summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/ucnvmbcs.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /intl/icu/source/common/ucnvmbcs.cpp
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/common/ucnvmbcs.cpp')
-rw-r--r--intl/icu/source/common/ucnvmbcs.cpp5723
1 files changed, 5723 insertions, 0 deletions
diff --git a/intl/icu/source/common/ucnvmbcs.cpp b/intl/icu/source/common/ucnvmbcs.cpp
new file mode 100644
index 0000000000..ca9b0a335a
--- /dev/null
+++ b/intl/icu/source/common/ucnvmbcs.cpp
@@ -0,0 +1,5723 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+******************************************************************************
+*
+* Copyright (C) 2000-2016, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+******************************************************************************
+* file name: ucnvmbcs.cpp
+* encoding: UTF-8
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2000jul03
+* created by: Markus W. Scherer
+*
+* The current code in this file replaces the previous implementation
+* of conversion code from multi-byte codepages to Unicode and back.
+* This implementation supports the following:
+* - legacy variable-length codepages with up to 4 bytes per character
+* - all Unicode code points (up to 0x10ffff)
+* - efficient distinction of unassigned vs. illegal byte sequences
+* - it is possible in fromUnicode() to directly deal with simple
+* stateful encodings (used for EBCDIC_STATEFUL)
+* - it is possible to convert Unicode code points
+* to a single zero byte (but not as a fallback except for SBCS)
+*
+* Remaining limitations in fromUnicode:
+* - byte sequences must not have leading zero bytes
+* - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
+* - limitation to up to 4 bytes per character
+*
+* ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
+* limitations and adds m:n character mappings and other features.
+* See ucnv_ext.h for details.
+*
+* Change history:
+*
+* 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
+* MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
+* macros to ucnvmbcs.h file
+*/
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
+
+#include "unicode/ucnv.h"
+#include "unicode/ucnv_cb.h"
+#include "unicode/udata.h"
+#include "unicode/uset.h"
+#include "unicode/utf8.h"
+#include "unicode/utf16.h"
+#include "ucnv_bld.h"
+#include "ucnvmbcs.h"
+#include "ucnv_ext.h"
+#include "ucnv_cnv.h"
+#include "cmemory.h"
+#include "cstring.h"
+#include "umutex.h"
+#include "ustr_imp.h"
+
+/* control optimizations according to the platform */
+#define MBCS_UNROLL_SINGLE_TO_BMP 1
+#define MBCS_UNROLL_SINGLE_FROM_BMP 0
+
+/*
+ * _MBCSHeader versions 5.3 & 4.3
+ * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
+ *
+ * This version is optional. Version 5 is used for incompatible data format changes.
+ * makeconv will continue to generate version 4 files if possible.
+ *
+ * Changes from version 4:
+ *
+ * The main difference is an additional _MBCSHeader field with
+ * - the length (number of uint32_t) of the _MBCSHeader
+ * - flags for further incompatible data format changes
+ * - flags for further, backward compatible data format changes
+ *
+ * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
+ * the file and needs to be reconstituted at load time.
+ * This requires a utf8Friendly format with an additional mbcsIndex table for fast
+ * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
+ * (For details about these structures see below, and see ucnvmbcs.h.)
+ *
+ * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
+ * of the Unicode code points. (This requires that the .ucm file has the |0 etc.
+ * precision markers for all mappings.)
+ *
+ * All fallbacks have been moved to the extension table, leaving only roundtrips in the
+ * omitted data that can be reconstituted from the toUnicode data.
+ *
+ * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
+ * With only roundtrip mappings in the base fromUnicode data, this part is fully
+ * redundant with the mbcsIndex and will be reconstituted from that (also using the
+ * stage 1 table which contains the information about how stage 2 was compacted).
+ *
+ * The rest of the stage 2 table, the part for code points above maxFastUChar,
+ * is stored in the file and will be appended to the reconstituted part.
+ *
+ * The entire fromUBytes array is omitted from the file and will be reconstitued.
+ * This is done by enumerating all toUnicode roundtrip mappings, performing
+ * each mapping (using the stage 1 and reconstituted stage 2 tables) and
+ * writing instead of reading the byte values.
+ *
+ * _MBCSHeader version 4.3
+ *
+ * Change from version 4.2:
+ * - Optional utf8Friendly data structures, with 64-entry stage 3 block
+ * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
+ * files which can be used instead of stages 1 & 2.
+ * Faster lookups for roundtrips from most commonly used characters,
+ * and lookups from UTF-8 byte sequences with a natural bit distribution.
+ * See ucnvmbcs.h for more details.
+ *
+ * Change from version 4.1:
+ * - Added an optional extension table structure at the end of the .cnv file.
+ * It is present if the upper bits of the header flags field contains a non-zero
+ * byte offset to it.
+ * Files that contain only a conversion table and no base table
+ * use the special outputType MBCS_OUTPUT_EXT_ONLY.
+ * These contain the base table name between the MBCS header and the extension
+ * data.
+ *
+ * Change from version 4.0:
+ * - Replace header.reserved with header.fromUBytesLength so that all
+ * fields in the data have length.
+ *
+ * Changes from version 3 (for performance improvements):
+ * - new bit distribution for state table entries
+ * - reordered action codes
+ * - new data structure for single-byte fromUnicode
+ * + stage 2 only contains indexes
+ * + stage 3 stores 16 bits per character with classification bits 15..8
+ * - no multiplier for stage 1 entries
+ * - stage 2 for non-single-byte codepages contains the index and the flags in
+ * one 32-bit value
+ * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
+ *
+ * For more details about old versions of the MBCS data structure, see
+ * the corresponding versions of this file.
