1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct ctrlr_entry *next;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct ns_entry *next;
struct spdk_nvme_qpair *qpair;
};
static struct ctrlr_entry *g_controllers = NULL;
static struct ns_entry *g_namespaces = NULL;
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
/*
* spdk_nvme_ctrlr is the logical abstraction in SPDK for an NVMe
* controller. During initialization, the IDENTIFY data for the
* controller is read using an NVMe admin command, and that data
* can be retrieved using spdk_nvme_ctrlr_get_data() to get
* detailed information on the controller. Refer to the NVMe
* specification for more details on IDENTIFY for NVMe controllers.
*/
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->next = g_namespaces;
g_namespaces = entry;
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns) / 1000000000);
}
struct hello_world_sequence {
struct ns_entry *ns_entry;
char *buf;
unsigned using_cmb_io;
int is_completed;
};
static void
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct hello_world_sequence *sequence = arg;
/*
* The read I/O has completed. Print the contents of the
* buffer, free the buffer, then mark the sequence as
* completed. This will trigger the hello_world() function
* to exit its polling loop.
*/
printf("%s", sequence->buf);
spdk_free(sequence->buf);
sequence->is_completed = 1;
}
static void
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct hello_world_sequence *sequence = arg;
struct ns_entry *ns_entry = sequence->ns_entry;
int rc;
/*
* The write I/O has completed. Free the buffer associated with
* the write I/O and allocate a new zeroed buffer for reading
* the data back from the NVMe namespace.
*/
if (sequence->using_cmb_io) {
spdk_nvme_ctrlr_free_cmb_io_buffer(ns_entry->ctrlr, sequence->buf, 0x1000);
} else {
spdk_free(sequence->buf);
}
sequence->buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, sequence->buf,
0, /* LBA start */
1, /* number of LBAs */
read_complete, (void *)sequence, 0);
if (rc != 0) {
fprintf(stderr, "starting read I/O failed\n");
exit(1);
}
}
static void
hello_world(void)
{
struct ns_entry *ns_entry;
struct hello_world_sequence sequence;
int rc;
ns_entry = g_namespaces;
while (ns_entry != NULL) {
/*
* Allocate an I/O qpair that we can use to submit read/write requests
* to namespaces on the controller. NVMe controllers typically support
* many qpairs per controller. Any I/O qpair allocated for a controller
* can submit I/O to any namespace on that controller.
*
* The SPDK NVMe driver provides no synchronization for qpair accesses -
* the application must ensure only a single thread submits I/O to a
* qpair, and that same thread must also check for completions on that
* qpair. This enables extremely efficient I/O processing by making all
* I/O operations completely lockless.
*/
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
if (ns_entry->qpair == NULL) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n");
return;
}
/*
* Use spdk_dma_zmalloc to allocate a 4KB zeroed buffer. This memory
* will be pinned, which is required for data buffers used for SPDK NVMe
* I/O operations.
*/
sequence.using_cmb_io = 1;
sequence.buf = spdk_nvme_ctrlr_alloc_cmb_io_buffer(ns_entry->ctrlr, 0x1000);
if (sequence.buf == NULL) {
sequence.using_cmb_io = 0;
sequence.buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
}
if (sequence.buf == NULL) {
printf("ERROR: write buffer allocation failed\n");
return;
}
if (sequence.using_cmb_io) {
printf("INFO: using controller memory buffer for IO\n");
} else {
printf("INFO: using host memory buffer for IO\n");
}
sequence.is_completed = 0;
sequence.ns_entry = ns_entry;
/*
* Print "Hello world!" to sequence.buf. We will write this data to LBA
* 0 on the namespace, and then later read it back into a separate buffer
* to demonstrate the full I/O path.
*/
snprintf(sequence.buf, 0x1000, "%s", "Hello world!\n");
/*
* Write the data buffer to LBA 0 of this namespace. "write_complete" and
* "&sequence" are specified as the completion callback function and
* argument respectively. write_complete() will be called with the
* value of &sequence as a parameter when the write I/O is completed.
* This allows users to potentially specify different completion
* callback routines for each I/O, as well as pass a unique handle
* as an argument so the application knows which I/O has completed.
*
* Note that the SPDK NVMe driver will only check for completions
* when the application calls spdk_nvme_qpair_process_completions().
* It is the responsibility of the application to trigger the polling
* process.
*/
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, sequence.buf,
0, /* LBA start */
1, /* number of LBAs */
write_complete, &sequence, 0);
if (rc != 0) {
fprintf(stderr, "starting write I/O failed\n");
exit(1);
}
/*
* Poll for completions. 0 here means process all available completions.
* In certain usage models, the caller may specify a positive integer
* instead of 0 to signify the maximum number of completions it should
* process. This function will never block - if there are no
* completions pending on the specified qpair, it will return immediately.
*
* When the write I/O completes, write_complete() will submit a new I/O
* to read LBA 0 into a separate buffer, specifying read_complete() as its
* completion routine. When the read I/O completes, read_complete() will
* print the buffer contents and set sequence.is_completed = 1. That will
* break this loop and then exit the program.
*/
while (!sequence.is_completed) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
/*
* Free the I/O qpair. This typically is done when an application exits.
* But SPDK does support freeing and then reallocating qpairs during
* operation. It is the responsibility of the caller to ensure all
* pending I/O are completed before trying to free the qpair.
*/
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
ns_entry = ns_entry->next;
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
int nsid, num_ns;
struct ctrlr_entry *entry;
struct spdk_nvme_ns *ns;
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
printf("Attached to %s\n", trid->traddr);
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
entry->next = g_controllers;
g_controllers = entry;
/*
* Each controller has one or more namespaces. An NVMe namespace is basically
* equivalent to a SCSI LUN. The controller's IDENTIFY data tells us how
* many namespaces exist on the controller. For Intel(R) P3X00 controllers,
* it will just be one namespace.
*
* Note that in NVMe, namespace IDs start at 1, not 0.
*/
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
printf("Using controller %s with %d namespaces.\n", entry->name, num_ns);
for (nsid = 1; nsid <= num_ns; nsid++) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
}
static void
cleanup(void)
{
struct ns_entry *ns_entry = g_namespaces;
struct ctrlr_entry *ctrlr_entry = g_controllers;
while (ns_entry) {
struct ns_entry *next = ns_entry->next;
free(ns_entry);
ns_entry = next;
}
while (ctrlr_entry) {
struct ctrlr_entry *next = ctrlr_entry->next;
spdk_nvme_detach(ctrlr_entry->ctrlr);
free(ctrlr_entry);
ctrlr_entry = next;
}
}
int main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
/*
* SPDK relies on an abstraction around the local environment
* named env that handles memory allocation and PCI device operations.
* This library must be initialized first.
*
*/
spdk_env_opts_init(&opts);
opts.name = "hello_world";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("Initializing NVMe Controllers\n");
/*
* Start the SPDK NVMe enumeration process. probe_cb will be called
* for each NVMe controller found, giving our application a choice on
* whether to attach to each controller. attach_cb will then be
* called for each controller after the SPDK NVMe driver has completed
* initializing the controller we chose to attach.
*/
rc = spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL);
if (rc != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
cleanup();
return 1;
}
if (g_controllers == NULL) {
fprintf(stderr, "no NVMe controllers found\n");
cleanup();
return 1;
}
printf("Initialization complete.\n");
hello_world();
cleanup();
return 0;
}
|