summaryrefslogtreecommitdiffstats
path: root/src/spdk/intel-ipsec-mb/LibPerfApp/ipsec_perf.c
blob: 841b689a09a8853718e92762d4ff7954e9ae0bfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
/**********************************************************************
  Copyright(c) 2017-2018, Intel Corporation All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the
      distribution.
    * Neither the name of Intel Corporation nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

#ifdef _WIN32
#include <windows.h>
#include <process.h>
#include <intrin.h>
#define __forceinline static __forceinline
#else
#include <x86intrin.h>
#define __forceinline static inline __attribute__((always_inline))
#include <unistd.h>
#include <pthread.h>
#include <sched.h>
#endif

#include <intel-ipsec-mb.h>

#include "msr.h"

#define BUFSIZE (512 * 1024 * 1024)
#define JOB_SIZE (2 * 1024)
#define JOB_SIZE_STEP 16
#define REGION_SIZE (JOB_SIZE + 3003)
#define NUM_OFFSETS (BUFSIZE / REGION_SIZE)
#define NUM_RUNS 16
#define KEYS_PER_JOB 15
#define ITER_SCALE 200000
#define BITS(x) (sizeof(x) * 8)
#define DIM(x) (sizeof(x)/sizeof(x[0]))

#define NUM_ARCHS 4 /* SSE, AVX, AVX2, AVX512 */
#define NUM_TYPES 6 /* AES_HMAC, AES_DOCSIS, AES_GCM, AES_CCM, DES, 3DES */
#define MAX_NUM_THREADS 16 /* Maximum number of threads that can be created */

#define CIPHER_MODES_AES 4	/* CBC, CNTR, CNTR+8, NULL_CIPHER */
#define CIPHER_MODES_DOCSIS 4	/* AES DOCSIS, AES DOCSIS+8, DES DOCSIS,
                                   DES DOCSIS+8 */
#define CIPHER_MODES_DES 1	/* DES */
#define CIPHER_MODES_GCM 1	/* GCM */
#define CIPHER_MODES_CCM 1	/* CCM */
#define CIPHER_MODES_3DES 1	/* 3DES */
#define DIRECTIONS 2		/* ENC, DEC */
#define HASH_ALGS_AES 9		/* SHA1, SHA256, SHA224, SHA384, SHA512, XCBC,
                                   MD5, NULL_HASH, CMAC */
#define HASH_ALGS_DOCSIS 1	/* NULL_HASH */
#define HASH_ALGS_GCM 1		/* GCM */
#define HASH_ALGS_CCM 1		/* CCM */
#define HASH_ALGS_DES 1		/* NULL_HASH for DES */
#define HASH_ALGS_3DES 1	/* NULL_HASH for 3DES */
#define KEY_SIZES_AES 3		/* 16, 24, 32 */
#define KEY_SIZES_DOCSIS 1	/* 16 or 8 */
#define KEY_SIZES_GCM 3		/* 16, 24, 32 */
#define KEY_SIZES_CCM 1		/* 16 */
#define KEY_SIZES_DES 1		/* 8 */
#define KEY_SIZES_3DES 1	/* 8 x 3 */

#define IA32_MSR_FIXED_CTR_CTRL      0x38D
#define IA32_MSR_PERF_GLOBAL_CTR     0x38F
#define IA32_MSR_CPU_UNHALTED_THREAD 0x30A

/* Those defines tell how many different test cases are to be performed.
 * Have to be multiplied by number of chosen architectures.
 */
#define VARIANTS_PER_ARCH_AES (CIPHER_MODES_AES * DIRECTIONS *  \
                               HASH_ALGS_AES * KEY_SIZES_AES)
#define VARIANTS_PER_ARCH_DOCSIS (CIPHER_MODES_DOCSIS * DIRECTIONS *  \
                                  HASH_ALGS_DOCSIS * KEY_SIZES_DOCSIS)
#define VARIANTS_PER_ARCH_GCM (CIPHER_MODES_GCM * DIRECTIONS *  \
                               HASH_ALGS_GCM * KEY_SIZES_GCM)
#define VARIANTS_PER_ARCH_CCM (CIPHER_MODES_CCM * DIRECTIONS *  \
                               HASH_ALGS_CCM * KEY_SIZES_CCM)
#define VARIANTS_PER_ARCH_DES (CIPHER_MODES_DES * DIRECTIONS *  \
                               HASH_ALGS_DES * KEY_SIZES_DES)
#define VARIANTS_PER_ARCH_3DES (CIPHER_MODES_3DES * DIRECTIONS *  \
                                HASH_ALGS_3DES * KEY_SIZES_3DES)

/* Typedefs used for GCM callbacks */
typedef void (*aesni_gcm_t)(const struct gcm_key_data *,
                            struct gcm_context_data *,
                            uint8_t *, const uint8_t *, uint64_t,
                            const uint8_t *, const uint8_t *, uint64_t,
                            uint8_t *, uint64_t);
typedef void (*aesni_gcm_pre_t)(const void *, struct gcm_key_data *);

/* AES_HMAC, DOCSIS callbacks */
struct funcs_s {
        init_mb_mgr_t       init_mb_mgr;
        get_next_job_t      get_next_job;
        submit_job_t        submit_job;
        get_completed_job_t get_completed_job;
        flush_job_t         flush_job;
};

/* GCM callbacks */
struct funcs_gcm_s {
        aesni_gcm_pre_t	aesni_gcm_pre;
        aesni_gcm_t	aesni_gcm_enc;
        aesni_gcm_t	aesni_gcm_dec;
};

enum arch_type_e {
        ARCH_SSE = 0,
        ARCH_AVX,
        ARCH_AVX2,
        ARCH_AVX512
};

enum test_type_e {
        TTYPE_AES_HMAC,
        TTYPE_AES_DOCSIS,
        TTYPE_AES_GCM,
        TTYPE_AES_CCM,
        TTYPE_AES_DES,
        TTYPE_AES_3DES
};

/* This enum will be mostly translated to JOB_CIPHER_MODE */
enum test_cipher_mode_e {
        TEST_CBC = 1,
        TEST_CNTR,
        TEST_CNTR8, /* CNTR with increased buffer by 8 */
        TEST_NULL_CIPHER,
        TEST_AESDOCSIS,
        TEST_AESDOCSIS8, /* AES DOCSIS with increased buffer size by 8 */
        TEST_DESDOCSIS,
        TEST_DESDOCSIS4, /* DES DOCSIS with increased buffer size by 4 */
        TEST_GCM, /* Additional field used by GCM, not translated */
        TEST_CCM,
        TEST_DES,
        TEST_3DES,
};