+ *
+ * Converting stateless codepage data ---------------------------------------***
+ * (or codepage data with simple states) to Unicode.
+ *
+ * Data structure and algorithm for converting from complex legacy codepages
+ * to Unicode. (Designed before 2000-may-22.)
+ *
+ * The basic idea is that the structure of legacy codepages can be described
+ * with state tables.
+ * When reading a byte stream, each input byte causes a state transition.
+ * Some transitions result in the output of a code point, some result in
+ * "unassigned" or "illegal" output.
+ * This is used here for character conversion.
+ *
+ * The data structure begins with a state table consisting of a row
+ * per state, with 256 entries (columns) per row for each possible input
+ * byte value.
+ * Each entry is 32 bits wide, with two formats distinguished by
+ * the sign bit (bit 31):
+ *
+ * One format for transitional entries (bit 31 not set) for non-final bytes, and
+ * one format for final entries (bit 31 set).
+ * Both formats contain the number of the next state in the same bit
+ * positions.
+ * State 0 is the initial state.
+ *
+ * Most of the time, the offset values of subsequent states are added
+ * up to a scalar value. This value will eventually be the index of
+ * the Unicode code point in a table that follows the state table.
+ * The effect is that the code points for final state table rows
+ * are contiguous. The code points of final state rows follow each other
+ * in the order of the references to those final states by previous
+ * states, etc.
+ *
+ * For some terminal states, the offset is itself the output Unicode
+ * code point (16 bits for a BMP code point or 20 bits for a supplementary
+ * code point (stored as code point minus 0x10000 so that 20 bits are enough).
+ * For others, the code point in the Unicode table is stored with either
+ * one or two code units: one for BMP code points, two for a pair of
+ * surrogates.
+ * All code points for a final state entry take up the same number of code
+ * units, regardless of whether they all actually _use_ the same number
+ * of code units. This is necessary for simple array access.
+ *
+ * An additional feature comes in with what in ICU is called "fallback"
+ * mappings:
+ *
+ * In addition to round-trippable, precise, 1:1 mappings, there are often
+ * mappings defined between similar, though not the same, characters.
+ * Typically, such mappings occur only in fromUnicode mapping tables because
+ * Unicode has a superset repertoire of most other codepages. However, it
+ * is possible to provide such mappings in the toUnicode tables, too.
+ * In this case, the fallback mappings are partly integrated into the
+ * general state tables because the structure of the encoding includes their
+ * byte sequences.
+ * For final entries in an initial state, fallback mappings are stored in
+ * the entry itself like with roundtrip mappings.
+ * For other final entries, they are stored in the code units table if
+ * the entry is for a pair of code units.
+ * For single-unit results in the code units table, there is no space to
+ * alternatively hold a fallback mapping; in this case, the code unit
+ * is stored as U+fffe (unassigned), and the fallback mapping needs to
+ * be looked up by the scalar offset value in a separate table.
+ *
+ * "Unassigned" state entries really mean "structurally unassigned",
+ * i.e., such a byte sequence will never have a mapping result.
+ *
+ * The interpretation of the bits in each entry is as follows:
+ *
+ * Bit 31 not set, not a terminal entry ("transitional"):
+ * 30..24 next state
+ * 23..0 offset delta, to be added up
+ *
+ * Bit 31 set, terminal ("final") entry:
+ * 30..24 next state (regardless of action code)
+ * 23..20 action code:
+ * action codes 0 and 1 result in precise-mapping Unicode code points
+ * 0 valid byte sequence
+ * 19..16 not used, 0
+ * 15..0 16-bit Unicode BMP code point
+ * never U+fffe or U+ffff
+ * 1 valid byte sequence
+ * 19..0 20-bit Unicode supplementary code point
+ * never U+fffe or U+ffff
+ *
+ * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
+ * 2 valid byte sequence (fallback)
+ * 19..16 not used, 0
+ * 15..0 16-bit Unicode BMP code point as fallback result
+ * 3 valid byte sequence (fallback)
+ * 19..0 20-bit Unicode supplementary code point as fallback result
+ *
+ * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
+ * depending on the code units they result in
+ * 4 valid byte sequence
+ * 19..9 not used, 0
+ * 8..0 final offset delta
+ * pointing to one 16-bit code unit which may be
+ * fffe unassigned -- look for a fallback for this offset
+ * ffff illegal
+ * 5 valid byte sequence
+ * 19..9 not used, 0
+ * 8..0 final offset delta
+ * pointing to two 16-bit code units
+ * (typically UTF-16 surrogates)
+ * the result depends on the first code unit as follows:
+ * 0000..d7ff roundtrip BMP code point (1st alone)
+ * d800..dbff roundtrip surrogate pair (1st, 2nd)
+ * dc00..dfff fallback surrogate pair (1st-400, 2nd)
+ * e000 roundtrip BMP code point (2nd alone)
+ * e001 fallback BMP code point (2nd alone)
+ * fffe unassigned
+ * ffff illegal
+ * (the final offset deltas are at most 255 * 2,
+ * times 2 because of storing code unit pairs)
+ *
+ * 6 unassigned byte sequence
+ * 19..16 not used, 0
+ * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
+ * this does not contain a final offset delta because the main
+ * purpose of this action code is to save scalar offset values;
+ * therefore, fallback values cannot be assigned to byte
+ * sequences that result in this action code
+ * 7 illegal byte sequence
+ * 19..16 not used, 0
+ * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
+ * 8 state change only
+ * 19..0 not used, 0
+ * useful for state changes in simple stateful encodings,
+ * at Shift-In/Shift-Out codes
+ *
+ *
+ * 9..15 reserved for future use
+ * current implementations will only perform a state change
+ * and ignore bits 19..0
+ *
+ * An encoding with contiguous ranges of unassigned byte sequences, like
+ * Shift-JIS and especially EUC-TW, can be stored efficiently by having
+ * at least two states for the trail bytes:
+ * One trail byte state that results in code points, and one that only
+ * has "unassigned" and "illegal" terminal states.
