summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme.c
blob: dc657966f0c05e1de7412da0c8ce382e2bf39124 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*-
 *   BSD LICENSE
 *
 *   Copyright (c) Intel Corporation.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "spdk/nvmf_spec.h"
#include "nvme_internal.h"

#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"

struct nvme_driver	*g_spdk_nvme_driver;
pid_t			g_spdk_nvme_pid;

int32_t			spdk_nvme_retry_count;

/* gross timeout of 180 seconds in milliseconds */
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;

static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_init_ctrlrs =
	TAILQ_HEAD_INITIALIZER(g_nvme_init_ctrlrs);

/* Per-process attached controller list */
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
	TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);

/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
static bool
nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
{
	return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
}

/* Caller must hold g_spdk_nvme_driver->lock */
void
nvme_ctrlr_connected(struct spdk_nvme_ctrlr *ctrlr)
{
	TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq);
}

int
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
{
	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);

	nvme_ctrlr_proc_put_ref(ctrlr);

	if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
		if (nvme_ctrlr_shared(ctrlr)) {
			TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
		} else {
			TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
		}
		nvme_ctrlr_destruct(ctrlr);
	}

	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
	return 0;
}

void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
	struct nvme_completion_poll_status	*status = arg;

	/*
	 * Copy status into the argument passed by the caller, so that
	 *  the caller can check the status to determine if the
	 *  the request passed or failed.
	 */
	memcpy(&status->cpl, cpl, sizeof(*cpl));
	status->done = true;
}

/**
 * Poll qpair for completions until a command completes.
 *
 * \param qpair queue to poll
 * \param status completion status
 * \param robust_mutex optional robust mutex to lock while polling qpair
 *
 * \return 0 if command completed without error, negative errno on failure
 *
 * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
 * and status as the callback argument.
 */
int
spdk_nvme_wait_for_completion_robust_lock(
	struct spdk_nvme_qpair *qpair,
	struct nvme_completion_poll_status *status,
	pthread_mutex_t *robust_mutex)
{
	memset(&status->cpl, 0, sizeof(status->cpl));
	status->done = false;

	while (status->done == false) {
		if (robust_mutex) {
			nvme_robust_mutex_lock(robust_mutex);
		}

		spdk_nvme_qpair_process_completions(qpair, 0);

		if (robust_mutex) {
			nvme_robust_mutex_unlock(robust_mutex);
		}
	}

	return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
}

int
spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
			      struct nvme_completion_poll_status *status)
{
	return spdk_nvme_wait_for_completion_robust_lock(qpair, status, NULL);
}

static void
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
	struct nvme_request *req = arg;
	enum spdk_nvme_data_transfer xfer;

	if (req->user_buffer && req->payload_size) {
		/* Copy back to the user buffer and free the contig buffer */
		assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
		xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
		if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
		    xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
			assert(req->pid == getpid());
			memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
		}

		spdk_dma_free(req->payload.contig_or_cb_arg);
	}

	/* Call the user's original callback now that the buffer has been copied */
	req->user_cb_fn(req->user_cb_arg, cpl);
}

/**
 * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
 *
 * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
 * where the overhead of a copy is not a problem.
 */
struct nvme_request *
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
				void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
				void *cb_arg, bool host_to_controller)
{
	struct nvme_request *req;
	void *dma_buffer = NULL;
	uint64_t phys_addr;

	if (buffer && payload_size) {
		dma_buffer = spdk_zmalloc(payload_size, 4096, &phys_addr,
					  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
		if (!dma_buffer) {
			return NULL;
		}

		if (host_to_controller) {
			memcpy(dma_buffer, buffer, payload_size);
		}
	}

	req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
					   NULL);
	if (!req) {
		spdk_free(dma_buffer);
		return NULL;
	}

	req->user_cb_fn = cb_fn;
	req->user_cb_arg = cb_arg;
	req->user_buffer = buffer;
	req->cb_arg = req;

