1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
|
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2009-2018, 2020
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
This module keeps track of the source which we are claiming to be
our reference, for the purposes of generating outgoing NTP packets */
#include "config.h"
#include "sysincl.h"
#include "memory.h"
#include "reference.h"
#include "util.h"
#include "conf.h"
#include "logging.h"
#include "local.h"
#include "sched.h"
/* ================================================== */
/* The minimum allowed skew */
#define MIN_SKEW 1.0e-12
/* The update interval of the reference in the local reference mode */
#define LOCAL_REF_UPDATE_INTERVAL 64.0
/* Interval between updates of the drift file */
#define MAX_DRIFTFILE_AGE 3600.0
static int are_we_synchronised;
static int enable_local_stratum;
static int local_stratum;
static int local_orphan;
static double local_distance;
static struct timespec local_ref_time;
static NTP_Leap our_leap_status;
static int our_leap_sec;
static int our_tai_offset;
static int our_stratum;
static uint32_t our_ref_id;
static IPAddr our_ref_ip;
static struct timespec our_ref_time;
static double our_skew;
static double our_residual_freq;
static double our_root_delay;
static double our_root_dispersion;
static double our_offset_sd;
static double our_frequency_sd;
static double max_update_skew;
static double last_offset;
static double avg2_offset;
static int avg2_moving;
static double correction_time_ratio;
/* Flag indicating that we are initialised */
static int initialised = 0;
/* Current operating mode */
static REF_Mode mode;
/* Threshold and update limit for stepping clock */
static int make_step_limit;
static double make_step_threshold;
/* Number of updates before offset checking, number of ignored updates
before exiting and the maximum allowed offset */
static int max_offset_delay;
static int max_offset_ignore;
static double max_offset;
/* Threshold for logging clock changes to syslog */
static double log_change_threshold;
/* Flag, threshold and user for sending mail notification on large clock changes */
static int do_mail_change;
static double mail_change_threshold;
static char *mail_change_user;
/* Handler for mode ending */
static REF_ModeEndHandler mode_end_handler = NULL;
/* Filename of the drift file. */
static char *drift_file=NULL;
static double drift_file_age;
static void update_drift_file(double, double);
/* Leap second handling mode */
static REF_LeapMode leap_mode;
/* Time of UTC midnight of the upcoming or previous leap second */
static time_t leap_when;
/* Flag indicating the clock was recently corrected for leap second and it may
not have correct time yet (missing 23:59:60 in the UTC time scale) */
static int leap_in_progress;
/* Timer for the leap second handler */
static SCH_TimeoutID leap_timeout_id;
/* Name of a system timezone containing leap seconds occuring at midnight */
static char *leap_tzname;
/* ================================================== */
static LOG_FileID logfileid;
/* ================================================== */
/* Exponential moving averages of absolute clock frequencies
used as a fallback when synchronisation is lost. */
struct fb_drift {
double freq;
double secs;
};
static int fb_drift_min;
static int fb_drift_max;
static struct fb_drift *fb_drifts = NULL;
static int next_fb_drift;
static SCH_TimeoutID fb_drift_timeout_id;
/* Monotonic timestamp of the last reference update */
static double last_ref_update;
static double last_ref_update_interval;
/* ================================================== */
static NTP_Leap get_tz_leap(time_t when, int *tai_offset);
static void update_leap_status(NTP_Leap leap, time_t now, int reset);
/* ================================================== */
static void
handle_slew(struct timespec *raw,
struct timespec *cooked,
double dfreq,
double doffset,
LCL_ChangeType change_type,
void *anything)
{
double delta;
struct timespec now;