+ *
+ * Note: partly by accident, this data structure supports simple stateful
+ * encodings without any additional logic.
+ * Currently, only simple Shift-In/Shift-Out schemes are handled with
+ * appropriate state tables (especially EBCDIC_STATEFUL!).
+ *
+ * MBCS version 2 added:
+ * unassigned and illegal action codes have U+fffe and U+ffff
+ * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
+ *
+ * Converting from Unicode to codepage bytes --------------------------------***
+ *
+ * The conversion data structure for fromUnicode is designed for the known
+ * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
+ * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
+ * a roundtrip mapping.
+ *
+ * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
+ * like in the character properties table.
+ * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
+ * with the resulting bytes is at offsetFromUBytes.
+ *
+ * Beginning with version 4, single-byte codepages have a significantly different
+ * trie compared to other codepages.
+ * In all cases, the entry in stage 1 is directly the index of the block of
+ * 64 entries in stage 2.
+ *
+ * Single-byte lookup:
+ *
+ * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
+ * Stage 3 contains one 16-bit word per result:
+ * Bits 15..8 indicate the kind of result:
+ * f roundtrip result
+ * c fallback result from private-use code point
+ * 8 fallback result from other code points
+ * 0 unassigned
+ * Bits 7..0 contain the codepage byte. A zero byte is always possible.
+ *
+ * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
+ * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
+ * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
+ * ASCII code points can be looked up with a linear array access into stage 3.
+ * See maxFastUChar and other details in ucnvmbcs.h.
+ *
+ * Multi-byte lookup:
+ *
+ * Stage 2 contains a 32-bit word for each 16-block in stage 3:
+ * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
+ * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
+ * If this test is false, then a non-zero result will be interpreted as
+ * a fallback mapping.
+ * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
+ *
+ * Stage 3 contains 2, 3, or 4 bytes per result.
+ * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
+ * while 3 bytes are stored as bytes in big-endian order.
+ * Leading zero bytes are ignored, and the number of bytes is counted.
+ * A zero byte mapping result is possible as a roundtrip result.
+ * For some output types, the actual result is processed from this;
+ * see ucnv_MBCSFromUnicodeWithOffsets().
+ *
+ * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
+ * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
+ *
+ * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
+ * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
+ * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
+ * ASCII code points can be looked up with a linear array access into stage 3.
+ * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
+ *
+ * In version 3, stage 2 blocks may overlap by multiples of the multiplier
+ * for compaction.
+ * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
+ * may overlap by any number of entries.
+ *
+ * MBCS version 2 added:
+ * the converter checks for known output types, which allows
+ * adding new ones without crashing an unaware converter
+ */
+
+/**
+ * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
+ * consecutive sequences of bytes, starting from the one encoded in value,
+ * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
+ * Does not currently support m:n mappings or reverse fallbacks.
+ * This function will not be called for sequences of bytes with leading zeros.
+ *
+ * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
+ * @param value contains 1..4 bytes of the first byte sequence, right-aligned
+ * @param codePoints resulting Unicode code points, or negative if a byte sequence does
+ * not map to anything
+ * @return TRUE to continue enumeration, FALSE to stop
+ */
+typedef UBool U_CALLCONV
+UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
+
+static void U_CALLCONV
+ucnv_MBCSLoad(UConverterSharedData *sharedData,
+ UConverterLoadArgs *pArgs,
+ const uint8_t *raw,
+ UErrorCode *pErrorCode);
+
+static void U_CALLCONV
+ucnv_MBCSUnload(UConverterSharedData *sharedData);
+
+static void U_CALLCONV
+ucnv_MBCSOpen(UConverter *cnv,
+ UConverterLoadArgs *pArgs,
+ UErrorCode *pErrorCode);
+
+static UChar32 U_CALLCONV
+ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode);
+
+static void U_CALLCONV
+ucnv_MBCSGetStarters(const UConverter* cnv,
+ UBool starters[256],
+ UErrorCode *pErrorCode);
+
+U_CDECL_BEGIN
+static const char* U_CALLCONV
+ucnv_MBCSGetName(const UConverter *cnv);
+U_CDECL_END
+
+static void U_CALLCONV
+ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
+ int32_t offsetIndex,
+ UErrorCode *pErrorCode);
+
+static UChar32 U_CALLCONV
+ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode);
+
+static void U_CALLCONV
+ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
+ UConverterToUnicodeArgs *pToUArgs,
+ UErrorCode *pErrorCode);
+
+static void U_CALLCONV
+ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
+ const USetAdder *sa,
+ UConverterUnicodeSet which,
+ UErrorCode *pErrorCode);
+
+static void U_CALLCONV
+ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
+ UConverterToUnicodeArgs *pToUArgs,
+ UErrorCode *pErrorCode);
+
+static const UConverterImpl _SBCSUTF8Impl={
+ UCNV_MBCS,
+
+ ucnv_MBCSLoad,
+ ucnv_MBCSUnload,
+
+ ucnv_MBCSOpen,
+ NULL,
+ NULL,
+
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSGetNextUChar,
+
+ ucnv_MBCSGetStarters,
+ ucnv_MBCSGetName,
+ ucnv_MBCSWriteSub,
+ NULL,
+ ucnv_MBCSGetUnicodeSet,
+
+ NULL,
+ ucnv_SBCSFromUTF8
+};
+
+static const UConverterImpl _DBCSUTF8Impl={
+ UCNV_MBCS,
+
+ ucnv_MBCSLoad,
+ ucnv_MBCSUnload,
+
+ ucnv_MBCSOpen,
+ NULL,
+ NULL,
+
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSGetNextUChar,
+
+ ucnv_MBCSGetStarters,
+ ucnv_MBCSGetName,
+ ucnv_MBCSWriteSub,
+ NULL,
+ ucnv_MBCSGetUnicodeSet,
+
+ NULL,
+ ucnv_DBCSFromUTF8
+};
+
+static const UConverterImpl _MBCSImpl={
+ UCNV_MBCS,
+
+ ucnv_MBCSLoad,
+ ucnv_MBCSUnload,
+
+ ucnv_MBCSOpen,
+ NULL,
+ NULL,
+
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSToUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSFromUnicodeWithOffsets,
+ ucnv_MBCSGetNextUChar,
+
+ ucnv_MBCSGetStarters,
+ ucnv_MBCSGetName,
+ ucnv_MBCSWriteSub,
+ NULL,
+ ucnv_MBCSGetUnicodeSet,
+ NULL,
+ NULL
+};
+
+/* Static data is in tools/makeconv/ucnvstat.c for data-based
+ * converters. Be sure to update it as well.