/* This enum will be mostly translated to JOB_HASH_ALG */
enum test_hash_alg_e {
        TEST_SHA1 = 1,
        TEST_SHA_224,
        TEST_SHA_256,
        TEST_SHA_384,
        TEST_SHA_512,
        TEST_XCBC,
        TEST_MD5,
        TEST_HASH_CMAC, /* added here to be included in AES tests */
        TEST_NULL_HASH,
        TEST_HASH_GCM, /* Additional field used by GCM, not translated */
        TEST_CUSTOM_HASH, /* unused */
        TEST_HASH_CCM
};

/* Struct storing cipher parameters */
struct params_s {
        JOB_CIPHER_DIRECTION	cipher_dir;
        enum test_type_e	test_type; /* AES, DOCSIS, GCM */
        enum test_cipher_mode_e	cipher_mode;
        enum test_hash_alg_e	hash_alg;
        uint32_t		aes_key_size;
        uint32_t		size_aes;
        uint32_t		num_sizes;
        uint32_t		num_variants;
        uint32_t                core;
};

/* This struct stores all information about performed test case */
struct variant_s {
        uint32_t arch;
        struct params_s params;
        uint64_t *avg_times;
};

/* Struct storing information to be passed to threads */
struct thread_info {
        int print_info;
        int core;
} t_info[MAX_NUM_THREADS];

enum cache_type_e {
        WARM = 0,
        COLD = 1
};

#ifdef DEBUG
#define FUNCS(A) {                              \
                init_mb_mgr_##A,                \
                        get_next_job_##A,       \
                        submit_job_##A,         \
                        get_completed_job_##A,  \
                        flush_job_##A           \
                        }
#else
#define FUNCS(A) {                              \
                init_mb_mgr_##A,                \
                        get_next_job_##A,       \
                        submit_job_nocheck_##A, \
                        get_completed_job_##A,  \
                        flush_job_##A           \
                        }
#endif

#define FUNCS_GCM(A)                                                    \
        {aes_gcm_pre_128_##A, aes_gcm_enc_128_##A, aes_gcm_dec_128_##A}, \
        {aes_gcm_pre_192_##A, aes_gcm_enc_192_##A, aes_gcm_dec_192_##A}, \
        {aes_gcm_pre_256_##A, aes_gcm_enc_256_##A, aes_gcm_dec_256_##A}


/* Function pointers used by TTYPE_AES_HMAC, TTYPE_AES_DOCSIS */
struct funcs_s func_sets[NUM_ARCHS] = {
        FUNCS(sse),
        FUNCS(avx),
        FUNCS(avx2),
        FUNCS(avx512)
};

/* Function pointers used by TTYPE_AES_GCM */
struct funcs_gcm_s func_sets_gcm[NUM_ARCHS - 1][3] = {
        {FUNCS_GCM(sse)},
        {FUNCS_GCM(avx_gen2)}, /* AVX */
        {FUNCS_GCM(avx_gen4)} /* AVX2 */
};

enum cache_type_e cache_type = WARM;
/* As enum: SHA1, SHA224, SHA256, SHA384, SHA512,
   XCBC, MD5, NULL, GMAC, CUSTOM, CCM, CMAC */
const uint32_t auth_tag_length_bytes[12] = {
        12, 14, 16, 24, 32, 12, 12, 0, 8, 0, 16, 16
};
uint8_t *buf = NULL;
uint32_t index_limit;
uint128_t *keys = NULL;
uint64_t *offset_ptr = NULL;
uint32_t key_idxs[NUM_OFFSETS];
uint32_t offsets[NUM_OFFSETS];
int sha_size_incr = 24;

uint8_t archs[NUM_ARCHS] = {1, 1, 1, 1}; /* uses all function sets */
/* AES, DOCSIS, GCM, CCM, DES, 3DES */
uint8_t test_types[NUM_TYPES] = {1, 1, 1, 1, 1, 1};

int use_gcm_job_api = 0;
int use_unhalted_cycles = 0; /* read unhalted cycles instead of tsc */
uint64_t rd_cycles_cost = 0; /* cost of reading unhalted cycles */
uint64_t core_mask = 0; /* bitmap of selected cores */

uint64_t flags = 0; /* flags passed to alloc_mb_mgr() */

/* Those inline functions run different types of ipsec_mb library functions.
 * They run different functions depending on the chosen architecture
 */
__forceinline void init_mb_mgr(MB_MGR *mgr, uint32_t arch)
{
        func_sets[arch].init_mb_mgr(mgr);
}

__forceinline JOB_AES_HMAC *get_next_job(MB_MGR *mgr, const uint32_t arch)
{
        return func_sets[arch].get_next_job(mgr);
}

__forceinline JOB_AES_HMAC *submit_job(MB_MGR *mgr, const uint32_t arch)
{
        return func_sets[arch].submit_job(mgr);
}

__forceinline JOB_AES_HMAC *get_completed_job(MB_MGR *mgr, const uint32_t arch)
{
        return func_sets[arch].get_completed_job(mgr);
}

__forceinline JOB_AES_HMAC *flush_job(MB_MGR *mgr, const uint32_t arch)
{
        return func_sets[arch].flush_job(mgr);
}

/* GCM functions take also key size argument (128, 192, 256bit) */
__forceinline void aesni_gcm_pre(const uint32_t arch, const uint8_t key_sz,
                                 uint8_t *key, struct gcm_key_data *gdata)
{
        func_sets_gcm[arch][key_sz].aesni_gcm_pre(key, gdata);
}

__forceinline void aesni_gcm_enc(const uint32_t arch, const uint8_t key_sz,
                                 const struct gcm_key_data *gdata,
                                 struct gcm_context_data *ctx,
                                 uint8_t *out, uint8_t const *in,
                                 uint64_t len, uint8_t *iv,
                                 uint8_t const *aad, uint64_t aad_len,
                                 uint8_t *auth_tag, uint64_t auth_tag_len)
{
        func_sets_gcm[arch][key_sz].aesni_gcm_enc(gdata, ctx, out, in, len, iv,
                                                  aad, aad_len,
                                                  auth_tag, auth_tag_len);

