1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
;;
;; Copyright (c) 2012-2018, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;; * Redistributions of source code must retain the above copyright notice,
;; this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; * Neither the name of Intel Corporation nor the names of its contributors
;; may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;
;; code to compute quad SHA256 using AVX
;; outer calling routine takes care of save and restore of XMM registers
;; Logic designed/laid out by JDG
;; Stack must be aligned to 16 bytes before call
;; Windows clobbers: rax rbx rdx r8 r9 r10 r11 r12
;; Windows preserves: rcx rsi rdi rbp r12 r14 r15
;;
;; Linux clobbers: rax rbx rsi r8 r9 r10 r11 r12
;; Linux preserves: rcx rdx rdi rbp r13 r14 r15
;;
;; clobbers xmm0-15
%include "os.asm"
%include "mb_mgr_datastruct.asm"
extern K256_4
%ifdef LINUX
%define arg1 rdi
%define arg2 rsi
%else
; Windows definitions
%define arg1 rcx
%define arg2 rdx
%endif
; Common definitions
%define STATE arg1
%define INP_SIZE arg2
%define IDX rax
%define ROUND rbx
%define TBL r12
%define inp0 r8
%define inp1 r9
%define inp2 r10
%define inp3 r11
%define a xmm0
%define b xmm1
%define c xmm2
%define d xmm3
%define e xmm4
%define f xmm5
%define g xmm6
%define h xmm7
%define a0 xmm8
%define a1 xmm9
%define a2 xmm10
%define TT0 xmm14
%define TT1 xmm13
%define TT2 xmm12
%define TT3 xmm11
%define TT4 xmm10
%define TT5 xmm9
%define T1 xmm14
%define TMP xmm15
%define SZ4 4*SHA256_DIGEST_WORD_SIZE ; Size of one vector register
%define ROUNDS 64*SZ4
; Define stack usage
struc STACK
_DATA: resb SZ4 * 16
_DIGEST: resb SZ4 * NUM_SHA256_DIGEST_WORDS
resb 8 ; for alignment, must be odd multiple of 8
endstruc
%define VMOVPS vmovups
; transpose r0, r1, r2, r3, t0, t1
; "transpose" data in {r0..r3} using temps {t0..t3}
; Input looks like: {r0 r1 r2 r3}
; r0 = {a3 a2 a1 a0}
; r1 = {b3 b2 b1 b0}
; r2 = {c3 c2 c1 c0}
; r3 = {d3 d2 d1 d0}
;
; output looks like: {t0 r1 r0 r3}
; t0 = {d0 c0 b0 a0}
; r1 = {d1 c1 b1 a1}
; r0 = {d2 c2 b2 a2}
; r3 = {d3 c3 b3 a3}
;
%macro TRANSPOSE 6
%define %%r0 %1
%define %%r1 %2
%define %%r2 %3
%define %%r3 %4
%define %%t0 %5
%define %%t1 %6
vshufps %%t0, %%r0, %%r1, 0x44 ; t0 = {b1 b0 a1 a0}
vshufps %%r0, %%r0, %%r1, 0xEE ; r0 = {b3 b2 a3 a2}
vshufps %%t1, %%r2, %%r3, 0x44 ; t1 = {d1 d0 c1 c0}
vshufps %%r2, %%r2, %%r3, 0xEE ; r2 = {d3 d2 c3 c2}
vshufps %%r1, %%t0, %%t1, 0xDD ; r1 = {d1 c1 b1 a1}
vshufps %%r3, %%r0, %%r2, 0xDD ; r3 = {d3 c3 b3 a3}
vshufps %%r0, %%r0, %%r2, 0x88 ; r0 = {d2 c2 b2 a2}
vshufps %%t0, %%t0, %%t1, 0x88 ; t0 = {d0 c0 b0 a0}
%endmacro
%macro ROTATE_ARGS 0
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
; PRORD reg, imm, tmp
%macro PRORD 3
%define %%reg %1
%define %%imm %2