+ */
+
+const UConverterSharedData _MBCSData={
+ sizeof(UConverterSharedData), 1,
+ NULL, NULL, FALSE, TRUE, &_MBCSImpl,
+ 0, UCNV_MBCS_TABLE_INITIALIZER
+};
+
+
+/* GB 18030 data ------------------------------------------------------------ */
+
+/* helper macros for linear values for GB 18030 four-byte sequences */
+#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
+
+#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
+
+#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
+
+/*
+ * Some ranges of GB 18030 where both the Unicode code points and the
+ * GB four-byte sequences are contiguous and are handled algorithmically by
+ * the special callback functions below.
+ * The values are start & end of Unicode & GB codes.
+ *
+ * Note that single surrogates are not mapped by GB 18030
+ * as of the re-released mapping tables from 2000-nov-30.
+ */
+static const uint32_t
+gb18030Ranges[14][4]={
+ {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
+ {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
+ {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
+ {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
+ {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
+ {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
+ {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
+ {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
+ {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
+ {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
+ {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
+ {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
+ {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
+ {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
+};
+
+/* bit flag for UConverter.options indicating GB 18030 special handling */
+#define _MBCS_OPTION_GB18030 0x8000
+
+/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
+#define _MBCS_OPTION_KEIS 0x01000
+#define _MBCS_OPTION_JEF 0x02000
+#define _MBCS_OPTION_JIPS 0x04000
+
+#define KEIS_SO_CHAR_1 0x0A
+#define KEIS_SO_CHAR_2 0x42
+#define KEIS_SI_CHAR_1 0x0A
+#define KEIS_SI_CHAR_2 0x41
+
+#define JEF_SO_CHAR 0x28
+#define JEF_SI_CHAR 0x29
+
+#define JIPS_SO_CHAR_1 0x1A
+#define JIPS_SO_CHAR_2 0x70
+#define JIPS_SI_CHAR_1 0x1A
+#define JIPS_SI_CHAR_2 0x71
+
+enum SISO_Option {
+ SI,
+ SO
+};
+typedef enum SISO_Option SISO_Option;
+
+static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
+ int32_t SISOLength = 0;
+
+ switch (option) {
+ case SI:
+ if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
+ value[0] = KEIS_SI_CHAR_1;
+ value[1] = KEIS_SI_CHAR_2;
+ SISOLength = 2;
+ } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
+ value[0] = JEF_SI_CHAR;
+ SISOLength = 1;
+ } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
+ value[0] = JIPS_SI_CHAR_1;
+ value[1] = JIPS_SI_CHAR_2;
+ SISOLength = 2;
+ } else {
+ value[0] = UCNV_SI;
+ SISOLength = 1;
+ }
+ break;
+ case SO:
+ if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
+ value[0] = KEIS_SO_CHAR_1;
+ value[1] = KEIS_SO_CHAR_2;
+ SISOLength = 2;
+ } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
+ value[0] = JEF_SO_CHAR;
+ SISOLength = 1;
+ } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
+ value[0] = JIPS_SO_CHAR_1;
+ value[1] = JIPS_SO_CHAR_2;
+ SISOLength = 2;
+ } else {
+ value[0] = UCNV_SO;
+ SISOLength = 1;
+ }
+ break;
+ default:
+ /* Should never happen. */
+ break;
+ }
+
+ return SISOLength;
+}
+
+/* Miscellaneous ------------------------------------------------------------ */
+
+/* similar to ucnv_MBCSGetNextUChar() but recursive */
+static UBool
+enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
+ int32_t state, uint32_t offset,
+ uint32_t value,
+ UConverterEnumToUCallback *callback, const void *context,
+ UErrorCode *pErrorCode) {
+ UChar32 codePoints[32];
+ const int32_t *row;
+ const uint16_t *unicodeCodeUnits;
+ UChar32 anyCodePoints;
+ int32_t b, limit;
+
+ row=mbcsTable->stateTable[state];
+ unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
+
+ value<<=8;
+ anyCodePoints=-1; /* becomes non-negative if there is a mapping */
+
+ b=(stateProps[state]&0x38)<<2;
+ if(b==0 && stateProps[state]>=0x40) {
+ /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
+ codePoints[0]=U_SENTINEL;
+ b=1;
+ }
+ limit=((stateProps[state]&7)+1)<<5;
+ while(b<limit) {
+ int32_t entry=row[b];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
+ if(stateProps[nextState]>=0) {
+ /* recurse to a state with non-ignorable actions */
+ if(!enumToU(
+ mbcsTable, stateProps, nextState,
+ offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
+ value|(uint32_t)b,
+ callback, context,
+ pErrorCode)) {
+ return FALSE;
+ }
+ }
+ codePoints[b&0x1f]=U_SENTINEL;
+ } else {
+ UChar32 c;
+ int32_t action;
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=MBCS_ENTRY_FINAL_ACTION(entry);
+ if(action==MBCS_STATE_VALID_DIRECT_16) {
+ /* output BMP code point */
+ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ } else if(action==MBCS_STATE_VALID_16) {
+ int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[finalOffset];
+ if(c<0xfffe) {
+ /* output BMP code point */
+ } else {
+ c=U_SENTINEL;
+ }
+ } else if(action==MBCS_STATE_VALID_16_PAIR) {
+ int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[finalOffset++];
+ if(c<0xd800) {
+ /* output BMP code point below 0xd800 */
+ } else if(c<=0xdbff) {
+ /* output roundtrip or fallback supplementary code point */
+ c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
+ } else if(c==0xe000) {
+ /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
+ c=unicodeCodeUnits[finalOffset];
+ } else {
+ c=U_SENTINEL;
+ }
+ } else if(action==MBCS_STATE_VALID_DIRECT_20) {
+ /* output supplementary code point */
+ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
+ } else {
+ c=U_SENTINEL;
+ }
+
+ codePoints[b&0x1f]=c;
+ anyCodePoints&=c;
+ }
+ if(((++b)&0x1f)==0) {
+ if(anyCodePoints>=0) {
+ if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
+ return FALSE;
+ }
+ anyCodePoints=-1;
+ }
+ }
+ }
+ return TRUE;
+}
+
+/*
+ * Only called if stateProps[state]==-1.
+ * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
+ * MBCS_STATE_CHANGE_ONLY.
+ */
+static int8_t
+getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
+ const int32_t *row;
+ int32_t min, max, entry, nextState;
+
+ row=stateTable[state];
+ stateProps[state]=0;
+
+ /* find first non-ignorable state */
+ for(min=0;; ++min) {
+ entry=row[min];
+ nextState=MBCS_ENTRY_STATE(entry);
+ if(stateProps[nextState]==-1) {
+ getStateProp(stateTable, stateProps, nextState);
+ }
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ if(stateProps[nextState]>=0) {
+ break;
+ }
+ } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
+ break;
+ }
+ if(min==0xff) {
+ stateProps[state]=-0x40; /* (int8_t)0xc0 */
+ return stateProps[state];
+ }
+ }
+ stateProps[state]|=(int8_t)((min>>5)<<3);
+
+ /* find last non-ignorable state */
+ for(max=0xff; min<max; --max) {
+ entry=row[max];
+ nextState=MBCS_ENTRY_STATE(entry);
+ if(stateProps[nextState]==-1) {
+ getStateProp(stateTable, stateProps, nextState);
+ }
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ if(stateProps[nextState]>=0) {
+ break;
+ }
+ } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
+ break;
+ }
+ }
+ stateProps[state]|=(int8_t)(max>>5);
+
+ /* recurse further and collect direct-state information */
+ while(min<=max) {
+ entry=row[min];
+ nextState=MBCS_ENTRY_STATE(entry);
+ if(stateProps[nextState]==-1) {
+ getStateProp(stateTable, stateProps, nextState);
+ }
+ if(MBCS_ENTRY_IS_FINAL(entry)) {
+ stateProps[nextState]|=0x40;
+ if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
+ stateProps[state]|=0x40;
+ }
+ }
+ ++min;
+ }
+ return stateProps[state];
+}
+
+/*
+ * Internal function enumerating the toUnicode data of an MBCS converter.
+ * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
+ * table, but could also be used for a future ucnv_getUnicodeSet() option
+ * that includes reverse fallbacks (after updating this function's implementation).
+ * Currently only handles roundtrip mappings.
+ * Does not currently handle extensions.
+ */
+static void
+ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
+ UConverterEnumToUCallback *callback, const void *context,
+ UErrorCode *pErrorCode) {
+ /*
+ * Properties for each state, to speed up the enumeration.
+ * Ignorable actions are unassigned/illegal/state-change-only:
+ * They do not lead to mappings.
+ *
+ * Bits 7..6:
+ * 1 direct/initial state (stateful converters have multiple)
+ * 0 non-initial state with transitions or with non-ignorable result actions
+ * -1 final state with only ignorable actions
+ *
+ * Bits 5..3:
+ * The lowest byte value with non-ignorable actions is
+ * value<<5 (rounded down).
+ *
+ * Bits 2..0:
+ * The highest byte value with non-ignorable actions is
+ * (value<<5)&0x1f (rounded up).
+ */
+ int8_t stateProps[MBCS_MAX_STATE_COUNT];
+ int32_t state;
+
+ uprv_memset(stateProps, -1, sizeof(stateProps));
+
+ /* recurse from state 0 and set all stateProps */
+ getStateProp(mbcsTable->stateTable, stateProps, 0);
+
+ for(state=0; state<mbcsTable->countStates; ++state) {
+ /*if(stateProps[state]==-1) {
+ printf("unused/unreachable <icu:state> %d\n", state);
+ }*/
+ if(stateProps[state]>=0x40) {
+ /* start from each direct state */
+ enumToU(
+ mbcsTable, stateProps, state, 0, 0,
+ callback, context,
+ pErrorCode);
+ }
+ }
+}
+
+U_CFUNC void
+ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
+ const USetAdder *sa,
+ UConverterUnicodeSet which,
+ UConverterSetFilter filter,
+ UErrorCode *pErrorCode) {
+ const UConverterMBCSTable *mbcsTable;
+ const uint16_t *table;
+
+ uint32_t st3;
+ uint16_t st1, maxStage1, st2;
+
+ UChar32 c;
+
+ /* enumerate the from-Unicode trie table */
+ mbcsTable=&sharedData->mbcs;
+ table=mbcsTable->fromUnicodeTable;
+ if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
+ maxStage1=0x440;
+ } else {
+ maxStage1=0x40;
+ }
+
+ c=0; /* keep track of the current code point while enumerating */
+
+ if(mbcsTable->outputType==MBCS_OUTPUT_1) {
+ const uint16_t *stage2, *stage3, *results;
+ uint16_t minValue;
+
+ results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
+
+ /*
+ * Set a threshold variable for selecting which mappings to use.
