp.sk/~misof/publications/2007approx.pdf
 */

/* fraction comparison: compare (a/b) and (c/d) */
static inline uint32_t
less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
	return a*d < b*c;
}

static inline uint32_t
less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
	return a*d <= b*c;
}

/* check whether a/b is a valid approximation */
static inline uint32_t
matches(uint32_t a, uint32_t b,
	uint32_t alpha_num, uint32_t d_num, uint32_t denum)
{
	if (less_or_equal(a, b, alpha_num - d_num, denum))
		return 0;

	if (less(a ,b, alpha_num + d_num, denum))
		return 1;

	return 0;
}

static inline void
find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
	uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
{
	uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
	uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
	uint32_t k = (k_num / k_denum) + 1;

	*p = p_b + k * p_a;
	*q = q_b + k * q_a;
}

static inline void
find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
	uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
{
	uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
	uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
	uint32_t k = (k_num / k_denum) + 1;

	*p = p_b + k * p_a;
	*q = q_b + k * q_a;
}

static int
find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
{
	uint32_t p_a, q_a, p_b, q_b;

	/* check assumptions on the inputs */
	if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
		return -1;
	}

	/* set initial bounds for the search */
	p_a = 0;
	q_a = 1;
	p_b = 1;
	q_b = 1;

	while (1) {
		uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
		uint32_t x_num, x_denum, x;
		int aa, bb;

		/* compute the number of steps to the left */
		x_num = denum * p_b - alpha_num * q_b;
		x_denum = - denum * p_a + alpha_num * q_a;
		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */

		/* check whether we have a valid approximation */
		aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
		bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
		if (aa || bb) {
			find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
			return 0;
		}

		/* update the interval */
		new_p_a = p_b + (x - 1) * p_a ;
		new_q_a = q_b + (x - 1) * q_a;
		new_p_b = p_b + x * p_a ;
		new_q_b = q_b + x * q_a;

		p_a = new_p_a ;
		q_a = new_q_a;
		p_b = new_p_b ;
		q_b = new_q_b;

		/* compute the number of steps to the right */
		x_num = alpha_num * q_b - denum * p_b;
		x_denum = - alpha_num * q_a + denum * p_a;
		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */

		/* check whether we have a valid approximation */
		aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
		bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
		if (aa || bb) {
			find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
			return 0;
		 }

		/* update the interval */
		new_p_a = p_b + (x - 1) * p_a;
		new_q_a = q_b + (x - 1) * q_a;
		new_p_b = p_b + x * p_a;
		new_q_b = q_b + x * q_a;

		p_a = new_p_a;
		q_a = new_q_a;
		p_b = new_p_b;
		q_b = new_q_b;
	}
}

int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
{
	uint32_t alpha_num, d_num, denum;

	/* Check input arguments */
	if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
		return -1;
	}

	if ((p == NULL) || (q == NULL)) {
		return -2;
	}

	/* Compute alpha_num, d_num and denum */
	denum = 1;
	while (d < 1) {
		alpha *= 10;
		d *= 10;
		denum *= 10;
	}
	alpha_num = (uint32_t) alpha;
	d_num = (uint32_t) d;

	/* Perform approximation */
	return find_best_rational_approximation(alpha_num, d_num, denum, p, q);
}