if (!UTI_IsZeroTimespec(&our_ref_time))
UTI_AdjustTimespec(&our_ref_time, cooked, &our_ref_time, &delta, dfreq, doffset);
if (change_type == LCL_ChangeUnknownStep) {
last_ref_update = 0.0;
REF_SetUnsynchronised();
}
/* When the clock was stepped, check if that doesn't change our leap status
and also reset the leap timeout to undo the shift in the scheduler */
if (change_type != LCL_ChangeAdjust && our_leap_sec && !leap_in_progress) {
LCL_ReadRawTime(&now);
update_leap_status(our_leap_status, now.tv_sec, 1);
}
}
/* ================================================== */
void
REF_Initialise(void)
{
FILE *in;
double file_freq_ppm, file_skew_ppm;
double our_frequency_ppm;
int tai_offset;
mode = REF_ModeNormal;
are_we_synchronised = 0;
our_leap_status = LEAP_Unsynchronised;
our_leap_sec = 0;
our_tai_offset = 0;
initialised = 1;
our_root_dispersion = 1.0;
our_root_delay = 1.0;
our_frequency_ppm = 0.0;
our_skew = 1.0; /* i.e. rather bad */
our_residual_freq = 0.0;
our_frequency_sd = 0.0;
our_offset_sd = 0.0;
drift_file_age = 0.0;
/* Now see if we can get the drift file opened */
drift_file = CNF_GetDriftFile();
if (drift_file) {
in = UTI_OpenFile(NULL, drift_file, NULL, 'r', 0);
if (in) {
if (fscanf(in, "%lf%lf", &file_freq_ppm, &file_skew_ppm) == 2) {
/* We have read valid data */
our_frequency_ppm = file_freq_ppm;
our_skew = 1.0e-6 * file_skew_ppm;
if (our_skew < MIN_SKEW)
our_skew = MIN_SKEW;
LOG(LOGS_INFO, "Frequency %.3f +/- %.3f ppm read from %s",
file_freq_ppm, file_skew_ppm, drift_file);
LCL_SetAbsoluteFrequency(our_frequency_ppm);
} else {
LOG(LOGS_WARN, "Could not read valid frequency and skew from driftfile %s",
drift_file);
}
fclose(in);
}
}
if (our_frequency_ppm == 0.0) {
our_frequency_ppm = LCL_ReadAbsoluteFrequency();
if (our_frequency_ppm != 0.0) {
LOG(LOGS_INFO, "Initial frequency %.3f ppm", our_frequency_ppm);
}
}
logfileid = CNF_GetLogTracking() ? LOG_FileOpen("tracking",
" Date (UTC) Time IP Address St Freq ppm Skew ppm Offset L Co Offset sd Rem. corr. Root delay Root disp. Max. error")
: -1;
max_update_skew = fabs(CNF_GetMaxUpdateSkew()) * 1.0e-6;
correction_time_ratio = CNF_GetCorrectionTimeRatio();
enable_local_stratum = CNF_AllowLocalReference(&local_stratum, &local_orphan, &local_distance);
UTI_ZeroTimespec(&local_ref_time);
leap_when = 0;
leap_timeout_id = 0;
leap_in_progress = 0;
leap_mode = CNF_GetLeapSecMode();
/* Switch to step mode if the system driver doesn't support leap */
if (leap_mode == REF_LeapModeSystem && !LCL_CanSystemLeap())
leap_mode = REF_LeapModeStep;
leap_tzname = CNF_GetLeapSecTimezone();
if (leap_tzname) {
/* Check that the timezone has good data for Jun 30 2012 and Dec 31 2012 */
if (get_tz_leap(1341014400, &tai_offset) == LEAP_InsertSecond && tai_offset == 34 &&
get_tz_leap(1356912000, &tai_offset) == LEAP_Normal && tai_offset == 35) {
LOG(LOGS_INFO, "Using %s timezone to obtain leap second data", leap_tzname);
} else {
LOG(LOGS_WARN, "Timezone %s failed leap second check, ignoring", leap_tzname);
leap_tzname = NULL;
}
}
CNF_GetMakeStep(&make_step_limit, &make_step_threshold);
CNF_GetMaxChange(&max_offset_delay, &max_offset_ignore, &max_offset);
CNF_GetMailOnChange(&do_mail_change, &mail_change_threshold, &mail_change_user);
log_change_threshold = CNF_GetLogChange();
CNF_GetFallbackDrifts(&fb_drift_min, &fb_drift_max);
if (fb_drift_max >= fb_drift_min && fb_drift_min > 0) {
fb_drifts = MallocArray(struct fb_drift, fb_drift_max - fb_drift_min + 1);
memset(fb_drifts, 0, sizeof (struct fb_drift) * (fb_drift_max - fb_drift_min + 1));
next_fb_drift = 0;
fb_drift_timeout_id = 0;
}
UTI_ZeroTimespec(&our_ref_time);
last_ref_update = 0.0;
last_ref_update_interval = 0.0;
LCL_AddParameterChangeHandler(handle_slew, NULL);
/* Make first entry in tracking log */
REF_SetUnsynchronised();
}
/* ================================================== */
void
REF_Finalise(void)
{
update_leap_status(LEAP_Unsynchronised, 0, 0);
if (drift_file) {
update_drift_file(LCL_ReadAbsoluteFrequency(), our_skew);
