diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:44:12 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:44:12 +0000 |
commit | 1be69c2c660b70ac2f4de2a5326e27e3e60eb82d (patch) | |
tree | bb299ab6f411f4fccd735907035de710e4ec6abc /lib/crypto_backend/argon2/opt.c | |
parent | Initial commit. (diff) | |
download | cryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.tar.xz cryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.zip |
Adding upstream version 2:2.3.7.upstream/2%2.3.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/crypto_backend/argon2/opt.c')
-rw-r--r-- | lib/crypto_backend/argon2/opt.c | 283 |
1 files changed, 283 insertions, 0 deletions
diff --git a/lib/crypto_backend/argon2/opt.c b/lib/crypto_backend/argon2/opt.c new file mode 100644 index 0000000..6c5e403 --- /dev/null +++ b/lib/crypto_backend/argon2/opt.c @@ -0,0 +1,283 @@ +/* + * Argon2 reference source code package - reference C implementations + * + * Copyright 2015 + * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves + * + * You may use this work under the terms of a Creative Commons CC0 1.0 + * License/Waiver or the Apache Public License 2.0, at your option. The terms of + * these licenses can be found at: + * + * - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0 + * - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0 + * + * You should have received a copy of both of these licenses along with this + * software. If not, they may be obtained at the above URLs. + */ + +#include <stdint.h> +#include <string.h> +#include <stdlib.h> + +#include "argon2.h" +#include "core.h" + +#include "blake2/blake2.h" +#include "blake2/blamka-round-opt.h" + +/* + * Function fills a new memory block and optionally XORs the old block over the new one. + * Memory must be initialized. + * @param state Pointer to the just produced block. Content will be updated(!) + * @param ref_block Pointer to the reference block + * @param next_block Pointer to the block to be XORed over. May coincide with @ref_block + * @param with_xor Whether to XOR into the new block (1) or just overwrite (0) + * @pre all block pointers must be valid + */ +#if defined(__AVX512F__) +static void fill_block(__m512i *state, const block *ref_block, + block *next_block, int with_xor) { + __m512i block_XY[ARGON2_512BIT_WORDS_IN_BLOCK]; + unsigned int i; + + if (with_xor) { + for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) { + state[i] = _mm512_xor_si512( + state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i)); + block_XY[i] = _mm512_xor_si512( + state[i], _mm512_loadu_si512((const __m512i *)next_block->v + i)); + } + } else { + for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) { + block_XY[i] = state[i] = _mm512_xor_si512( + state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i)); + } + } + + for (i = 0; i < 2; ++i) { + BLAKE2_ROUND_1( + state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3], + state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]); + } + + for (i = 0; i < 2; ++i) { + BLAKE2_ROUND_2( + state[2 * 0 + i], state[2 * 1 + i], state[2 * 2 + i], state[2 * 3 + i], + state[2 * 4 + i], state[2 * 5 + i], state[2 * 6 + i], state[2 * 7 + i]); + } + + for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) { + state[i] = _mm512_xor_si512(state[i], block_XY[i]); + _mm512_storeu_si512((__m512i *)next_block->v + i, state[i]); + } +} +#elif defined(__AVX2__) +static void fill_block(__m256i *state, const block *ref_block, + block *next_block, int with_xor) { + __m256i block_XY[ARGON2_HWORDS_IN_BLOCK]; + unsigned int i; + + if (with_xor) { + for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { + state[i] = _mm256_xor_si256( + state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i)); + block_XY[i] = _mm256_xor_si256( + state[i], _mm256_loadu_si256((const __m256i *)next_block->v + i)); + } + } else { + for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { + block_XY[i] = state[i] = _mm256_xor_si256( + state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i)); + } + } + + for (i = 0; i < 4; ++i) { + BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5], + state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]); + } + + for (i = 0; i < 4; ++i) { + BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i], + state[16 + i], state[20 + i], state[24 + i], state[28 + i]); + } + + for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { + state[i] = _mm256_xor_si256(state[i], block_XY[i]); + _mm256_storeu_si256((__m256i *)next_block->v + i, state[i]); + } +} +#else +static void fill_block(__m128i *state, const block *ref_block, + block *next_block, int with_xor) { + __m128i block_XY[ARGON2_OWORDS_IN_BLOCK]; + unsigned int i; + + if (with_xor) { + for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { + state[i] = _mm_xor_si128( + state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i)); + block_XY[i] = _mm_xor_si128( + state[i], _mm_loadu_si128((const __m128i *)next_block->v + i)); + } + } else { + for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { + block_XY[i] = state[i] = _mm_xor_si128( + state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i)); + } + } + + for (i = 0; i < 8; ++i) { + BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], + state[8 * i + 3], state[8 * i + 4], state[8 * i + 5], + state[8 * i + 6], state[8 * i + 7]); + } + + for (i = 0; i < 8; ++i) { + BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i], + state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i], + state[8 * 6 + i], state[8 * 7 + i]); + } + + for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { + state[i] = _mm_xor_si128(state[i], block_XY[i]); + _mm_storeu_si128((__m128i *)next_block->v + i, state[i]); + } +} +#endif + +static void next_addresses(block *address_block, block *input_block) { + /*Temporary zero-initialized blocks*/ +#if defined(__AVX512F__) + __m512i zero_block[ARGON2_512BIT_WORDS_IN_BLOCK]; + __m512i zero2_block[ARGON2_512BIT_WORDS_IN_BLOCK]; +#elif defined(__AVX2__) + __m256i zero_block[ARGON2_HWORDS_IN_BLOCK]; + __m256i zero2_block[ARGON2_HWORDS_IN_BLOCK]; +#else + __m128i zero_block[ARGON2_OWORDS_IN_BLOCK]; + __m128i zero2_block[ARGON2_OWORDS_IN_BLOCK]; +#endif + + memset(zero_block, 0, sizeof(zero_block)); + memset(zero2_block, 0, sizeof(zero2_block)); + + /*Increasing index counter*/ + input_block->v[6]++; + + /*First iteration of G*/ + fill_block(zero_block, input_block, address_block, 0); + + /*Second iteration of G*/ + fill_block(zero2_block, address_block, address_block, 0); +} + +void fill_segment(const argon2_instance_t *instance, + argon2_position_t position) { + block *ref_block = NULL, *curr_block = NULL; + block address_block, input_block; + uint64_t pseudo_rand, ref_index, ref_lane; + uint32_t prev_offset, curr_offset; + uint32_t starting_index, i; +#if defined(__AVX512F__) + __m512i state[ARGON2_512BIT_WORDS_IN_BLOCK]; +#elif defined(__AVX2__) + __m256i state[ARGON2_HWORDS_IN_BLOCK]; +#else + __m128i state[ARGON2_OWORDS_IN_BLOCK]; +#endif + int data_independent_addressing; + + if (instance == NULL) { + return; + } + + data_independent_addressing = + (instance->type == Argon2_i) || + (instance->type == Argon2_id && (position.pass == 0) && + (position.slice < ARGON2_SYNC_POINTS / 2)); + + if (data_independent_addressing) { + init_block_value(&input_block, 0); + + input_block.v[0] = position.pass; + input_block.v[1] = position.lane; + input_block.v[2] = position.slice; + input_block.v[3] = instance->memory_blocks; + input_block.v[4] = instance->passes; + input_block.v[5] = instance->type; + } + + starting_index = 0; + + if ((0 == position.pass) && (0 == position.slice)) { + starting_index = 2; /* we have already generated the first two blocks */ + + /* Don't forget to generate the first block of addresses: */ + if (data_independent_addressing) { + next_addresses(&address_block, &input_block); + } + } + + /* Offset of the current block */ + curr_offset = position.lane * instance->lane_length + + position.slice * instance->segment_length + starting_index; + + if (0 == curr_offset % instance->lane_length) { + /* Last block in this lane */ + prev_offset = curr_offset + instance->lane_length - 1; + } else { + /* Previous block */ + prev_offset = curr_offset - 1; + } + + memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE); + + for (i = starting_index; i < instance->segment_length; + ++i, ++curr_offset, ++prev_offset) { + /*1.1 Rotating prev_offset if needed */ + if (curr_offset % instance->lane_length == 1) { + prev_offset = curr_offset - 1; + } + + /* 1.2 Computing the index of the reference block */ + /* 1.2.1 Taking pseudo-random value from the previous block */ + if (data_independent_addressing) { + if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { + next_addresses(&address_block, &input_block); + } + pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; + } else { + pseudo_rand = instance->memory[prev_offset].v[0]; + } + + /* 1.2.2 Computing the lane of the reference block */ + ref_lane = ((pseudo_rand >> 32)) % instance->lanes; + + if ((position.pass == 0) && (position.slice == 0)) { + /* Can not reference other lanes yet */ + ref_lane = position.lane; + } + + /* 1.2.3 Computing the number of possible reference block within the + * lane. + */ + position.index = i; + ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, + ref_lane == position.lane); + + /* 2 Creating a new block */ + ref_block = + instance->memory + instance->lane_length * ref_lane + ref_index; + curr_block = instance->memory + curr_offset; + if (ARGON2_VERSION_10 == instance->version) { + /* version 1.2.1 and earlier: overwrite, not XOR */ + fill_block(state, ref_block, curr_block, 0); + } else { + if(0 == position.pass) { + fill_block(state, ref_block, curr_block, 0); + } else { + fill_block(state, ref_block, curr_block, 1); + } + } + } +} |