}

__forceinline void aesni_gcm_dec(const uint32_t arch, const uint8_t key_sz,
                                 const struct gcm_key_data *gdata,
                                 struct gcm_context_data *ctx,
                                 uint8_t *out, uint8_t const *in,
                                 uint64_t len, uint8_t *iv,
                                 uint8_t const *aad, uint64_t aad_len,
                                 uint8_t *auth_tag, uint64_t auth_tag_len)
{
        func_sets_gcm[arch][key_sz].aesni_gcm_dec(gdata, ctx, out, in, len, iv,
                                                  aad, aad_len,
                                                  auth_tag, auth_tag_len);

}

/* Read unhalted cycles */
__forceinline uint64_t read_cycles(uint32_t core)
{
        uint64_t val = 0;

        if (msr_read(core, IA32_MSR_CPU_UNHALTED_THREAD,
                     &val) != MACHINE_RETVAL_OK) {
                fprintf(stderr, "Error reading cycles "
                        "counter on core %u!\n", core);
                exit(EXIT_FAILURE);
        }

        return val;
}

/* Compare function used by qsort */
static int compare(const void *a, const void *b)
{
        uint64_t x = *(const uint64_t *)a - *(const uint64_t *)b;

        if (x == 0)
                return 0;

        if (x > *(const uint64_t *)a)
                return -1;

        return 1;
}

/* Get number of bits set in value */
static int bitcount(const uint64_t val)
{
        unsigned i;
        int bits = 0;

        for (i = 0; i < BITS(val); i++)
                if (val & (1ULL << i))
                        bits++;

        return bits;
}

/* Get the next core in core mask
   Set last_core to negative to start from beginnig of core_mask */
static int next_core(const uint64_t core_mask,
                     const int last_core)
{
        int core = 0;

        if (last_core >= 0)
                core = last_core;

        while (((core_mask >> core) & 1) == 0) {
                core++;

                if (core >= (int)BITS(core_mask))
                        return -1;
        }

        return core;
}

/* Set CPU affinity for current thread */
static int set_affinity(const int cpu)
{
        int ret = 0;
#ifndef _WIN32
        cpu_set_t cpuset;
        int num_cpus = 0;

        /* Get number of cpus in the system */
        num_cpus = sysconf(_SC_NPROCESSORS_CONF);
        if (num_cpus == 0) {
                fprintf(stderr, "Zero processors in the system!");
                return 1;
        }

        /* Check if selected core is valid */
        if (cpu < 0 || cpu >= num_cpus) {
                fprintf(stderr, "Invalid CPU selected! "
                        "Max valid CPU is %u\n", num_cpus - 1);
                return 1;
        }

        CPU_ZERO(&cpuset);
        CPU_SET(cpu, &cpuset);

        /* Set affinity of current process to cpu */
        ret = sched_setaffinity(0, sizeof(cpuset), &cpuset);
#endif /* _WIN32 */
        return ret;
}

/* Start counting unhalted cycles */
static int start_cycles_ctr(uint32_t core)
{
        int ret;

        if (core >= BITS(core_mask))
                return 1;

        /* Disable cycles counter */
        ret = msr_write(core, IA32_MSR_PERF_GLOBAL_CTR, 0);
        if (ret != MACHINE_RETVAL_OK)
                return ret;

        /* Zero cycles counter */
        ret = msr_write(core, IA32_MSR_CPU_UNHALTED_THREAD, 0);
        if (ret != MACHINE_RETVAL_OK)
                return ret;

        /* Enable OS and user tracking in FixedCtr1 */
        ret = msr_write(core, IA32_MSR_FIXED_CTR_CTRL, 0x30);
        if (ret != MACHINE_RETVAL_OK)
                return ret;

        /* Enable cycles counter */
        return  msr_write(core, IA32_MSR_PERF_GLOBAL_CTR, (1ULL << 33));
}

/* Init MSR module */
static int init_msr_mod(void)
{
        unsigned max_core_count = 0;
#ifndef _WIN32
        max_core_count = sysconf(_SC_NPROCESSORS_CONF);
        if (max_core_count == 0) {
                fprintf(stderr, "Zero processors in the system!");
                return MACHINE_RETVAL_ERROR;
        }
#endif
        return machine_init(max_core_count);
}

/* Set the cost of reading unhalted cycles using RDMSR */
static int set_unhalted_cycle_cost(const int core, uint64_t *value)
{
        uint64_t time1, time2;

        if (value == NULL || core < 0)
                return 1;

        time1 = read_cycles(core);
        time2 = read_cycles(core);

        /* Calculate delta */
        *value = (time2 - time1);

        return 0;
}

/* Calculate the general cost of reading unhalted cycles (median) */
static int set_avg_unhalted_cycle_cost(const int core, uint64_t *value)
{
        unsigned i;
        uint64_t cycles[10];

        if (value == NULL || core_mask == 0 || core < 0)
                return 1;

        /* Fill cycles table with read cost values */
        for (i = 0; i < DIM(cycles); i++)
                if (set_unhalted_cycle_cost(core, &cycles[i]) != 0)
                        return 1;

        /* sort array */
        qsort(cycles, DIM(cycles), sizeof(uint64_t), compare);

        /* set median cost */
        *value = cycles[DIM(cycles)/2];

        return 0;
}

/* Freeing allocated memory */
static void free_mem(void)
{
        if (offset_ptr != NULL)
                free(offset_ptr);
        if (buf != NULL)
                free(buf);
}

/* Input buffer initialization */
static void init_buf(enum cache_type_e ctype)
{
        uint32_t tmp_off;
        uint64_t offset;
        int i;

        buf = (uint8_t *) malloc(BUFSIZE + REGION_SIZE);
        if (!buf) {
                fprintf(stderr, "Could not malloc buf\n");
                exit(EXIT_FAILURE);
        }

        offset_ptr = (uint64_t *)
                malloc(NUM_OFFSETS * KEYS_PER_JOB * sizeof(uint128_t) + 0x0F);
        if (!offset_ptr) {
                fprintf(stderr, "Could not malloc keys\n");
                free_mem();
                exit(EXIT_FAILURE);
        }

        offset = (uint64_t) offset_ptr;
        keys = (uint128_t *) ((offset + 0x0F) & ~0x0F); /* align to 16 bytes */

        if (ctype == COLD) {
                for (i = 0; i < NUM_OFFSETS; i++) {
                        offsets[i] = i * REGION_SIZE + (rand() & 0x3F0);
                        key_idxs[i] = i * KEYS_PER_JOB;
                }
                for (i = NUM_OFFSETS - 1; i >= 0; i--) {
                        offset = rand();
                        offset *= i;
                        offset /= RAND_MAX;
                        tmp_off = offsets[offset];
                        offsets[offset] = offsets[i];
                        offsets[i] = tmp_off;
                        tmp_off = key_idxs[offset];
                        key_idxs[offset] = key_idxs[i];
                        key_idxs[i] = tmp_off;
                }
                index_limit = NUM_OFFSETS;
        } else {/* WARM */
                for (i = 0; i < NUM_OFFSETS; i += 2) {
                        offsets[i]   = (2 * i + 0) * REGION_SIZE +
                                (rand() & 0x3F0);
                        offsets[i + 1] = (2 * i + 1) * REGION_SIZE +
                                (rand() & 0x3F0);
                        key_idxs[i]  = (2 * i + 0) * KEYS_PER_JOB;
                }
                index_limit = 8;
        }
}