}
LCL_RemoveParameterChangeHandler(handle_slew, NULL);
Free(fb_drifts);
initialised = 0;
}
/* ================================================== */
void REF_SetMode(REF_Mode new_mode)
{
mode = new_mode;
}
/* ================================================== */
REF_Mode
REF_GetMode(void)
{
return mode;
}
/* ================================================== */
void
REF_SetModeEndHandler(REF_ModeEndHandler handler)
{
mode_end_handler = handler;
}
/* ================================================== */
REF_LeapMode
REF_GetLeapMode(void)
{
return leap_mode;
}
/* ================================================== */
/* Update the drift coefficients to the file. */
static void
update_drift_file(double freq_ppm, double skew)
{
FILE *out;
/* Create a temporary file with a '.tmp' extension. */
out = UTI_OpenFile(NULL, drift_file, ".tmp", 'w', 0644);
if (!out)
return;
/* Write the frequency and skew parameters in ppm */
fprintf(out, "%20.6f %20.6f\n", freq_ppm, 1.0e6 * skew);
fclose(out);
/* Rename the temporary file to the correct location */
if (!UTI_RenameTempFile(NULL, drift_file, ".tmp", NULL))
;
}
/* ================================================== */
static void
update_fb_drifts(double freq_ppm, double update_interval)
{
int i, secs;
assert(are_we_synchronised);
if (next_fb_drift > 0) {
#if 0
/* Reset drifts that were used when we were unsynchronised */
for (i = 0; i < next_fb_drift - fb_drift_min; i++)
fb_drifts[i].secs = 0.0;
#endif
next_fb_drift = 0;
}
SCH_RemoveTimeout(fb_drift_timeout_id);
fb_drift_timeout_id = 0;
if (update_interval < 1.0 || update_interval > last_ref_update_interval * 4.0)
return;
for (i = 0; i < fb_drift_max - fb_drift_min + 1; i++) {
secs = 1 << (i + fb_drift_min);
if (fb_drifts[i].secs < secs) {
/* Calculate average over 2 * secs interval before switching to
exponential updating */
fb_drifts[i].freq = (fb_drifts[i].freq * fb_drifts[i].secs +
update_interval * 0.5 * freq_ppm) / (update_interval * 0.5 + fb_drifts[i].secs);
fb_drifts[i].secs += update_interval * 0.5;
} else {
/* Update exponential moving average. The smoothing factor for update
interval equal to secs is about 0.63, for half interval about 0.39,
for double interval about 0.86. */
fb_drifts[i].freq += (1 - 1.0 / exp(update_interval / secs)) *
(freq_ppm - fb_drifts[i].freq);
}
DEBUG_LOG("Fallback drift %d updated: %f ppm %f seconds",
i + fb_drift_min, fb_drifts[i].freq, fb_drifts[i].secs);
}
}
/* ================================================== */
static void
fb_drift_timeout(void *arg)
{
assert(next_fb_drift >= fb_drift_min && next_fb_drift <= fb_drift_max);
fb_drift_timeout_id = 0;
DEBUG_LOG("Fallback drift %d active: %f ppm",
next_fb_drift, fb_drifts[next_fb_drift - fb_drift_min].freq);
LCL_SetAbsoluteFrequency(fb_drifts[next_fb_drift - fb_drift_min].freq);
REF_SetUnsynchronised();
}
/* ================================================== */
static void
schedule_fb_drift(void)
{
int i, c, secs;
double unsynchronised, now;
if (fb_drift_timeout_id)
return; /* already scheduled */
now = SCH_GetLastEventMonoTime();
unsynchronised = now - last_ref_update;
for (c = secs = 0, i = fb_drift_min; i <= fb_drift_max; i++) {
secs = 1 << i;
if (fb_drifts[i - fb_drift_min].secs < secs)
continue;
if (unsynchronised < secs && i > next_fb_drift)
break;
c = i;
}
if (c > next_fb_drift) {
LCL_SetAbsoluteFrequency(fb_drifts[c - fb_drift_min].freq);
next_fb_drift = c;
DEBUG_LOG("Fallback drift %d set", c);
}
if (i <= fb_drift_max) {
next_fb_drift = i;
fb_drift_timeout_id = SCH_AddTimeoutByDelay(secs - unsynchronised, fb_drift_timeout, NULL);
DEBUG_LOG("Fallback drift %d scheduled", i);
}
}
/* ================================================== */
static void
end_ref_mode(int result)
{
mode = REF_ModeIgnore;
/* Dispatch the handler */
if (mode_end_handler)
(mode_end_handler)(result);
}
/* ================================================== */
#define BUFLEN 255
#define S_MAX_USER_LEN "128"
static void
maybe_log_offset(double offset, time_t now)
