1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include <iostream>
#include <gtest/gtest.h>
#include "os/bluestore/HybridAllocator.h"
class TestHybridAllocator : public HybridAllocator {
public:
TestHybridAllocator(CephContext* cct,
int64_t device_size,
int64_t _block_size,
uint64_t max_entries,
const std::string& name) :
HybridAllocator(cct, device_size, _block_size,
max_entries,
name) {
}
uint64_t get_bmap_free() {
return get_bmap() ? get_bmap()->get_free() : 0;
}
uint64_t get_avl_free() {
return AvlAllocator::get_free();
}
};
const uint64_t _1m = 1024 * 1024;
const uint64_t _4m = 4 * 1024 * 1024;
TEST(HybridAllocator, basic)
{
{
uint64_t block_size = 0x1000;
uint64_t capacity = 0x10000 * _1m; // = 64GB
TestHybridAllocator ha(g_ceph_context, capacity, block_size,
4 * sizeof(range_seg_t), "test_hybrid_allocator");
ASSERT_EQ(0, ha.get_free());
ASSERT_EQ(0, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
ha.init_add_free(0, _4m);
ASSERT_EQ(_4m, ha.get_free());
ASSERT_EQ(_4m, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
ha.init_add_free(2 * _4m, _4m);
ASSERT_EQ(_4m * 2, ha.get_free());
ASSERT_EQ(_4m * 2, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
ha.init_add_free(100 * _4m, _4m);
ha.init_add_free(102 * _4m, _4m);
ASSERT_EQ(_4m * 4, ha.get_free());
ASSERT_EQ(_4m * 4, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
// next allocs will go to bitmap
ha.init_add_free(4 * _4m, _4m);
ASSERT_EQ(_4m * 5, ha.get_free());
ASSERT_EQ(_4m * 4, ha.get_avl_free());
ASSERT_EQ(_4m * 1, ha.get_bmap_free());
ha.init_add_free(6 * _4m, _4m);
ASSERT_EQ(_4m * 6, ha.get_free());
ASSERT_EQ(_4m * 4, ha.get_avl_free());
ASSERT_EQ(_4m * 2, ha.get_bmap_free());
// so we have 6x4M chunks, 4 chunks at AVL and 2 at bitmap
ha.init_rm_free(_1m, _1m); // take 1M from AVL
ASSERT_EQ(_1m * 23, ha.get_free());
ASSERT_EQ(_1m * 14, ha.get_avl_free());
ASSERT_EQ(_1m * 9, ha.get_bmap_free());
ha.init_rm_free(6 * _4m + _1m, _1m); // take 1M from bmap
ASSERT_EQ(_1m * 22, ha.get_free());
ASSERT_EQ(_1m * 14, ha.get_avl_free());
ASSERT_EQ(_1m * 8, ha.get_bmap_free());
// so we have at avl: 2M~2M, 8M~4M, 400M~4M , 408M~4M
// and at bmap: 0~1M, 16M~1M, 18M~2M, 24~4M
PExtentVector extents;
// allocate 4K, to be served from bitmap
EXPECT_EQ(block_size, ha.allocate(block_size, block_size,
0, (int64_t)0, &extents));
ASSERT_EQ(1, extents.size());
ASSERT_EQ(0, extents[0].offset);
ASSERT_EQ(_1m * 14, ha.get_avl_free());
ASSERT_EQ(_1m * 8 - block_size, ha.get_bmap_free());
interval_set<uint64_t> release_set;
// release 4K, to be returned to bitmap
release_set.insert(extents[0].offset, extents[0].length);
ha.release(release_set);
ASSERT_EQ(_1m * 14, ha.get_avl_free());
ASSERT_EQ(_1m * 8, ha.get_bmap_free());
extents.clear();
release_set.clear();
// again we have at avl: 2M~2M, 8M~4M, 400M~4M , 408M~4M
// and at bmap: 0~1M, 16M~1M, 18M~2M, 24~4M
// add 12M~3M which will go to avl
ha.init_add_free(3 * _4m, 3 * _1m);
ASSERT_EQ(_1m * 17, ha.get_avl_free());
ASSERT_EQ(_1m * 8, ha.get_bmap_free());
// add 15M~4K which will be appended to existing slot
ha.init_add_free(15 * _1m, 0x1000);
ASSERT_EQ(_1m * 17 + 0x1000, ha.get_avl_free());
ASSERT_EQ(_1m * 8, ha.get_bmap_free());
// again we have at avl: 2M~2M, 8M~(7M+4K), 400M~4M , 408M~4M