%define %%tmp %3
vpslld %%tmp, %%reg, (32-(%%imm))
vpsrld %%reg, %%reg, %%imm
vpor %%reg, %%reg, %%tmp
%endmacro
; non-destructive
; PRORD_nd reg, imm, tmp, src
%macro PRORD_nd 4
%define %%reg %1
%define %%imm %2
%define %%tmp %3
%define %%src %4
;vmovdqa %%tmp, %%reg
vpslld %%tmp, %%src, (32-(%%imm))
vpsrld %%reg, %%src, %%imm
vpor %%reg, %%reg, %%tmp
%endmacro
; PRORD dst/src, amt
%macro PRORD 2
PRORD %1, %2, TMP
%endmacro
; PRORD_nd dst, src, amt
%macro PRORD_nd 3
PRORD_nd %1, %3, TMP, %2
%endmacro
;; arguments passed implicitly in preprocessor symbols i, a...h
%macro ROUND_00_15 2
%define %%T1 %1
%define %%i %2
PRORD_nd a0, e, (11-6) ; sig1: a0 = (e >> 5)
vpxor a2, f, g ; ch: a2 = f^g
vpand a2, a2, e ; ch: a2 = (f^g)&e
vpxor a2, a2, g ; a2 = ch
PRORD_nd a1, e, 25 ; sig1: a1 = (e >> 25)
vmovdqa [SZ4*(%%i&0xf) + rsp + _DATA], %%T1
vpaddd %%T1, %%T1, [TBL + ROUND] ; T1 = W + K
vpxor a0, a0, e ; sig1: a0 = e ^ (e >> 5)
PRORD a0, 6 ; sig1: a0 = (e >> 6) ^ (e >> 11)
vpaddd h, h, a2 ; h = h + ch
PRORD_nd a2, a, (13-2) ; sig0: a2 = (a >> 11)
vpaddd h, h, %%T1 ; h = h + ch + W + K
vpxor a0, a0, a1 ; a0 = sigma1
PRORD_nd a1, a, 22 ; sig0: a1 = (a >> 22)
vpxor %%T1, a, c ; maj: T1 = a^c
add ROUND, SZ4 ; ROUND++
vpand %%T1, %%T1, b ; maj: T1 = (a^c)&b
vpaddd h, h, a0
vpaddd d, d, h
vpxor a2, a2, a ; sig0: a2 = a ^ (a >> 11)
PRORD a2, 2 ; sig0: a2 = (a >> 2) ^ (a >> 13)
vpxor a2, a2, a1 ; a2 = sig0
vpand a1, a, c ; maj: a1 = a&c
vpor a1, a1, %%T1 ; a1 = maj
vpaddd h, h, a1 ; h = h + ch + W + K + maj
vpaddd h, h, a2 ; h = h + ch + W + K + maj + sigma0
ROTATE_ARGS
%endm
;; arguments passed implicitly in preprocessor symbols i, a...h
%macro ROUND_16_XX 2
%define %%T1 %1
%define %%i %2
vmovdqa %%T1, [SZ4*((%%i-15)&0xf) + rsp + _DATA]
vmovdqa a1, [SZ4*((%%i-2)&0xf) + rsp + _DATA]
vmovdqa a0, %%T1
PRORD %%T1, 18-7
vmovdqa a2, a1
PRORD a1, 19-17
vpxor %%T1, %%T1, a0
PRORD %%T1, 7
vpxor a1, a1, a2
PRORD a1, 17
vpsrld a0, a0, 3
vpxor %%T1, %%T1, a0
vpsrld a2, a2, 10
vpxor a1, a1, a2
vpaddd %%T1, %%T1, [SZ4*((%%i-16)&0xf) + rsp + _DATA]
vpaddd a1, a1, [SZ4*((%%i-7)&0xf) + rsp + _DATA]
vpaddd %%T1, %%T1, a1
ROUND_00_15 %%T1, %%i
%endm
section .data
default rel
align 16
PSHUFFLE_BYTE_FLIP_MASK: ;ddq 0x0c0d0e0f08090a0b0405060700010203
dq 0x0405060700010203, 0x0c0d0e0f08090a0b
section .text
;; SHA256_ARGS:
;; UINT128 digest[8]; // transposed digests
;; UINT8 *data_ptr[4];
;;
;; void sha_256_mult_avx(SHA256_ARGS *args, UINT64 num_blocks);
;; arg 1 : STATE : pointer args
;; arg 2 : INP_SIZE : size of data in blocks (assumed >= 1)
;;
MKGLOBAL(sha_256_mult_avx,function,internal)
align 16
sha_256_mult_avx:
; general registers preserved in outer calling routine
; outer calling routine saves all the XMM registers
sub rsp, STACK_size
;; Load the pre-transposed incoming digest.