{
double abs_offset;
FILE *p;
char buffer[BUFLEN], host[BUFLEN];
struct tm *tm;
abs_offset = fabs(offset);
if (abs_offset > log_change_threshold) {
LOG(LOGS_WARN, "System clock wrong by %.6f seconds", -offset);
}
if (do_mail_change &&
(abs_offset > mail_change_threshold)) {
snprintf(buffer, sizeof (buffer), "%s -t", MAIL_PROGRAM);
p = popen(buffer, "w");
if (p) {
if (gethostname(host, sizeof(host)) < 0) {
strcpy(host, "<UNKNOWN>");
}
host[sizeof (host) - 1] = '\0';
fprintf(p, "To: %s\n", mail_change_user);
fprintf(p, "Subject: chronyd reports change to system clock on node [%s]\n", host);
fputs("\n", p);
tm = localtime(&now);
if (tm) {
strftime(buffer, sizeof (buffer),
"On %A, %d %B %Y\n with the system clock reading %H:%M:%S (%Z)", tm);
fputs(buffer, p);
}
/* If offset < 0 the local clock is slow, so we are applying a
positive change to it to bring it into line, hence the
negation of 'offset' in the next statement (and earlier) */
fprintf(p,
"\n\nchronyd started to apply an adjustment of %.3f seconds to it,\n"
" which exceeded the reporting threshold of %.3f seconds\n\n",
-offset, mail_change_threshold);
pclose(p);
} else {
LOG(LOGS_ERR, "Could not send mail notification to user %s\n",
mail_change_user);
}
}
}
/* ================================================== */
static int
is_step_limit_reached(double offset, double offset_correction)
{
if (make_step_limit == 0) {
return 0;
} else if (make_step_limit > 0) {
make_step_limit--;
}
return fabs(offset - offset_correction) > make_step_threshold;
}
/* ================================================== */
static int
is_offset_ok(double offset)
{
if (max_offset_delay < 0)
return 1;
if (max_offset_delay > 0) {
max_offset_delay--;
return 1;
}
if (fabs(offset) > max_offset) {
LOG(LOGS_WARN,
"Adjustment of %.3f seconds exceeds the allowed maximum of %.3f seconds (%s) ",
-offset, max_offset, !max_offset_ignore ? "exiting" : "ignored");
if (!max_offset_ignore)
end_ref_mode(0);
else if (max_offset_ignore > 0)
max_offset_ignore--;
return 0;
}
return 1;
}
/* ================================================== */
static int
is_leap_second_day(time_t when)
{
struct tm *stm;
stm = gmtime(&when);
if (!stm)
return 0;
/* Allow leap second only on the last day of June and December */
return (stm->tm_mon == 5 && stm->tm_mday == 30) ||
(stm->tm_mon == 11 && stm->tm_mday == 31);
}
/* ================================================== */
static NTP_Leap
get_tz_leap(time_t when, int *tai_offset)
{
static time_t last_tz_leap_check;
static NTP_Leap tz_leap;
static int tz_tai_offset;
struct tm stm, *tm;
time_t t;
char *tz_env, tz_orig[128];
*tai_offset = tz_tai_offset;
/* Do this check at most twice a day */
when = when / (12 * 3600) * (12 * 3600);
if (last_tz_leap_check == when)
return tz_leap;
last_tz_leap_check = when;
tz_leap = LEAP_Normal;
tz_tai_offset = 0;
tm = gmtime(&when);
if (!tm)
return tz_leap;
stm = *tm;
/* Temporarily switch to the timezone containing leap seconds */
tz_env = getenv("TZ");
if (tz_env) {
if (strlen(tz_env) >= sizeof (tz_orig))
return tz_leap;
strcpy(tz_orig, tz_env);
}
setenv("TZ", leap_tzname, 1);
tzset();
/* Get the TAI-UTC offset, which started at the epoch at 10 seconds */
t = mktime(&stm);
if (t != -1)
tz_tai_offset = t - when + 10;
/* Set the time to 23:59:60 and see how it overflows in mktime() */
stm.tm_sec = 60;
stm.tm_min = 59;
stm.tm_hour = 23;
t = mktime(&stm);
if (tz_env)
setenv("TZ", tz_orig, 1);
else
unsetenv("TZ");
tzset();
if (t == -1)
return tz_leap;
if (stm.tm_sec == 60)
tz_leap = LEAP_InsertSecond;
else if (stm.tm_sec == 1)
tz_leap = LEAP_DeleteSecond;
*tai_offset = tz_tai_offset;
return tz_leap;
}
/* ================================================== */
static void
leap_end_timeout(void *arg)
{
leap_timeout_id = 0;
leap_in_progress = 0;
if (our_tai_offset)
our_tai_offset += our_leap_sec;
our_leap_sec = 0;
if (leap_mode == REF_LeapModeSystem)
LCL_SetSystemLeap(our_leap_sec, our_tai_offset);
if (our_leap_status == LEAP_InsertSecond ||