/* This function translates enum test_ciper_mode_e to be used by ipsec_mb
 * library
 */
static JOB_CIPHER_MODE translate_cipher_mode(enum test_cipher_mode_e test_mode)
{
        JOB_CIPHER_MODE c_mode = NULL_CIPHER;

        switch (test_mode) {
        case TEST_CBC:
                c_mode = CBC;
                break;
        case TEST_CNTR:
        case TEST_CNTR8:
                c_mode = CNTR;
                break;
        case TEST_NULL_CIPHER:
                c_mode = NULL_CIPHER;
                break;
        case TEST_AESDOCSIS:
        case TEST_AESDOCSIS8:
                c_mode = DOCSIS_SEC_BPI;
                break;
        case TEST_DESDOCSIS:
        case TEST_DESDOCSIS4:
                c_mode = DOCSIS_DES;
                break;
        case TEST_GCM:
                c_mode = GCM;
                break;
        case TEST_CCM:
                c_mode = CCM;
                break;
        case TEST_DES:
                c_mode = DES;
                break;
        case TEST_3DES:
                c_mode = DES3;
                break;
        default:
                break;
        }
        return c_mode;
}

/* Performs test using AES_HMAC or DOCSIS */
static uint64_t
do_test(const uint32_t arch, MB_MGR *mb_mgr, struct params_s *params,
        const uint32_t num_iter)
{
        JOB_AES_HMAC *job;
        JOB_AES_HMAC job_template;
        uint32_t i;
        static uint32_t index = 0;
        static DECLARE_ALIGNED(uint128_t iv, 16);
        static uint32_t ipad[5], opad[5], digest[3];
        static DECLARE_ALIGNED(uint32_t k1_expanded[11 * 4], 16);
        static DECLARE_ALIGNED(uint8_t	k2[16], 16);
        static DECLARE_ALIGNED(uint8_t	k3[16], 16);
        static DECLARE_ALIGNED(struct gcm_key_data gdata_key, 16);
        uint32_t size_aes;
        uint64_t time = 0;
        uint32_t aux;

        if ((params->cipher_mode == TEST_AESDOCSIS8) ||
            (params->cipher_mode == TEST_CNTR8))
                size_aes = params->size_aes + 8;
        else if (params->cipher_mode == TEST_DESDOCSIS4)
                size_aes = params->size_aes + 4;
        else
                size_aes = params->size_aes;

        job_template.msg_len_to_cipher_in_bytes = size_aes;
        job_template.msg_len_to_hash_in_bytes = size_aes + sha_size_incr;
        job_template.hash_start_src_offset_in_bytes = 0;
        job_template.cipher_start_src_offset_in_bytes = sha_size_incr;
        job_template.iv = (uint8_t *) &iv;
        job_template.iv_len_in_bytes = 16;

        job_template.auth_tag_output = (uint8_t *) digest;

        switch (params->hash_alg) {
        case TEST_XCBC:
                job_template.u.XCBC._k1_expanded = k1_expanded;
                job_template.u.XCBC._k2 = k2;
                job_template.u.XCBC._k3 = k3;
                job_template.hash_alg = AES_XCBC;
                break;
        case TEST_HASH_CCM:
                job_template.hash_alg = AES_CCM;
                break;
        case TEST_HASH_GCM:
                job_template.hash_alg = AES_GMAC;
                break;
        case TEST_NULL_HASH:
                job_template.hash_alg = NULL_HASH;
                break;
        case TEST_HASH_CMAC:
                job_template.u.CMAC._key_expanded = k1_expanded;
                job_template.u.CMAC._skey1 = k2;
                job_template.u.CMAC._skey2 = k3;
                job_template.hash_alg = AES_CMAC;
                break;
        default:
                /* HMAC hash alg is SHA1 or MD5 */
                job_template.u.HMAC._hashed_auth_key_xor_ipad =
                        (uint8_t *) ipad;
                job_template.u.HMAC._hashed_auth_key_xor_opad =
                        (uint8_t *) opad;
                job_template.hash_alg = (JOB_HASH_ALG) params->hash_alg;
                break;
        }
        job_template.auth_tag_output_len_in_bytes =
                (uint64_t) auth_tag_length_bytes[job_template.hash_alg - 1];

        job_template.cipher_direction = params->cipher_dir;

        if (params->cipher_mode == TEST_NULL_CIPHER) {
                job_template.chain_order = HASH_CIPHER;
        } else {
                if (job_template.cipher_direction == ENCRYPT)
                        job_template.chain_order = CIPHER_HASH;
                else
                        job_template.chain_order = HASH_CIPHER;
        }

        /* Translating enum to the API's one */
        job_template.cipher_mode = translate_cipher_mode(params->cipher_mode);
        job_template.aes_key_len_in_bytes = params->aes_key_size;
        if (job_template.cipher_mode == GCM) {
                uint8_t key[32];

                aesni_gcm_pre(arch, (params->aes_key_size / 8) - 2,
                              key, &gdata_key);
                job_template.aes_enc_key_expanded = &gdata_key;
                job_template.aes_dec_key_expanded = &gdata_key;
                job_template.u.GCM.aad_len_in_bytes = 12;
                job_template.iv_len_in_bytes = 12;
        } else if (job_template.cipher_mode == CCM) {
                job_template.msg_len_to_cipher_in_bytes = size_aes;
                job_template.msg_len_to_hash_in_bytes = size_aes;
                job_template.hash_start_src_offset_in_bytes = 0;
                job_template.cipher_start_src_offset_in_bytes = 0;
                job_template.u.CCM.aad_len_in_bytes = 8;
                job_template.iv_len_in_bytes = 13;
        } else if (job_template.cipher_mode == DES ||
                   job_template.cipher_mode == DES3 ||
                   job_template.cipher_mode == DOCSIS_DES) {
                job_template.aes_key_len_in_bytes = 8;
                job_template.iv_len_in_bytes = 8;
        }