// and at bmap: 0~1M, 16M~1M, 18M~2M, 24~4M
//some removals from bmap
ha.init_rm_free(28 * _1m - 0x1000, 0x1000);
ASSERT_EQ(_1m * 17 + 0x1000, ha.get_avl_free());
ASSERT_EQ(_1m * 8 - 0x1000, ha.get_bmap_free());
ha.init_rm_free(24 * _1m + 0x1000, 0x1000);
ASSERT_EQ(_1m * 17 + 0x1000, ha.get_avl_free());
ASSERT_EQ(_1m * 8 - 0x2000, ha.get_bmap_free());
ha.init_rm_free(24 * _1m + 0x1000, _4m - 0x2000);
ASSERT_EQ(_1m * 17 + 0x1000, ha.get_avl_free());
ASSERT_EQ(_1m * 4, ha.get_bmap_free());
//4K removal from avl
ha.init_rm_free(15 * _1m, 0x1000);
ASSERT_EQ(_1m * 17, ha.get_avl_free());
ASSERT_EQ(_1m * 4, ha.get_bmap_free());
//remove highest 4Ms from avl
ha.init_rm_free(_1m * 400, _4m);
ha.init_rm_free(_1m * 408, _4m);
ASSERT_EQ(_1m * 9, ha.get_avl_free());
ASSERT_EQ(_1m * 4, ha.get_bmap_free());
// we have at avl: 2M~2M, 8M~7M
// and at bmap: 0~1M, 16M~1M, 18M~2M
// this will be merged with neighbors from bmap and go to avl
ha.init_add_free(17 * _1m, _1m);
ASSERT_EQ(_1m * 1, ha.get_bmap_free());
ASSERT_EQ(_1m * 13, ha.get_avl_free());
// we have at avl: 2M~2M, 8M~7M, 16M~4M
// and at bmap: 0~1M
// and now do some cutoffs from 0~1M span
//cut off 4K from bmap
ha.init_rm_free(0 * _1m, 0x1000);
ASSERT_EQ(_1m * 13, ha.get_avl_free());
ASSERT_EQ(_1m * 1 - 0x1000, ha.get_bmap_free());
//cut off 1M-4K from bmap
ha.init_rm_free(0 * _1m + 0x1000, _1m - 0x1000);
ASSERT_EQ(_1m * 13, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
//cut off 512K avl
ha.init_rm_free(17 * _1m + 0x1000, _1m / 2);
ASSERT_EQ(_1m * 13 - _1m / 2, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
//cut off the rest from avl
ha.init_rm_free(17 * _1m + 0x1000 + _1m / 2, _1m / 2);
ASSERT_EQ(_1m * 12, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
}
{
uint64_t block_size = 0x1000;
uint64_t capacity = 0x10000 * _1m; // = 64GB
TestHybridAllocator ha(g_ceph_context, capacity, block_size,
4 * sizeof(range_seg_t), "test_hybrid_allocator");
ha.init_add_free(_1m, _1m);
ha.init_add_free(_1m * 3, _1m);
ha.init_add_free(_1m * 5, _1m);
ha.init_add_free(0x4000, 0x1000);
ASSERT_EQ(_1m * 3 + 0x1000, ha.get_free());
ASSERT_EQ(_1m * 3 + 0x1000, ha.get_avl_free());
ASSERT_EQ(0, ha.get_bmap_free());
// This will substitute chunk 0x4000~1000.
// Since new chunk insertion into into AvlAllocator:range_tree
// happens immediately before 0x4000~1000 chunk care should be taken
// to order operations properly and do not use already disposed iterator.
ha.init_add_free(0, 0x2000);
ASSERT_EQ(_1m * 3 + 0x3000, ha.get_free());
ASSERT_EQ(_1m * 3 + 0x2000, ha.get_avl_free());
ASSERT_EQ(0x1000, ha.get_bmap_free());
}
}
TEST(HybridAllocator, fragmentation)
{
{
uint64_t block_size = 0x1000;
uint64_t capacity = 0x1000 * 0x1000; // = 16M
TestHybridAllocator ha(g_ceph_context, capacity, block_size,
4 * sizeof(range_seg_t), "test_hybrid_allocator");
ha.init_add_free(0, 0x2000);
ha.init_add_free(0x4000, 0x2000);
ha.init_add_free(0x8000, 0x2000);
ha.init_add_free(0xc000, 0x1000);
ASSERT_EQ(0.5, ha.get_fragmentation());
// this will got to bmap with fragmentation = 1
ha.init_add_free(0x10000, 0x1000);
// which results in the following total fragmentation
ASSERT_EQ(0.5 * 7 / 8 + 1.0 / 8, ha.get_fragmentation());
}
}
|