our_leap_status == LEAP_DeleteSecond)
our_leap_status = LEAP_Normal;
}
/* ================================================== */
static void
leap_start_timeout(void *arg)
{
leap_in_progress = 1;
switch (leap_mode) {
case REF_LeapModeSystem:
DEBUG_LOG("Waiting for system clock leap second correction");
break;
case REF_LeapModeSlew:
LCL_NotifyLeap(our_leap_sec);
LCL_AccumulateOffset(our_leap_sec, 0.0);
LOG(LOGS_WARN, "Adjusting system clock for leap second");
break;
case REF_LeapModeStep:
LCL_NotifyLeap(our_leap_sec);
LCL_ApplyStepOffset(our_leap_sec);
LOG(LOGS_WARN, "System clock was stepped for leap second");
break;
case REF_LeapModeIgnore:
LOG(LOGS_WARN, "Ignoring leap second");
break;
default:
break;
}
/* Wait until the leap second is over with some extra room to be safe */
leap_timeout_id = SCH_AddTimeoutByDelay(2.0, leap_end_timeout, NULL);
}
/* ================================================== */
static void
set_leap_timeout(time_t now)
{
struct timespec when;
/* Stop old timer if there is one */
SCH_RemoveTimeout(leap_timeout_id);
leap_timeout_id = 0;
leap_in_progress = 0;
if (!our_leap_sec)
return;
leap_when = (now / (24 * 3600) + 1) * (24 * 3600);
/* Insert leap second at 0:00:00 UTC, delete at 23:59:59 UTC. If the clock
will be corrected by the system, timeout slightly sooner to be sure it
will happen before the system correction. */
when.tv_sec = leap_when;
when.tv_nsec = 0;
if (our_leap_sec < 0)
when.tv_sec--;
if (leap_mode == REF_LeapModeSystem) {
when.tv_sec--;
when.tv_nsec = 500000000;
}
leap_timeout_id = SCH_AddTimeout(&when, leap_start_timeout, NULL);
}
/* ================================================== */
static void
update_leap_status(NTP_Leap leap, time_t now, int reset)
{
NTP_Leap tz_leap;
int leap_sec, tai_offset;
leap_sec = 0;
tai_offset = 0;
if (leap_tzname && now) {
tz_leap = get_tz_leap(now, &tai_offset);
if (leap == LEAP_Normal)
leap = tz_leap;
}
if (leap == LEAP_InsertSecond || leap == LEAP_DeleteSecond) {
/* Check that leap second is allowed today */
if (is_leap_second_day(now)) {
if (leap == LEAP_InsertSecond) {
leap_sec = 1;
} else {
leap_sec = -1;
}
} else {
leap = LEAP_Normal;
}
}
if ((leap_sec != our_leap_sec || tai_offset != our_tai_offset)
&& !REF_IsLeapSecondClose(NULL, 0.0)) {
our_leap_sec = leap_sec;
our_tai_offset = tai_offset;
switch (leap_mode) {
case REF_LeapModeSystem:
LCL_SetSystemLeap(our_leap_sec, our_tai_offset);
/* Fall through */
case REF_LeapModeSlew:
case REF_LeapModeStep:
case REF_LeapModeIgnore:
set_leap_timeout(now);
break;
default:
assert(0);
break;
}
} else if (reset) {
set_leap_timeout(now);
}
our_leap_status = leap;
}
/* ================================================== */
static double
get_root_dispersion(struct timespec *ts)
{
if (UTI_IsZeroTimespec(&our_ref_time))
return 1.0;
return our_root_dispersion +
fabs(UTI_DiffTimespecsToDouble(ts, &our_ref_time)) *
(our_skew + fabs(our_residual_freq) + LCL_GetMaxClockError());
}
/* ================================================== */
static void
update_sync_status(struct timespec *now)
{
double elapsed;
elapsed = fabs(UTI_DiffTimespecsToDouble(now, &our_ref_time));
LCL_SetSyncStatus(are_we_synchronised,
our_offset_sd + elapsed * our_frequency_sd,
our_root_delay / 2.0 + get_root_dispersion(now));
}
/* ================================================== */
static void
write_log(struct timespec *now, int combined_sources, double freq,
double offset, double offset_sd, double uncorrected_offset,
double orig_root_distance)
{
const char leap_codes[4] = {'N', '+', '-', '?'};
double root_dispersion, max_error;
static double last_sys_offset = 0.0;
if (logfileid == -1)
return;
max_error = orig_root_distance + fabs(last_sys_offset);
root_dispersion = get_root_dispersion(now);
last_sys_offset = offset - uncorrected_offset;
LOG_FileWrite(logfileid,
"%s %-15s %2d %10.3f %10.3f %10.3e %1c %2d %10.3e %10.3e %10.3e %10.3e %10.3e",
UTI_TimeToLogForm(now->tv_sec),
our_ref_ip.family != IPADDR_UNSPEC ?