+ * See ucnv_MBCSSingleFromBMPWithOffsets() and
+ * MBCS_SINGLE_RESULT_FROM_U() for details.
+ */
+ if(which==UCNV_ROUNDTRIP_SET) {
+ /* use only roundtrips */
+ minValue=0xf00;
+ } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
+ /* use all roundtrip and fallback results */
+ minValue=0x800;
+ }
+
+ for(st1=0; st1<maxStage1; ++st1) {
+ st2=table[st1];
+ if(st2>maxStage1) {
+ stage2=table+st2;
+ for(st2=0; st2<64; ++st2) {
+ if((st3=stage2[st2])!=0) {
+ /* read the stage 3 block */
+ stage3=results+st3;
+
+ do {
+ if(*stage3++>=minValue) {
+ sa->add(sa->set, c);
+ }
+ } while((++c&0xf)!=0);
+ } else {
+ c+=16; /* empty stage 3 block */
+ }
+ }
+ } else {
+ c+=1024; /* empty stage 2 block */
+ }
+ }
+ } else {
+ const uint32_t *stage2;
+ const uint8_t *stage3, *bytes;
+ uint32_t st3Multiplier;
+ uint32_t value;
+ UBool useFallback;
+
+ bytes=mbcsTable->fromUnicodeBytes;
+
+ useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
+
+ switch(mbcsTable->outputType) {
+ case MBCS_OUTPUT_3:
+ case MBCS_OUTPUT_4_EUC:
+ st3Multiplier=3;
+ break;
+ case MBCS_OUTPUT_4:
+ st3Multiplier=4;
+ break;
+ default:
+ st3Multiplier=2;
+ break;
+ }
+
+ for(st1=0; st1<maxStage1; ++st1) {
+ st2=table[st1];
+ if(st2>(maxStage1>>1)) {
+ stage2=(const uint32_t *)table+st2;
+ for(st2=0; st2<64; ++st2) {
+ if((st3=stage2[st2])!=0) {
+ /* read the stage 3 block */
+ stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
+
+ /* get the roundtrip flags for the stage 3 block */
+ st3>>=16;
+
+ /*
+ * Add code points for which the roundtrip flag is set,
+ * or which map to non-zero bytes if we use fallbacks.
+ * See ucnv_MBCSFromUnicodeWithOffsets() for details.
+ */
+ switch(filter) {
+ case UCNV_SET_FILTER_NONE:
+ do {
+ if(st3&1) {
+ sa->add(sa->set, c);
+ stage3+=st3Multiplier;
+ } else if(useFallback) {
+ uint8_t b=0;
+ switch(st3Multiplier) {
+ case 4:
+ b|=*stage3++;
+ U_FALLTHROUGH;
+ case 3:
+ b|=*stage3++;
+ U_FALLTHROUGH;
+ case 2:
+ b|=stage3[0]|stage3[1];
+ stage3+=2;
+ U_FALLTHROUGH;
+ default:
+ break;
+ }
+ if(b!=0) {
+ sa->add(sa->set, c);
+ }
+ }
+ st3>>=1;
+ } while((++c&0xf)!=0);
+ break;
+ case UCNV_SET_FILTER_DBCS_ONLY:
+ /* Ignore single-byte results (<0x100). */
+ do {
+ if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
+ sa->add(sa->set, c);
+ }
+ st3>>=1;
+ stage3+=2; /* +=st3Multiplier */
+ } while((++c&0xf)!=0);
+ break;
+ case UCNV_SET_FILTER_2022_CN:
+ /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
+ do {
+ if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
+ sa->add(sa->set, c);
+ }
+ st3>>=1;
+ stage3+=3; /* +=st3Multiplier */
+ } while((++c&0xf)!=0);
+ break;
+ case UCNV_SET_FILTER_SJIS:
+ /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
+ do {
+ if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
+ sa->add(sa->set, c);
+ }
+ st3>>=1;
+ stage3+=2; /* +=st3Multiplier */
+ } while((++c&0xf)!=0);
+ break;
+ case UCNV_SET_FILTER_GR94DBCS:
+ /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
+ do {
+ if( ((st3&1)!=0 || useFallback) &&
+ (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
+ (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
+ ) {
+ sa->add(sa->set, c);
+ }
+ st3>>=1;
+ stage3+=2; /* +=st3Multiplier */
+ } while((++c&0xf)!=0);
+ break;
+ case UCNV_SET_FILTER_HZ:
+ /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
+ do {
+ if( ((st3&1)!=0 || useFallback) &&
+ (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
+ (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
+ ) {
+ sa->add(sa->set, c);
+ }
+ st3>>=1;
+ stage3+=2; /* +=st3Multiplier */
+ } while((++c&0xf)!=0);
+ break;
+ default:
+ *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
+ return;
+ }
+ } else {
+ c+=16; /* empty stage 3 block */
+ }
+ }
+ } else {
+ c+=1024; /* empty stage 2 block */
+ }
+ }
+ }
+
+ ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
+}
+
+U_CFUNC void
+ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
+ const USetAdder *sa,
+ UConverterUnicodeSet which,
+ UErrorCode *pErrorCode) {
+ ucnv_MBCSGetFilteredUnicodeSetForUnicode(
+ sharedData, sa, which,
+ sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
+ UCNV_SET_FILTER_DBCS_ONLY :
+ UCNV_SET_FILTER_NONE,
+ pErrorCode);
+}
+
+static void U_CALLCONV
+ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
+ const USetAdder *sa,
+ UConverterUnicodeSet which,
+ UErrorCode *pErrorCode) {
+ if(cnv->options&_MBCS_OPTION_GB18030) {
+ sa->addRange(sa->set, 0, 0xd7ff);
+ sa->addRange(sa->set, 0xe000, 0x10ffff);
+ } else {
+ ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
+ }
+}
+
+/* conversion extensions for input not in the main table -------------------- */
+
+/*
+ * Hardcoded extension handling for GB 18030.
+ * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
+ *
+ * In the future, conversion extensions may handle m:n mappings and delta tables,
+ * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
+ *
+ * If an input character cannot be mapped, then these functions set an error
+ * code. The framework will then call the callback function.
+ */
+
+/*
+ * @return if(U_FAILURE) return the code point for cnv->fromUChar32
+ * else return 0 after output has been written to the target
+ */
+static UChar32
+_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
+ UChar32 cp,
+ const UChar **source, const UChar *sourceLimit,
+ uint8_t **target, const uint8_t *targetLimit,
+ int32_t **offsets, int32_t sourceIndex,
+ UBool flush,
+ UErrorCode *pErrorCode) {
+ const int32_t *cx;
+
+ cnv->useSubChar1=FALSE;
+
+ if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
+ ucnv_extInitialMatchFromU(
+ cnv, cx,
+ cp, source, sourceLimit,
+ (char **)target, (char *)targetLimit,
+ offsets, sourceIndex,
+ flush,
+ pErrorCode)
+ ) {
+ return 0; /* an extension mapping handled the input */
+ }
+
+ /* GB 18030 */
+ if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
+ const uint32_t *range;
+ int32_t i;
+
+ range=gb18030Ranges[0];
+ for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
+ if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
+ /* found the Unicode code point, output the four-byte sequence for it */
+ uint32_t linear;
+ char bytes[4];
+
+ /* get the linear value of the first GB 18030 code in this range */
+ linear=range[2]-LINEAR_18030_BASE;
+
+ /* add the offset from the beginning of the range */
+ linear+=((uint32_t)cp-range[0]);
+
+ /* turn this into a four-byte sequence */
+ bytes[3]=(char)(0x30+linear%10); linear/=10;
+ bytes[2]=(char)(0x81+linear%126); linear/=126;
+ bytes[1]=(char)(0x30+linear%10); linear/=10;
+ bytes[0]=(char)(0x81+linear);
+
+ /* output this sequence */
+ ucnv_fromUWriteBytes(cnv,
+ bytes, 4, (char **)target, (char *)targetLimit,
+ offsets, sourceIndex, pErrorCode);
+ return 0;
+ }
+ }
+ }
+
+ /* no mapping */
+ *pErrorCode=U_INVALID_CHAR_FOUND;
+ return cp;
+}
+
+/*
+ * Input sequence: cnv->toUBytes[0..length[
+ * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
+ * else return 0 after output has been written to the target
+ */
+static int8_t
+_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
+ int8_t length,
+ const uint8_t **source, const uint8_t *sourceLimit,
+ UChar **target, const UChar *targetLimit,
+ int32_t **offsets, int32_t sourceIndex,
+ UBool flush,
+ UErrorCode *pErrorCode) {
+ const int32_t *cx;
+
+ if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
+ ucnv_extInitialMatchToU(
+ cnv, cx,
+ length, (const char **)source, (const char *)sourceLimit,
+ target, targetLimit,
+ offsets, sourceIndex,
+ flush,
+ pErrorCode)
+ ) {
+ return 0; /* an extension mapping handled the input */
+ }
+
+ /* GB 18030 */
+ if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
+ const uint32_t *range;
+ uint32_t linear;
+ int32_t i;
+
+ linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
+ range=gb18030Ranges[0];
+ for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
+ if(range[2]<=linear && linear<=range[3]) {
+ /* found the sequence, output the Unicode code point for it */
+ *pErrorCode=U_ZERO_ERROR;
+
+ /* add the linear difference between the input and start sequences to the start code point */
+ linear=range[0]+(linear-range[2]);
+
+ /* output this code point */
+ ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
+
+ return 0;
+ }
+ }
+ }
+
+ /* no mapping */
+ *pErrorCode=U_INVALID_CHAR_FOUND;
+ return length;
+}
+
+/* EBCDIC swap LF<->NL ------------------------------------------------------ */
+
+/*
+ * This code modifies a standard EBCDIC<->Unicode mapping table for
+ * OS/390 (z/OS) Unix System Services (Open Edition).
+ * The difference is in the mapping of Line Feed and New Line control codes:
+ * Standard EBCDIC maps
+ *
+ * <U000A> \x25 |0
+ * <U0085> \x15 |0
+ *
+ * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
+ * mapping
+ *
+ * <U000A> \x15 |0
+ * <U0085> \x25 |0
+ *
+ * This code modifies a loaded standard EBCDIC<->Unicode mapping table
+ * by copying it into allocated memory and swapping the LF and NL values.
+ * It allows to support the same EBCDIC charset in both versions without
+ * duplicating the entire installed table.