#ifndef _WIN32
        if (use_unhalted_cycles)
                time = read_cycles(params->core);
        else
#endif
                time = __rdtscp(&aux);

        for (i = 0; i < num_iter; i++) {
                job = get_next_job(mb_mgr, arch);
                *job = job_template;

                job->src = buf + offsets[index];
                job->dst = buf + offsets[index] + sha_size_incr;
                if (job->cipher_mode == GCM) {
                        job->u.GCM.aad = job->src;
                } else if (job->cipher_mode == CCM) {
                        job->u.CCM.aad = job->src;
                        job->aes_enc_key_expanded = job->aes_dec_key_expanded =
                                (uint32_t *) &keys[key_idxs[index]];
                } else if (job->cipher_mode == DES3) {
                        static const void *ks_ptr[3];

                        ks_ptr[0] = ks_ptr[1] = ks_ptr[2] =
                                &keys[key_idxs[index]];
                        job->aes_enc_key_expanded =
                                job->aes_dec_key_expanded = ks_ptr;
                } else {
                        job->aes_enc_key_expanded = job->aes_dec_key_expanded =
                                (uint32_t *) &keys[key_idxs[index]];
                }

                index += 2;
                if (index >= index_limit)
                        index = 0;

                job = submit_job(mb_mgr, arch);
                while (job) {
#ifdef DEBUG
                        if (job->status != STS_COMPLETED)
                                fprintf(stderr, "failed job, status:%d\n",
                                        job->status);
#endif
                        job = get_completed_job(mb_mgr, arch);
                }
        }

        while ((job = flush_job(mb_mgr, arch))) {
#ifdef DEBUG
                if (job->status != STS_COMPLETED)
                        fprintf(stderr, "failed job, status:%d\n", job->status);
#endif
        }

#ifndef _WIN32
        if (use_unhalted_cycles)
                time = (read_cycles(params->core) - rd_cycles_cost) - time;
        else
#endif
                time = __rdtscp(&aux) - time;

        return time / num_iter;
}

/* Performs test using GCM */
static uint64_t
do_test_gcm(const uint32_t arch, struct params_s *params,
            const uint32_t num_iter)
{
        struct gcm_key_data gdata_key;
        struct gcm_context_data gdata_ctx;
        uint8_t *key;
        static uint32_t index = 0;
        uint8_t key_sz = params->aes_key_size / 8 - 2;
        uint32_t size_aes = params->size_aes;
        uint32_t i;
        uint8_t aad[12];
        uint8_t auth_tag[12];
        DECLARE_ALIGNED(uint8_t iv[16], 16);
        uint64_t time = 0;
        uint32_t aux;

        key = (uint8_t *) malloc(sizeof(uint8_t) * params->aes_key_size);
        if (!key) {
                fprintf(stderr, "Could not malloc key\n");
                free_mem();
                exit(EXIT_FAILURE);
        }

        aesni_gcm_pre(arch, key_sz, key, &gdata_key);
        if (params->cipher_dir == ENCRYPT) {
#ifndef _WIN32
                if (use_unhalted_cycles)
                        time = read_cycles(params->core);
                else
#endif
                        time = __rdtscp(&aux);

                for (i = 0; i < num_iter; i++) {
                        aesni_gcm_enc(arch, key_sz, &gdata_key, &gdata_ctx,
                                      buf + offsets[index] + sha_size_incr,
                                      buf + offsets[index] + sha_size_incr,
                                      size_aes, iv, aad, sizeof(aad),
                                      auth_tag, sizeof(auth_tag));
                        index += 2;
                        if (index >= index_limit)
                                index = 0;
                }
#ifndef _WIN32
                if (use_unhalted_cycles)
                        time = (read_cycles(params->core) -
                                rd_cycles_cost) - time;
                else
#endif
                        time = __rdtscp(&aux) - time;
        } else { /*DECRYPT*/
#ifndef _WIN32
                if (use_unhalted_cycles)
                        time = read_cycles(params->core);
                else
#endif
                        time = __rdtscp(&aux);

                for (i = 0; i < num_iter; i++) {
                        aesni_gcm_dec(arch, key_sz, &gdata_key, &gdata_ctx,
                                      buf + offsets[index] + sha_size_incr,
                                      buf + offsets[index] + sha_size_incr,
                                      size_aes, iv, aad, sizeof(aad),
                                      auth_tag, sizeof(auth_tag));
                        index += 2;
                        if (index >= index_limit)
                                index = 0;
                }
#ifndef _WIN32
                if (use_unhalted_cycles)
                        time = (read_cycles(params->core) -
                                rd_cycles_cost) - time;
                else
#endif
                        time = __rdtscp(&aux) - time;
        }

        free(key);
        return time / num_iter;
}


/* Method used by qsort to compare 2 values */
static int compare_uint64_t(const void *a, const void *b)
{
        return (int)(int64_t)(*(const uint64_t *)a - *(const uint64_t *)b);
}

/* Computes mean of set of times after dropping bottom and top quarters */
static uint64_t mean_median(uint64_t *array, uint32_t size)
{
        uint32_t quarter = size / 4;
        uint32_t i;
        uint64_t sum;

        /* these are single threaded runs, so we skip
         * the hardware thread related skew clipping
         * thus skipping "ignore first and last eighth"
         */

        /* ignore lowest and highest quarter */
        qsort(array, size, sizeof(uint64_t), compare_uint64_t);

        /* dropping the bottom and top quarters
         * after sorting to remove noise/variations
         */
        array += quarter;
        size -= quarter * 2;


        if ((size == 0) || (size & 0x80000000)) {
                fprintf(stderr, "not enough data points\n");
                free_mem();
                exit(EXIT_FAILURE);
        }
        sum = 0;
        for (i = 0; i < size; i++)
                sum += array[i];

        sum = (sum + size / 2) / size;
        return sum;
}

/* Runs test for each buffer size and stores averaged execution time */
static void
process_variant(MB_MGR *mgr, const uint32_t arch, struct params_s *params,
                struct variant_s *variant_ptr, const uint32_t run)
{
        const uint32_t sizes = params->num_sizes;
        uint64_t *times = &variant_ptr->avg_times[run];
        uint32_t sz;

        for (sz = 0; sz < sizes; sz++) {
                const uint32_t size_aes = (sz + 1) * JOB_SIZE_STEP;
                const uint32_t num_iter = ITER_SCALE / size_aes;