vmovdqa a,[STATE+0*SHA256_DIGEST_ROW_SIZE]
vmovdqa b,[STATE+1*SHA256_DIGEST_ROW_SIZE]
vmovdqa c,[STATE+2*SHA256_DIGEST_ROW_SIZE]
vmovdqa d,[STATE+3*SHA256_DIGEST_ROW_SIZE]
vmovdqa e,[STATE+4*SHA256_DIGEST_ROW_SIZE]
vmovdqa f,[STATE+5*SHA256_DIGEST_ROW_SIZE]
vmovdqa g,[STATE+6*SHA256_DIGEST_ROW_SIZE]
vmovdqa h,[STATE+7*SHA256_DIGEST_ROW_SIZE]
lea TBL,[rel K256_4]
;; load the address of each of the 4 message lanes
;; getting ready to transpose input onto stack
mov inp0,[STATE + _data_ptr_sha256 + 0*PTR_SZ]
mov inp1,[STATE + _data_ptr_sha256 + 1*PTR_SZ]
mov inp2,[STATE + _data_ptr_sha256 + 2*PTR_SZ]
mov inp3,[STATE + _data_ptr_sha256 + 3*PTR_SZ]
xor IDX, IDX
lloop:
xor ROUND, ROUND
;; save old digest
vmovdqa [rsp + _DIGEST + 0*SZ4], a
vmovdqa [rsp + _DIGEST + 1*SZ4], b
vmovdqa [rsp + _DIGEST + 2*SZ4], c
vmovdqa [rsp + _DIGEST + 3*SZ4], d
vmovdqa [rsp + _DIGEST + 4*SZ4], e
vmovdqa [rsp + _DIGEST + 5*SZ4], f
vmovdqa [rsp + _DIGEST + 6*SZ4], g
vmovdqa [rsp + _DIGEST + 7*SZ4], h
%assign i 0
%rep 4
vmovdqa TMP, [rel PSHUFFLE_BYTE_FLIP_MASK]
VMOVPS TT2,[inp0+IDX+i*16]
VMOVPS TT1,[inp1+IDX+i*16]
VMOVPS TT4,[inp2+IDX+i*16]
VMOVPS TT3,[inp3+IDX+i*16]
TRANSPOSE TT2, TT1, TT4, TT3, TT0, TT5
vpshufb TT0, TT0, TMP
vpshufb TT1, TT1, TMP
vpshufb TT2, TT2, TMP
vpshufb TT3, TT3, TMP
ROUND_00_15 TT0,(i*4+0)
ROUND_00_15 TT1,(i*4+1)
ROUND_00_15 TT2,(i*4+2)
ROUND_00_15 TT3,(i*4+3)
%assign i (i+1)
%endrep
add IDX, 4*4*4
%assign i (i*4)
jmp Lrounds_16_xx
align 16
Lrounds_16_xx:
%rep 16
ROUND_16_XX T1, i
%assign i (i+1)
%endrep
cmp ROUND,ROUNDS
jb Lrounds_16_xx
;; add old digest
vpaddd a, a, [rsp + _DIGEST + 0*SZ4]
vpaddd b, b, [rsp + _DIGEST + 1*SZ4]
vpaddd c, c, [rsp + _DIGEST + 2*SZ4]
vpaddd d, d, [rsp + _DIGEST + 3*SZ4]
vpaddd e, e, [rsp + _DIGEST + 4*SZ4]
vpaddd f, f, [rsp + _DIGEST + 5*SZ4]
vpaddd g, g, [rsp + _DIGEST + 6*SZ4]
vpaddd h, h, [rsp + _DIGEST + 7*SZ4]
sub INP_SIZE, 1 ;; unit is blocks
jne lloop
; write back to memory (state object) the transposed digest
vmovdqa [STATE+0*SHA256_DIGEST_ROW_SIZE],a
vmovdqa [STATE+1*SHA256_DIGEST_ROW_SIZE],b
vmovdqa [STATE+2*SHA256_DIGEST_ROW_SIZE],c
vmovdqa [STATE+3*SHA256_DIGEST_ROW_SIZE],d
vmovdqa [STATE+4*SHA256_DIGEST_ROW_SIZE],e
vmovdqa [STATE+5*SHA256_DIGEST_ROW_SIZE],f
vmovdqa [STATE+6*SHA256_DIGEST_ROW_SIZE],g
vmovdqa [STATE+7*SHA256_DIGEST_ROW_SIZE],h
; update input pointers
add inp0, IDX
mov [STATE + _data_ptr_sha256 + 0*8], inp0
add inp1, IDX
mov [STATE + _data_ptr_sha256 + 1*8], inp1
add inp2, IDX
mov [STATE + _data_ptr_sha256 + 2*8], inp2
add inp3, IDX
mov [STATE + _data_ptr_sha256 + 3*8], inp3
;;;;;;;;;;;;;;;;
;; Postamble
add rsp, STACK_size
; outer calling routine restores XMM and other GP registers
ret
%ifdef LINUX
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
|