UTI_IPToString(&our_ref_ip) : UTI_RefidToString(our_ref_id),
our_stratum, freq, 1.0e6 * our_skew, offset,
leap_codes[our_leap_status], combined_sources, offset_sd,
uncorrected_offset, our_root_delay, root_dispersion, max_error);
}
/* ================================================== */
static void
special_mode_sync(int valid, double offset)
{
int step;
switch (mode) {
case REF_ModeInitStepSlew:
if (!valid) {
LOG(LOGS_WARN, "No suitable source for initstepslew");
end_ref_mode(0);
break;
}
step = fabs(offset) >= CNF_GetInitStepThreshold();
LOG(LOGS_INFO, "System's initial offset : %.6f seconds %s of true (%s)",
fabs(offset), offset >= 0 ? "fast" : "slow", step ? "step" : "slew");
if (step)
LCL_ApplyStepOffset(offset);
else
LCL_AccumulateOffset(offset, 0.0);
end_ref_mode(1);
break;
case REF_ModeUpdateOnce:
case REF_ModePrintOnce:
if (!valid) {
LOG(LOGS_WARN, "No suitable source for synchronisation");
end_ref_mode(0);
break;
}
step = mode == REF_ModeUpdateOnce;
LOG(LOGS_INFO, "System clock wrong by %.6f seconds (%s)",
-offset, step ? "step" : "ignored");
if (step)
LCL_ApplyStepOffset(offset);
end_ref_mode(1);
break;
case REF_ModeIgnore:
/* Do nothing until the mode is changed */
break;
default:
assert(0);
}
}
/* ================================================== */
static void
get_clock_estimates(int manual,
double measured_freq, double measured_skew,
double *estimated_freq, double *estimated_skew,
double *residual_freq)
{
double gain, expected_freq, expected_skew, extra_skew;
/* We assume that the local clock is running according to our previously
determined value */
expected_freq = 0.0;
expected_skew = our_skew;
/* Set new frequency based on weighted average of the expected and measured
skew. Disable updates that are based on totally unreliable frequency
information unless it is a manual reference. */
if (manual) {
gain = 1.0;
} else if (fabs(measured_skew) > max_update_skew) {
DEBUG_LOG("Skew %f too large to track", measured_skew);
gain = 0.0;
} else {
gain = 3.0 * SQUARE(expected_skew) /
(3.0 * SQUARE(expected_skew) + SQUARE(measured_skew));
}
gain = CLAMP(0.0, gain, 1.0);
*estimated_freq = expected_freq + gain * (measured_freq - expected_freq);
*residual_freq = measured_freq - *estimated_freq;
extra_skew = sqrt(SQUARE(expected_freq - *estimated_freq) * (1.0 - gain) +
SQUARE(measured_freq - *estimated_freq) * gain);
*estimated_skew = expected_skew + gain * (measured_skew - expected_skew) + extra_skew;
}
/* ================================================== */
static void
fuzz_ref_time(struct timespec *ts)
{
uint32_t rnd;
/* Add a random value from interval [-1.0, 0.0] */
UTI_GetRandomBytes(&rnd, sizeof (rnd));
UTI_AddDoubleToTimespec(ts, -(double)rnd / (uint32_t)-1, ts);
}
/* ================================================== */
void
REF_SetReference(int stratum, NTP_Leap leap, int combined_sources,
uint32_t ref_id, IPAddr *ref_ip, struct timespec *ref_time,
double offset, double offset_sd,
double frequency, double frequency_sd, double skew,
double root_delay, double root_dispersion)
{
double uncorrected_offset, accumulate_offset, step_offset;
double residual_frequency, local_abs_frequency;
double elapsed, mono_now, update_interval, correction_rate, orig_root_distance;
struct timespec now, raw_now;
int manual;
assert(initialised);
/* Special modes are implemented elsewhere */
if (mode != REF_ModeNormal) {
special_mode_sync(1, offset);
return;
}
manual = leap == LEAP_Unsynchronised;
mono_now = SCH_GetLastEventMonoTime();
LCL_ReadRawTime(&raw_now);
LCL_GetOffsetCorrection(&raw_now, &uncorrected_offset, NULL);
UTI_AddDoubleToTimespec(&raw_now, uncorrected_offset, &now);
elapsed = UTI_DiffTimespecsToDouble(&now, ref_time);
offset += elapsed * frequency;
if (last_ref_update != 0.0) {
update_interval = mono_now - last_ref_update;
} else {
update_interval = 0.0;
}
/* Get new estimates of the frequency and skew including the new data */
get_clock_estimates(manual, frequency, skew,
&frequency, &skew, &residual_frequency);
if (!is_offset_ok(offset))
return;
orig_root_distance = our_root_delay / 2.0 + get_root_dispersion(&now);
are_we_synchronised = leap != LEAP_Unsynchronised;
our_stratum = stratum + 1;
our_ref_id = ref_id;
if (ref_ip)
our_ref_ip = *ref_ip;
else
our_ref_ip.family = IPADDR_UNSPEC;
our_ref_time = *ref_time;
our_skew = skew;
our_residual_freq = residual_frequency;
our_root_delay = root_delay;
our_root_dispersion = root_dispersion;
our_frequency_sd = frequency_sd;
our_offset_sd = offset_sd;
last_ref_update = mono_now;
last_ref_update_interval = update_interval;
last_offset = offset;
/* We want to correct the offset quickly, but we also want to keep the
frequency error caused by the correction itself low.
Define correction rate as the area of the region bounded by the graph of
offset corrected in time. Set the rate so that the time needed to correct
an offset equal to the current sourcestats stddev will be equal to the
update interval multiplied by the correction time ratio (assuming linear
adjustment). The offset and the time needed to make the correction are
inversely proportional.