                params->size_aes = size_aes;
                if (params->test_type == TTYPE_AES_GCM && (!use_gcm_job_api))
                        *times = do_test_gcm(arch, params, 2 * num_iter);
                else
                        *times = do_test(arch, mgr, params, num_iter);
                times += NUM_RUNS;
        }

        variant_ptr->params = *params;
        variant_ptr->arch = arch;
}

/* Sets cipher mode, hash algorithm */
static void
do_variants(MB_MGR *mgr, const uint32_t arch, struct params_s *params,
            const uint32_t run, struct variant_s **variant_ptr,
            uint32_t *variant)
{
        uint32_t hash_alg;
        uint32_t h_start = TEST_SHA1;
        uint32_t h_end = TEST_NULL_HASH;
        uint32_t c_mode;
        uint32_t c_start = TEST_CBC;
        uint32_t c_end = TEST_NULL_CIPHER;

        switch (params->test_type) {
        case TTYPE_AES_DOCSIS:
                h_start = TEST_NULL_HASH;
                c_start = TEST_AESDOCSIS;
                c_end = TEST_DESDOCSIS4;
                break;
        case TTYPE_AES_GCM:
                h_start = TEST_HASH_GCM;
                h_end = TEST_HASH_GCM;
                c_start = TEST_GCM;
                c_end = TEST_GCM;
                break;
        case TTYPE_AES_CCM:
                h_start = TEST_HASH_CCM;
                h_end = TEST_HASH_CCM;
                c_start = TEST_CCM;
                c_end = TEST_CCM;
                break;
        case TTYPE_AES_DES:
                h_start = TEST_NULL_HASH;
                h_end = TEST_NULL_HASH;
                c_start = TEST_DES;
                c_end = TEST_DES;
                break;
        case TTYPE_AES_3DES:
                h_start = TEST_NULL_HASH;
                h_end = TEST_NULL_HASH;
                c_start = TEST_3DES;
                c_end = TEST_3DES;
                break;
        default:
                break;
        }

        for (c_mode = c_start; c_mode <= c_end; c_mode++) {
                params->cipher_mode = (enum test_cipher_mode_e) c_mode;
                for (hash_alg = h_start; hash_alg <= h_end; hash_alg++) {
                        params->hash_alg = (enum test_hash_alg_e) hash_alg;
                        process_variant(mgr, arch, params, *variant_ptr, run);
                        (*variant)++;
                        (*variant_ptr)++;
                }
        }
}

/* Sets cipher direction and key size  */
static void
run_dir_test(MB_MGR *mgr, const uint32_t arch, struct params_s *params,
             const uint32_t run, struct variant_s **variant_ptr,
             uint32_t *variant)
{
        uint32_t dir;
        uint32_t k; /* Key size */
        uint32_t limit = AES_256_BYTES; /* Key size value limit */

        if (params->test_type == TTYPE_AES_DOCSIS ||
            params->test_type == TTYPE_AES_DES ||
            params->test_type == TTYPE_AES_3DES ||
            params->test_type == TTYPE_AES_CCM)
                limit = AES_128_BYTES;

        init_mb_mgr(mgr, arch);

        for (dir = ENCRYPT; dir <= DECRYPT; dir++) {
                params->cipher_dir = (JOB_CIPHER_DIRECTION) dir;
                for (k = AES_128_BYTES; k <= limit; k += 8) {
                        params->aes_key_size = k;
                        do_variants(mgr, arch, params, run, variant_ptr,
                                    variant);
                }
        }
}

/* Generates output containing averaged times for each test variant */
static void print_times(struct variant_s *variant_list, struct params_s *params,
                        const uint32_t total_variants)
{
        const uint32_t sizes = params->num_sizes;
        uint32_t col;
        uint32_t sz;

        /* Temporary variables */
        struct params_s par;
        uint8_t	c_mode;
        uint8_t c_dir;
        uint8_t h_alg;
        const char *func_names[4] = {
                "SSE", "AVX", "AVX2", "AVX512"
        };
        const char *c_mode_names[12] = {
                "CBC", "CNTR", "CNTR+8", "NULL_CIPHER", "DOCAES", "DOCAES+8",
                "DOCDES", "DOCDES+4", "GCM", "CCM", "DES", "3DES"
        };
        const char *c_dir_names[2] = {
                "ENCRYPT", "DECRYPT"
        };
        const char *h_alg_names[12] = {
                "SHA1", "SHA_224", "SHA_256", "SHA_384", "SHA_512", "XCBC",
                "MD5", "CMAC", "NULL_HASH", "GCM", "CUSTOM", "CCM"
        };
        printf("ARCH");
        for (col = 0; col < total_variants; col++)
                printf("\t%s", func_names[variant_list[col].arch]);
        printf("\n");
        printf("CIPHER");
        for (col = 0; col < total_variants; col++) {
                par = variant_list[col].params;
                c_mode = par.cipher_mode - CBC;
                printf("\t%s", c_mode_names[c_mode]);
        }
        printf("\n");
        printf("DIR");
        for (col = 0; col < total_variants; col++) {
                par = variant_list[col].params;
                c_dir = par.cipher_dir - ENCRYPT;
                printf("\t%s", c_dir_names[c_dir]);
        }
        printf("\n");
        printf("HASH_ALG");
        for (col = 0; col < total_variants; col++) {
                par = variant_list[col].params;
                h_alg = par.hash_alg - SHA1;
                printf("\t%s", h_alg_names[h_alg]);
        }
        printf("\n");
        printf("KEY_SIZE");
        for (col = 0; col < total_variants; col++) {
                par = variant_list[col].params;
                printf("\tAES-%u", par.aes_key_size * 8);
        }
        printf("\n");
        for (sz = 0; sz < sizes; sz++) {
                printf("%d", (sz + 1) * JOB_SIZE_STEP);
                for (col = 0; col < total_variants; col++) {
                        uint64_t *time_ptr =
                                &variant_list[col].avg_times[sz * NUM_RUNS];
                        const unsigned long long val =
                                mean_median(time_ptr, NUM_RUNS);

                        printf("\t%llu", val);
                }
                printf("\n");
        }
}

/* Prepares data structure for test variants storage, sets test configuration */
#ifdef _WIN32
static void
#else
static void *
#endif
run_tests(void *arg)
{
        uint32_t i;
        struct thread_info *info = (struct thread_info *)arg;
        MB_MGR *p_mgr = NULL;
        struct params_s params;
        uint32_t num_variants[NUM_TYPES] = {0, 0, 0};
        uint32_t type, at_size, run, arch;
        uint32_t variants_per_arch, max_arch;
        uint32_t variant;
        uint32_t total_variants = 0;
        struct variant_s *variant_ptr = NULL;
        struct variant_s *variant_list = NULL;

        p_mgr = alloc_mb_mgr(flags);
        if (p_mgr == NULL) {
                fprintf(stderr, "Failed to allocate MB_MGR structure!\n");
                free_mem();
                exit(EXIT_FAILURE);
        }

        params.num_sizes = JOB_SIZE / JOB_SIZE_STEP;
        params.core = (uint32_t)info->core;