	return req;
}

/**
 * Check if a request has exceeded the controller timeout.
 *
 * \param req request to check for timeout.
 * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
 * \param active_proc per-process data for the controller associated with req
 * \param now_tick current time from spdk_get_ticks()
 * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
 * 1 if requests newer than req need not be checked.
 *
 * The request's timeout callback will be called if needed; the caller is only responsible for
 * calling this function on each outstanding request.
 */
int
nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
			   struct spdk_nvme_ctrlr_process *active_proc,
			   uint64_t now_tick)
{
	struct spdk_nvme_qpair *qpair = req->qpair;
	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;

	assert(active_proc->timeout_cb_fn != NULL);

	if (req->timed_out || req->submit_tick == 0) {
		return 0;
	}

	if (req->pid != g_spdk_nvme_pid) {
		return 0;
	}

	if (nvme_qpair_is_admin_queue(qpair) &&
	    req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
		return 0;
	}

	if (req->submit_tick + active_proc->timeout_ticks > now_tick) {
		return 1;
	}

	req->timed_out = true;

	/*
	 * We don't want to expose the admin queue to the user,
	 * so when we're timing out admin commands set the
	 * qpair to NULL.
	 */
	active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
				   nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
				   cid);
	return 0;
}

int
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
{
	int rc = 0;

#ifdef __FreeBSD__
	pthread_mutex_init(mtx, NULL);
#else
	pthread_mutexattr_t attr;

	if (pthread_mutexattr_init(&attr)) {
		return -1;
	}
	if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
	    pthread_mutex_init(mtx, &attr)) {
		rc = -1;
	}
	pthread_mutexattr_destroy(&attr);
#endif

	return rc;
}

int
nvme_driver_init(void)
{
	int ret = 0;
	/* Any socket ID */
	int socket_id = -1;

	/* Each process needs its own pid. */
	g_spdk_nvme_pid = getpid();

	/*
	 * Only one thread from one process will do this driver init work.
	 * The primary process will reserve the shared memory and do the
	 *  initialization.
	 * The secondary process will lookup the existing reserved memory.
	 */
	if (spdk_process_is_primary()) {
		/* The unique named memzone already reserved. */
		if (g_spdk_nvme_driver != NULL) {
			return 0;
		} else {
			g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
					     sizeof(struct nvme_driver), socket_id,
					     SPDK_MEMZONE_NO_IOVA_CONTIG);
		}

		if (g_spdk_nvme_driver == NULL) {
			SPDK_ERRLOG("primary process failed to reserve memory\n");

			return -1;
		}
	} else {
		g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);

		/* The unique named memzone already reserved by the primary process. */
		if (g_spdk_nvme_driver != NULL) {
			int ms_waited = 0;

			/* Wait the nvme driver to get initialized. */
			while ((g_spdk_nvme_driver->initialized == false) &&
			       (ms_waited < g_nvme_driver_timeout_ms)) {
				ms_waited++;
				nvme_delay(1000); /* delay 1ms */
			}
			if (g_spdk_nvme_driver->initialized == false) {
				SPDK_ERRLOG("timeout waiting for primary process to init\n");

				return -1;
			}
		} else {
			SPDK_ERRLOG("primary process is not started yet\n");

			return -1;
		}

		return 0;
	}

	/*
	 * At this moment, only one thread from the primary process will do
	 * the g_spdk_nvme_driver initialization
	 */
	assert(spdk_process_is_primary());

	ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
	if (ret != 0) {
		SPDK_ERRLOG("failed to initialize mutex\n");
		spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
		return ret;
	}

	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);

	g_spdk_nvme_driver->initialized = false;

	TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);

	spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);

	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);

	return ret;
}

int
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle,
		 spdk_nvme_probe_cb probe_cb, void *cb_ctx)
{
	struct spdk_nvme_ctrlr *ctrlr;
	struct spdk_nvme_ctrlr_opts opts;

	assert(trid != NULL);

	spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));

	if (!probe_cb || probe_cb(cb_ctx, trid, &opts)) {
		ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
		if (ctrlr == NULL) {
			SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
			return -1;
		}

		TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq);
		return 0;
	}

	return 1;
}

static int
nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb)
{
	int rc = 0;
	int start_rc;
	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;

	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);

	/* Initialize all new controllers in the g_nvme_init_ctrlrs list in parallel. */
	while (!TAILQ_EMPTY(&g_nvme_init_ctrlrs)) {
		TAILQ_FOREACH_SAFE(ctrlr, &g_nvme_init_ctrlrs, tailq, ctrlr_tmp) {
			/* Drop the driver lock while calling nvme_ctrlr_process_init()
			 *  since it needs to acquire the driver lock internally when initializing
			 *  controller.
			 *
			 * TODO: Rethink the locking - maybe reset should take the lock so that start() and
			 *  the functions it calls (in particular nvme_ctrlr_set_num_qpairs())
			 *  can assume it is held.
			 */
			nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
			start_rc = nvme_ctrlr_process_init(ctrlr);
			nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);

			if (start_rc) {
				/* Controller failed to initialize. */
				TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq);
				SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
				nvme_ctrlr_destruct(ctrlr);
				rc = -1;
				break;
			}

			if (ctrlr->state == NVME_CTRLR_STATE_READY) {
				/*
				 * Controller has been initialized.
				 *  Move it to the attached_ctrlrs list.
				 */
				TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq);
				if (nvme_ctrlr_shared(ctrlr)) {
					TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
				} else {
					TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
				}

				/*
				 * Increase the ref count before calling attach_cb() as the user may
				 * call nvme_detach() immediately.
				 */
				nvme_ctrlr_proc_get_ref(ctrlr);

				/*
				 * Unlock while calling attach_cb() so the user can call other functions
				 *  that may take the driver lock, like nvme_detach().
				 */
				if (attach_cb) {
					nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
					attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
					nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
				}

				break;
			}
		}
	}

	g_spdk_nvme_driver->initialized = true;

	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
	return rc;
}

/* This function must not be called while holding g_spdk_nvme_driver->lock */
static struct spdk_nvme_ctrlr *
spdk_nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
{
	struct spdk_nvme_ctrlr *ctrlr;

	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
	ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(trid);
	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);

	return ctrlr;
}

/* This function must be called while holding g_spdk_nvme_driver->lock */
struct spdk_nvme_ctrlr *
spdk_nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
{
	struct spdk_nvme_ctrlr *ctrlr;

	/* Search per-process list */
	TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
			return ctrlr;
		}
	}

	/* Search multi-process shared list */
	TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
			return ctrlr;
		}
	}

	return NULL;
}

/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
spdk_nvme_probe_internal(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
			 spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
			 spdk_nvme_remove_cb remove_cb, struct spdk_nvme_ctrlr **connected_ctrlr)
{
	int rc;
	struct spdk_nvme_ctrlr *ctrlr;
	bool direct_connect = (connected_ctrlr != NULL);

	if (!spdk_nvme_transport_available(trid->trtype)) {
		SPDK_ERRLOG("NVMe trtype %u not available\n", trid->trtype);
		return -1;
	}

	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);

	nvme_transport_ctrlr_scan(trid, cb_ctx, probe_cb, remove_cb, direct_connect);

	/*
	 * Probe controllers on the shared_attached_ctrlrs list
	 */
	if (!spdk_process_is_primary() && (trid->trtype == SPDK_NVME_TRANSPORT_PCIE)) {
		TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
			/* Do not attach other ctrlrs if user specify a valid trid */
			if ((strlen(trid->traddr) != 0) &&
			    (spdk_nvme_transport_id_compare(trid, &ctrlr->trid))) {
				continue;
			}

			nvme_ctrlr_proc_get_ref(ctrlr);

			/*
			 * Unlock while calling attach_cb() so the user can call other functions
			 *  that may take the driver lock, like nvme_detach().
			 */
			if (attach_cb) {
				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
				attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
			}
		}