This is only a suggestion and it's up to the system driver how the
adjustment will be executed. */
correction_rate = correction_time_ratio * 0.5 * offset_sd * update_interval;
/* Check if the clock should be stepped */
if (is_step_limit_reached(offset, uncorrected_offset)) {
/* Cancel the uncorrected offset and correct the total offset by step */
accumulate_offset = uncorrected_offset;
step_offset = offset - uncorrected_offset;
} else {
accumulate_offset = offset;
step_offset = 0.0;
}
/* Adjust the clock */
LCL_AccumulateFrequencyAndOffset(frequency, accumulate_offset, correction_rate);
maybe_log_offset(offset, raw_now.tv_sec);
if (step_offset != 0.0) {
if (LCL_ApplyStepOffset(step_offset))
LOG(LOGS_WARN, "System clock was stepped by %.6f seconds", -step_offset);
}
update_leap_status(leap, raw_now.tv_sec, 0);
update_sync_status(&now);
/* Add a random error of up to one second to the reference time to make it
less useful when disclosed to NTP and cmdmon clients for estimating
receive timestamps in the interleaved symmetric NTP mode */
fuzz_ref_time(&our_ref_time);
local_abs_frequency = LCL_ReadAbsoluteFrequency();
write_log(&now, combined_sources, local_abs_frequency,
offset, offset_sd, uncorrected_offset, orig_root_distance);
if (drift_file) {
/* Update drift file at most once per hour */
drift_file_age += update_interval;
if (drift_file_age >= MAX_DRIFTFILE_AGE) {
update_drift_file(local_abs_frequency, our_skew);
drift_file_age = 0.0;
}
}
/* Update fallback drifts */
if (fb_drifts && are_we_synchronised) {
update_fb_drifts(local_abs_frequency, update_interval);
schedule_fb_drift();
}
/* Update the moving average of squares of offset, quickly on start */
if (avg2_moving) {
avg2_offset += 0.1 * (SQUARE(offset) - avg2_offset);
} else {
if (avg2_offset > 0.0 && avg2_offset < SQUARE(offset))
avg2_moving = 1;
avg2_offset = SQUARE(offset);
}
}
/* ================================================== */
void
REF_SetManualReference
(
struct timespec *ref_time,
double offset,
double frequency,
double skew
)
{
/* We are not synchronised to an external source, as such. This is
only supposed to be used with the local source option, really.
Log as MANU in the tracking log, packets will have NTP_REFID_LOCAL. */
REF_SetReference(0, LEAP_Unsynchronised, 1, 0x4D414E55UL, NULL,
ref_time, offset, 0.0, frequency, skew, skew, 0.0, 0.0);
}
/* ================================================== */
void
REF_SetUnsynchronised(void)
{
/* Variables required for logging to statistics log */
struct timespec now, now_raw;
double uncorrected_offset;
assert(initialised);
/* Special modes are implemented elsewhere */
if (mode != REF_ModeNormal) {
special_mode_sync(0, 0.0);
return;
}
LCL_ReadRawTime(&now_raw);
LCL_GetOffsetCorrection(&now_raw, &uncorrected_offset, NULL);
UTI_AddDoubleToTimespec(&now_raw, uncorrected_offset, &now);
if (fb_drifts) {
schedule_fb_drift();
}
update_leap_status(LEAP_Unsynchronised, 0, 0);
our_ref_ip.family = IPADDR_INET4;
our_ref_ip.addr.in4 = 0;
our_stratum = 0;
are_we_synchronised = 0;
LCL_SetSyncStatus(0, 0.0, 0.0);
write_log(&now, 0, LCL_ReadAbsoluteFrequency(), 0.0, 0.0, uncorrected_offset,
our_root_delay / 2.0 + get_root_dispersion(&now));
}
/* ================================================== */
void
REF_UpdateLeapStatus(NTP_Leap leap)
{
struct timespec raw_now, now;
/* Wait for a full reference update if not already synchronised */
if (!are_we_synchronised)
return;
SCH_GetLastEventTime(&now, NULL, &raw_now);
update_leap_status(leap, raw_now.tv_sec, 0);
/* Update also the synchronisation status */
update_sync_status(&now);
}
/* ================================================== */
void
REF_GetReferenceParams
(
struct timespec *local_time,
int *is_synchronised,
NTP_Leap *leap_status,
int *stratum,
uint32_t *ref_id,
struct timespec *ref_time,
double *root_delay,
double *root_dispersion
)
{
double dispersion, delta;
assert(initialised);
if (are_we_synchronised) {
dispersion = get_root_dispersion(local_time);
} else {
dispersion = 0.0;
}
/* Local reference is active when enabled and the clock is not synchronised
or the root distance exceeds the threshold */
if (are_we_synchronised &&
!(enable_local_stratum && our_root_delay / 2 + dispersion > local_distance)) {
*is_synchronised = 1;
*stratum = our_stratum;
*leap_status = !leap_in_progress ? our_leap_status : LEAP_Unsynchronised;