        /* if cores selected then set affinity */
        if (core_mask)
                if (set_affinity(info->core) != 0) {
                        fprintf(stderr, "Failed to set cpu "
                                "affinity on core %d\n", info->core);
                        goto exit_failure;
                }

        /* If unhalted cycles selected and this is
           the primary thread then start counter */
        if (use_unhalted_cycles && info->print_info) {
                int ret;

                ret = start_cycles_ctr(params.core);
                if (ret != 0) {
                        fprintf(stderr, "Failed to start cycles "
                                "counter on core %u\n", params.core);
                        goto exit_failure;
                }
                /* Get average cost of reading counter */
                ret = set_avg_unhalted_cycle_cost(params.core, &rd_cycles_cost);
                if (ret != 0 || rd_cycles_cost == 0) {
                        fprintf(stderr, "Error calculating unhalted "
                                "cycles read overhead!\n");
                        goto exit_failure;
                } else
                        fprintf(stderr, "Started counting unhalted cycles on "
                                "core %d\nUnhalted cycles read cost = %lu "
                                "cycles\n", params.core,
                                (unsigned long)rd_cycles_cost);
        }

        for (type = TTYPE_AES_HMAC; type < NUM_TYPES; type++) {
                if (test_types[type] == 0)
                        continue;

                switch (type) {
                default:
                case TTYPE_AES_HMAC:
                        variants_per_arch = VARIANTS_PER_ARCH_AES;
                        max_arch = NUM_ARCHS;
                        break;
                case TTYPE_AES_DOCSIS:
                        variants_per_arch = VARIANTS_PER_ARCH_DOCSIS;
                        max_arch = NUM_ARCHS;
                        break;
                case TTYPE_AES_GCM:
                        variants_per_arch = VARIANTS_PER_ARCH_GCM;
                        max_arch = NUM_ARCHS - 1; /* No AVX512 for GCM */
                        break;
                case TTYPE_AES_CCM:
                        variants_per_arch = VARIANTS_PER_ARCH_CCM;
                        max_arch = NUM_ARCHS;
                        break;
                case TTYPE_AES_DES:
                        variants_per_arch = VARIANTS_PER_ARCH_DES;
                        max_arch = NUM_ARCHS;
                        break;
                case TTYPE_AES_3DES:
                        variants_per_arch = VARIANTS_PER_ARCH_3DES;
                        max_arch = NUM_ARCHS;
                        break;
                }

                /* Calculating number of all variants */
                for (arch = 0; arch < max_arch; arch++) {
                        if (archs[arch] == 0)
                                continue;
                        num_variants[type] += variants_per_arch;
                }
                total_variants += num_variants[type];
        }

        variant_list = (struct variant_s *)
                malloc(total_variants * sizeof(struct variant_s));
        if (variant_list == NULL) {
                fprintf(stderr, "Cannot allocate memory\n");
                goto exit_failure;
        }

        at_size = NUM_RUNS * params.num_sizes * sizeof(uint64_t);
        for (variant = 0, variant_ptr = variant_list;
             variant < total_variants;
             variant++, variant_ptr++) {
                variant_ptr->avg_times = (uint64_t *) malloc(at_size);
                if (!variant_ptr->avg_times) {
                        fprintf(stderr, "Cannot allocate memory\n");
                        goto exit_failure;
                }
        }
        for (run = 0; run < NUM_RUNS; run++) {
                fprintf(stderr, "Starting run %d of %d\n", run+1, NUM_RUNS);

                variant = 0;
                variant_ptr = variant_list;

                for (type = TTYPE_AES_HMAC; type < NUM_TYPES; type++) {
                        if (test_types[type] == 0)
                                continue;

                        if (type == TTYPE_AES_GCM)
                                /* No AVX512 for GCM */
                                max_arch = NUM_ARCHS - 1;
                        else
                                max_arch = NUM_ARCHS;

                        params.num_variants = num_variants[type];
                        params.test_type = type;
                        /* Performing tests for each selected architecture */
                        for (arch = 0; arch < max_arch; arch++) {
                                if (archs[arch] == 0)
                                        continue;
                                run_dir_test(p_mgr, arch, &params, run,
                                             &variant_ptr, &variant);
                        }
                } /* end for type */
        } /* end for run */
        if (info->print_info == 1)
                print_times(variant_list, &params, total_variants);

        if (variant_list != NULL) {
                /* Freeing variants list */
                for (i = 0; i < total_variants; i++)
                        free(variant_list[i].avg_times);
                free(variant_list);
        }
        free_mb_mgr(p_mgr);
#ifndef _WIN32
        return NULL;

#else
        return;
#endif
exit_failure:
        if (variant_list != NULL)
                free(variant_list);
        free_mem();
        free_mb_mgr(p_mgr);
        exit(EXIT_FAILURE);
}

static void usage(void)
{
        fprintf(stderr, "Usage: ipsec_perf [args], "
                "where args are zero or more\n"
                "-h: print this message\n"
                "-c: Use cold cache, it uses warm as default\n"
                "-w: Use warm cache\n"
                "--no-avx512: Don't do AVX512\n"
                "--no-avx2: Don't do AVX2\n"
                "--no-avx: Don't do AVX\n"
                "--no-sse: Don't do SSE\n"
                "-o val: Use <val> for the SHA size increment, default is 24\n"
                "--shani-on: use SHA extensions, default: auto-detect\n"
                "--shani-off: don't use SHA extensions\n"
                "--no-gcm: do not run GCM perf tests\n"
                "--no-aes: do not run standard AES + HMAC perf tests\n"
                "--no-docsis: do not run DOCSIS cipher perf tests\n"
                "--no-ccm: do not run CCM cipher perf tests\n"
                "--no-des: do not run DES cipher perf tests\n"
                "--no-3des: do not run 3DES cipher perf tests\n"
                "--gcm-job-api: use JOB API for GCM perf tests"
                " (raw GCM API is default)\n"
                "--threads num: <num> for the number of threads to run"
                " Max: %d\n"
                "--cores mask: <mask> CPU's to run threads\n"
                "--unhalted-cycles: measure using unhalted cycles (requires root).\n"
                "                   Note: RDTSC is used by default.\n",
                MAX_NUM_THREADS + 1);
}

int main(int argc, char *argv[])
{
        int i, num_t = 0, core = 0;
        struct thread_info *thread_info_p = t_info;