		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);

		rc = 0;

		goto exit;
	}

	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
	/*
	 * Keep going even if one or more nvme_attach() calls failed,
	 *  but maintain the value of rc to signal errors when we return.
	 */

	rc = nvme_init_controllers(cb_ctx, attach_cb);

exit:
	if (connected_ctrlr) {
		*connected_ctrlr = spdk_nvme_get_ctrlr_by_trid(trid);
	}

	return rc;
}

int
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
		spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
		spdk_nvme_remove_cb remove_cb)
{
	int rc;
	struct spdk_nvme_transport_id trid_pcie;

	rc = nvme_driver_init();
	if (rc != 0) {
		return rc;
	}

	if (trid == NULL) {
		memset(&trid_pcie, 0, sizeof(trid_pcie));
		trid_pcie.trtype = SPDK_NVME_TRANSPORT_PCIE;
		trid = &trid_pcie;
	}

	return spdk_nvme_probe_internal(trid, cb_ctx, probe_cb, attach_cb, remove_cb, NULL);
}

static bool
spdk_nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
			   struct spdk_nvme_ctrlr_opts *opts)
{
	struct spdk_nvme_ctrlr_connect_opts *requested_opts = cb_ctx;

	assert(requested_opts->opts);

	assert(requested_opts->opts_size != 0);

	memcpy(opts, requested_opts->opts, spdk_min(sizeof(*opts), requested_opts->opts_size));

	return true;
}

struct spdk_nvme_ctrlr *
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
		  const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
{
	int rc;
	struct spdk_nvme_ctrlr_connect_opts connect_opts = {};
	struct spdk_nvme_ctrlr_connect_opts *user_connect_opts = NULL;
	struct spdk_nvme_ctrlr *ctrlr = NULL;
	spdk_nvme_probe_cb probe_cb = NULL;

	if (trid == NULL) {
		SPDK_ERRLOG("No transport ID specified\n");
		return NULL;
	}

	rc = nvme_driver_init();
	if (rc != 0) {
		return NULL;
	}

	if (opts && opts_size > 0) {
		connect_opts.opts = opts;
		connect_opts.opts_size = opts_size;
		user_connect_opts = &connect_opts;
		probe_cb = spdk_nvme_connect_probe_cb;
	}

	spdk_nvme_probe_internal(trid, user_connect_opts, probe_cb, NULL, NULL, &ctrlr);

	return ctrlr;
}

int
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
{
	if (trtype == NULL || str == NULL) {
		return -EINVAL;
	}

	if (strcasecmp(str, "PCIe") == 0) {
		*trtype = SPDK_NVME_TRANSPORT_PCIE;
	} else if (strcasecmp(str, "RDMA") == 0) {
		*trtype = SPDK_NVME_TRANSPORT_RDMA;
	} else if (strcasecmp(str, "FC") == 0) {
		*trtype = SPDK_NVME_TRANSPORT_FC;
	} else {
		return -ENOENT;
	}
	return 0;
}

const char *
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
{
	switch (trtype) {
	case SPDK_NVME_TRANSPORT_PCIE:
		return "PCIe";
	case SPDK_NVME_TRANSPORT_RDMA:
		return "RDMA";
	case SPDK_NVME_TRANSPORT_FC:
		return "FC";
	default:
		return NULL;
	}
}

int
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
{
	if (adrfam == NULL || str == NULL) {
		return -EINVAL;
	}

	if (strcasecmp(str, "IPv4") == 0) {
		*adrfam = SPDK_NVMF_ADRFAM_IPV4;
	} else if (strcasecmp(str, "IPv6") == 0) {
		*adrfam = SPDK_NVMF_ADRFAM_IPV6;
	} else if (strcasecmp(str, "IB") == 0) {
		*adrfam = SPDK_NVMF_ADRFAM_IB;
	} else if (strcasecmp(str, "FC") == 0) {
		*adrfam = SPDK_NVMF_ADRFAM_FC;
	} else {
		return -ENOENT;
	}
	return 0;
}