*ref_id = our_ref_id;
*ref_time = our_ref_time;
*root_delay = our_root_delay;
*root_dispersion = dispersion;
} else if (enable_local_stratum) {
*is_synchronised = 0;
*stratum = local_stratum;
*ref_id = NTP_REFID_LOCAL;
/* Keep the reference timestamp up to date. Adjust the timestamp to make
sure that the transmit timestamp cannot come before this (which might
fail a test of an NTP client). */
delta = UTI_DiffTimespecsToDouble(local_time, &local_ref_time);
if (delta > LOCAL_REF_UPDATE_INTERVAL || delta < 1.0) {
UTI_AddDoubleToTimespec(local_time, -1.0, &local_ref_time);
fuzz_ref_time(&local_ref_time);
}
*ref_time = local_ref_time;
/* Not much else we can do for leap second bits - maybe need to
have a way for the administrator to feed leap bits in */
*leap_status = LEAP_Normal;
*root_delay = 0.0;
*root_dispersion = 0.0;
} else {
*is_synchronised = 0;
*leap_status = LEAP_Unsynchronised;
*stratum = NTP_MAX_STRATUM;
*ref_id = NTP_REFID_UNSYNC;
UTI_ZeroTimespec(ref_time);
/* These values seem to be standard for a client, and
any peer or client of ours will ignore them anyway because
we don't claim to be synchronised */
*root_dispersion = 1.0;
*root_delay = 1.0;
}
}
/* ================================================== */
int
REF_GetOurStratum(void)
{
struct timespec now_cooked, ref_time;
int synchronised, stratum;
NTP_Leap leap_status;
uint32_t ref_id;
double root_delay, root_dispersion;
SCH_GetLastEventTime(&now_cooked, NULL, NULL);
REF_GetReferenceParams(&now_cooked, &synchronised, &leap_status, &stratum,
&ref_id, &ref_time, &root_delay, &root_dispersion);
return stratum;
}
/* ================================================== */
int
REF_GetOrphanStratum(void)
{
if (!enable_local_stratum || !local_orphan || mode != REF_ModeNormal)
return NTP_MAX_STRATUM;
return local_stratum;
}
/* ================================================== */
double
REF_GetSkew(void)
{
return our_skew;
}
/* ================================================== */
void
REF_ModifyMaxupdateskew(double new_max_update_skew)
{
max_update_skew = new_max_update_skew * 1.0e-6;
}
/* ================================================== */
void
REF_ModifyMakestep(int limit, double threshold)
{
make_step_limit = limit;
make_step_threshold = threshold;
}
/* ================================================== */
void
REF_EnableLocal(int stratum, double distance, int orphan)
{
enable_local_stratum = 1;
local_stratum = CLAMP(1, stratum, NTP_MAX_STRATUM - 1);
local_distance = distance;
local_orphan = !!orphan;
}
/* ================================================== */
void
REF_DisableLocal(void)
{
enable_local_stratum = 0;
}
/* ================================================== */
#define LEAP_SECOND_CLOSE 5
static int
is_leap_close(time_t t)
{
return t >= leap_when - LEAP_SECOND_CLOSE && t < leap_when + LEAP_SECOND_CLOSE;
}
/* ================================================== */
int REF_IsLeapSecondClose(struct timespec *ts, double offset)
{
struct timespec now, now_raw;
SCH_GetLastEventTime(&now, NULL, &now_raw);
if (is_leap_close(now.tv_sec) || is_leap_close(now_raw.tv_sec))
return 1;
if (ts && (is_leap_close(ts->tv_sec) || is_leap_close(ts->tv_sec + offset)))
return 1;
return 0;
}
/* ================================================== */
int
REF_GetTaiOffset(struct timespec *ts)
{
int tai_offset;
get_tz_leap(ts->tv_sec, &tai_offset);
return tai_offset;
}
/* ================================================== */
void
REF_GetTrackingReport(RPT_TrackingReport *rep)
{
struct timespec now_raw, now_cooked;
double correction;
int synchronised;
LCL_ReadRawTime(&now_raw);
LCL_GetOffsetCorrection(&now_raw, &correction, NULL);
UTI_AddDoubleToTimespec(&now_raw, correction, &now_cooked);
REF_GetReferenceParams(&now_cooked, &synchronised,
&rep->leap_status, &rep->stratum,
&rep->ref_id, &rep->ref_time,
&rep->root_delay, &rep->root_dispersion);
if (rep->stratum == NTP_MAX_STRATUM && !synchronised)
rep->stratum = 0;
rep->ip_addr.family = IPADDR_UNSPEC;
rep->current_correction = correction;
rep->freq_ppm = LCL_ReadAbsoluteFrequency();
rep->resid_freq_ppm = 0.0;
rep->skew_ppm = 0.0;
rep->last_update_interval = last_ref_update_interval;
rep->last_offset = last_offset;
rep->rms_offset = sqrt(avg2_offset);
if (synchronised) {
rep->ip_addr = our_ref_ip;
rep->resid_freq_ppm = 1.0e6 * our_residual_freq;
rep->skew_ppm = 1.0e6 * our_skew;
}
}
|