#ifdef _WIN32
        HANDLE threads[MAX_NUM_THREADS];
#else
        pthread_t tids[MAX_NUM_THREADS];
#endif

        for (i = 1; i < argc; i++)
                if (strcmp(argv[i], "-h") == 0) {
                        usage();
                        return EXIT_SUCCESS;
                } else if (strcmp(argv[i], "-c") == 0) {
                        cache_type = COLD;
                        fprintf(stderr, "Cold cache, ");
                } else if (strcmp(argv[i], "-w") == 0) {
                        cache_type = WARM;
                        fprintf(stderr, "Warm cache, ");
                } else if (strcmp(argv[i], "--no-avx512") == 0) {
                        archs[ARCH_AVX512] = 0;
                } else if (strcmp(argv[i], "--no-avx2") == 0) {
                        archs[ARCH_AVX2] = 0;
                } else if (strcmp(argv[i], "--no-avx") == 0) {
                        archs[ARCH_AVX] = 0;
                } else if (strcmp(argv[i], "--no-sse") == 0) {
                        archs[ARCH_SSE] = 0;
                } else if (strcmp(argv[i], "--shani-on") == 0) {
                        flags &= (~IMB_FLAG_SHANI_OFF);
                } else if (strcmp(argv[i], "--shani-off") == 0) {
                        flags |= IMB_FLAG_SHANI_OFF;
                } else if (strcmp(argv[i], "--no-gcm") == 0) {
                        test_types[TTYPE_AES_GCM] = 0;
                } else if (strcmp(argv[i], "--no-aes") == 0) {
                        test_types[TTYPE_AES_HMAC] = 0;
                } else if (strcmp(argv[i], "--no-docsis") == 0) {
                        test_types[TTYPE_AES_DOCSIS] = 0;
                } else if (strcmp(argv[i], "--no-ccm") == 0) {
                        test_types[TTYPE_AES_CCM] = 0;
                } else if (strcmp(argv[i], "--no-des") == 0) {
                        test_types[TTYPE_AES_DES] = 0;
                } else if (strcmp(argv[i], "--no-3des") == 0) {
                        test_types[TTYPE_AES_3DES] = 0;
                } else if (strcmp(argv[i], "--gcm-job-api") == 0) {
                        use_gcm_job_api = 1;
                } else if ((strcmp(argv[i], "-o") == 0) && (i < argc - 1)) {
                        i++;
                        sha_size_incr = atoi(argv[i]);
                } else if (strcmp(argv[i], "--threads") == 0) {
                        num_t = atoi(argv[++i]);
                        if (num_t > (MAX_NUM_THREADS + 1)) {
                                fprintf(stderr, "Invalid number of threads!\n");
                                return EXIT_FAILURE;
                        }
                } else if (strcmp(argv[i], "--cores") == 0) {
                        errno = 0;
                        core_mask = strtoull(argv[++i], NULL, 0);
                        if (errno != 0) {
                                fprintf(stderr, "Error converting cpu mask!\n");
                                return EXIT_FAILURE;
                        }
                } else if (strcmp(argv[i], "--unhalted-cycles") == 0) {
#ifdef _WIN32
                        fprintf(stderr, "Counting unhalted cycles not "
                                "currently supported on Windows!\n");
                        return EXIT_FAILURE;
#endif
                        use_unhalted_cycles = 1;
                } else {
                        usage();
                        return EXIT_FAILURE;
                }

        /* Check num cores >= number of threads */
        if ((core_mask != 0 && num_t != 0) && (num_t > bitcount(core_mask))) {
                fprintf(stderr, "Insufficient number of cores in "
                        "core mask (0x%lx) to run %d threads!\n",
                        (unsigned long) core_mask, num_t);
                return EXIT_FAILURE;
        }

        /* if cycles selected then init MSR module */
        if (use_unhalted_cycles) {
                if (core_mask == 0) {
                        fprintf(stderr, "Must specify core mask "
                                "when reading unhalted cycles!\n");
                        return EXIT_FAILURE;
                }

                if (init_msr_mod() != 0) {
                        fprintf(stderr, "Error initializing MSR module!\n");
                        return EXIT_FAILURE;
                }
        }

        fprintf(stderr, "SHA size incr = %d\n", sha_size_incr);
        if (archs[ARCH_SSE]) {
                MB_MGR *p_mgr = alloc_mb_mgr(flags);

                if (p_mgr == NULL) {
                        fprintf(stderr, "Error allocating MB_MGR structure!\n");
                        return EXIT_FAILURE;
                }
                init_mb_mgr_sse(p_mgr);
                fprintf(stderr, "%s SHA extensions (shani) for SSE arch\n",
                        (p_mgr->features & IMB_FEATURE_SHANI) ?
                        "Using" : "Not using");
                free_mb_mgr(p_mgr);
        }

        memset(t_info, 0, sizeof(t_info));
        init_buf(cache_type);
        if (num_t > 1)
                for (i = 0; i < num_t - 1; i++, thread_info_p++) {
                        /* Set core if selected */
                        if (core_mask) {
                                core = next_core(core_mask, core);
                                thread_info_p->core = core++;
                        }
#ifdef _WIN32
                        threads[i] = (HANDLE)
                                _beginthread(&run_tests, 0,
                                             (void *)thread_info_p);
#else
                        pthread_attr_t attr;

                        pthread_attr_init(&attr);
                        pthread_create(&tids[i], &attr, run_tests,
                                       (void *)thread_info_p);
#endif
                }

        thread_info_p->print_info = 1;
        if (core_mask) {
                core = next_core(core_mask, core);
                thread_info_p->core = core;
        }

        run_tests((void *)thread_info_p);
        if (num_t > 1) {
#ifdef _WIN32
                WaitForMultipleObjects(num_t, threads, FALSE, INFINITE);
#endif
                for (i = 0; i < num_t - 1; i++) {
                        fprintf(stderr, "Waiting on thread %d to finish...\n",
                                i+2);
#ifdef _WIN32
                        CloseHandle(threads[i]);
#else
                        pthread_join(tids[i], NULL);
#endif
                }
        }

        if (use_unhalted_cycles)
                machine_fini();

        free_mem();

        return EXIT_SUCCESS;
}