const char *
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
{
	switch (adrfam) {
	case SPDK_NVMF_ADRFAM_IPV4:
		return "IPv4";
	case SPDK_NVMF_ADRFAM_IPV6:
		return "IPv6";
	case SPDK_NVMF_ADRFAM_IB:
		return "IB";
	case SPDK_NVMF_ADRFAM_FC:
		return "FC";
	default:
		return NULL;
	}
}

int
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
{
	const char *sep, *sep1;
	const char *whitespace = " \t\n";
	size_t key_len, val_len;
	char key[32];
	char val[1024];

	if (trid == NULL || str == NULL) {
		return -EINVAL;
	}

	while (*str != '\0') {
		str += strspn(str, whitespace);

		sep = strchr(str, ':');
		if (!sep) {
			sep = strchr(str, '=');
			if (!sep) {
				SPDK_ERRLOG("Key without ':' or '=' separator\n");
				return -EINVAL;
			}
		} else {
			sep1 = strchr(str, '=');
			if ((sep1 != NULL) && (sep1 < sep)) {
				sep = sep1;
			}
		}

		key_len = sep - str;
		if (key_len >= sizeof(key)) {
			SPDK_ERRLOG("Transport key length %zu greater than maximum allowed %zu\n",
				    key_len, sizeof(key) - 1);
			return -EINVAL;
		}

		memcpy(key, str, key_len);
		key[key_len] = '\0';

		str += key_len + 1; /* Skip key: */
		val_len = strcspn(str, whitespace);
		if (val_len == 0) {
			SPDK_ERRLOG("Key without value\n");
			return -EINVAL;
		}

		if (val_len >= sizeof(val)) {
			SPDK_ERRLOG("Transport value length %zu greater than maximum allowed %zu\n",
				    val_len, sizeof(val) - 1);
			return -EINVAL;
		}

		memcpy(val, str, val_len);
		val[val_len] = '\0';

		str += val_len;

		if (strcasecmp(key, "trtype") == 0) {
			if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
				SPDK_ERRLOG("Unknown trtype '%s'\n", val);
				return -EINVAL;
			}
		} else if (strcasecmp(key, "adrfam") == 0) {
			if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
				SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
				return -EINVAL;
			}
		} else if (strcasecmp(key, "traddr") == 0) {
			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
				SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
				return -EINVAL;
			}
			memcpy(trid->traddr, val, val_len + 1);
		} else if (strcasecmp(key, "trsvcid") == 0) {
			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
				return -EINVAL;
			}
			memcpy(trid->trsvcid, val, val_len + 1);
		} else if (strcasecmp(key, "subnqn") == 0) {
			if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
				SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
					    val_len, SPDK_NVMF_NQN_MAX_LEN);
				return -EINVAL;
			}
			memcpy(trid->subnqn, val, val_len + 1);
		} else {
			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
		}
	}

	return 0;
}

static int
cmp_int(int a, int b)
{
	return a - b;
}

int
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
			       const struct spdk_nvme_transport_id *trid2)
{
	int cmp;

	cmp = cmp_int(trid1->trtype, trid2->trtype);
	if (cmp) {
		return cmp;
	}

	if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
		struct spdk_pci_addr pci_addr1;
		struct spdk_pci_addr pci_addr2;

		/* Normalize PCI addresses before comparing */
		if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
		    spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
			return -1;
		}

		/* PCIe transport ID only uses trtype and traddr */
		return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
	}

	cmp = strcasecmp(trid1->traddr, trid2->traddr);
	if (cmp) {
		return cmp;
	}

	cmp = cmp_int(trid1->adrfam, trid2->adrfam);
	if (cmp) {
		return cmp;
	}

	cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
	if (cmp) {
		return cmp;
	}

	cmp = strcmp(trid1->subnqn, trid2->subnqn);
	if (cmp) {
		return cmp;
	}

	return 0;
}

SPDK_LOG_REGISTER_COMPONENT("nvme", SPDK_LOG_NVME)