+ */
+
+/* standard EBCDIC codes */
+#define EBCDIC_LF 0x25
+#define EBCDIC_NL 0x15
+
+/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
+#define EBCDIC_RT_LF 0xf25
+#define EBCDIC_RT_NL 0xf15
+
+/* Unicode code points */
+#define U_LF 0x0a
+#define U_NL 0x85
+
+static UBool
+_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
+ UConverterMBCSTable *mbcsTable;
+
+ const uint16_t *table, *results;
+ const uint8_t *bytes;
+
+ int32_t (*newStateTable)[256];
+ uint16_t *newResults;
+ uint8_t *p;
+ char *name;
+
+ uint32_t stage2Entry;
+ uint32_t size, sizeofFromUBytes;
+
+ mbcsTable=&sharedData->mbcs;
+
+ table=mbcsTable->fromUnicodeTable;
+ bytes=mbcsTable->fromUnicodeBytes;
+ results=(const uint16_t *)bytes;
+
+ /*
+ * Check that this is an EBCDIC table with SBCS portion -
+ * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
+ *
+ * If not, ignore the option. Options are always ignored if they do not apply.
+ */
+ if(!(
+ (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
+ mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
+ mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
+ )) {
+ return FALSE;
+ }
+
+ if(mbcsTable->outputType==MBCS_OUTPUT_1) {
+ if(!(
+ EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
+ EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
+ )) {
+ return FALSE;
+ }
+ } else /* MBCS_OUTPUT_2_SISO */ {
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
+ if(!(
+ MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
+ EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
+ )) {
+ return FALSE;
+ }
+
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
+ if(!(
+ MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
+ EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
+ )) {
+ return FALSE;
+ }
+ }
+
+ if(mbcsTable->fromUBytesLength>0) {
+ /*
+ * We _know_ the number of bytes in the fromUnicodeBytes array
+ * starting with header.version 4.1.
+ */
+ sizeofFromUBytes=mbcsTable->fromUBytesLength;
+ } else {
+ /*
+ * Otherwise:
+ * There used to be code to enumerate the fromUnicode
+ * trie and find the highest entry, but it was removed in ICU 3.2
+ * because it was not tested and caused a low code coverage number.
+ * See Jitterbug 3674.
+ * This affects only some .cnv file formats with a header.version
+ * below 4.1, and only when swaplfnl is requested.
+ *
+ * ucnvmbcs.c revision 1.99 is the last one with the
+ * ucnv_MBCSSizeofFromUBytes() function.
+ */
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return FALSE;
+ }
+
+ /*
+ * The table has an appropriate format.
+ * Allocate and build
+ * - a modified to-Unicode state table
+ * - a modified from-Unicode output array
+ * - a converter name string with the swap option appended
+ */
+ size=
+ mbcsTable->countStates*1024+
+ sizeofFromUBytes+
+ UCNV_MAX_CONVERTER_NAME_LENGTH+20;
+ p=(uint8_t *)uprv_malloc(size);
+ if(p==NULL) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return FALSE;
+ }
+
+ /* copy and modify the to-Unicode state table */
+ newStateTable=(int32_t (*)[256])p;
+ uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
+
+ newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
+ newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
+
+ /* copy and modify the from-Unicode result table */
+ newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
+ uprv_memcpy(newResults, bytes, sizeofFromUBytes);
+
+ /* conveniently, the table access macros work on the left side of expressions */
+ if(mbcsTable->outputType==MBCS_OUTPUT_1) {
+ MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
+ MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
+ } else /* MBCS_OUTPUT_2_SISO */ {
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
+ MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
+
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
+ MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
+ }
+
+ /* set the canonical converter name */
+ name=(char *)newResults+sizeofFromUBytes;
+ uprv_strcpy(name, sharedData->staticData->name);
+ uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
+
+ /* set the pointers */
+ icu::umtx_lock(NULL);
+ if(mbcsTable->swapLFNLStateTable==NULL) {
+ mbcsTable->swapLFNLStateTable=newStateTable;
+ mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
+ mbcsTable->swapLFNLName=name;
+
+ newStateTable=NULL;
+ }
+ icu::umtx_unlock(NULL);
+
+ /* release the allocated memory if another thread beat us to it */
+ if(newStateTable!=NULL) {
+ uprv_free(newStateTable);
+ }
+ return TRUE;
+}
+
+/* reconstitute omitted fromUnicode data ------------------------------------ */
+
+/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
+static UBool U_CALLCONV
+writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
+ UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
+ const uint16_t *table;
+ uint32_t *stage2;
+ uint8_t *bytes, *p;
+ UChar32 c;
+ int32_t i, st3;
+
+ table=mbcsTable->fromUnicodeTable;
+ bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
+
+ /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
+ switch(mbcsTable->outputType) {
+ case MBCS_OUTPUT_3_EUC:
+ if(value<=0xffff) {
+ /* short sequences are stored directly */
+ /* code set 0 or 1 */
+ } else if(value<=0x8effff) {
+ /* code set 2 */
+ value&=0x7fff;
+ } else /* first byte is 0x8f */ {
+ /* code set 3 */
+ value&=0xff7f;
+ }
+ break;
+ case MBCS_OUTPUT_4_EUC:
+ if(value<=0xffffff) {
+ /* short sequences are stored directly */
+ /* code set 0 or 1 */
+ } else if(value<=0x8effffff) {
+ /* code set 2 */
+ value&=0x7fffff;
+ } else /* first byte is 0x8f */ {
+ /* code set 3 */
+ value&=0xff7fff;
+ }
+ break;
+ default:
+ break;
+ }
+
+ for(i=0; i<=0x1f; ++value, ++i) {
+ c=codePoints[i];
+ if(c<0) {
+ continue;
+ }
+
+ /* locate the stage 2 & 3 data */
+ stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
+ p=bytes;
+ st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
+
+ /* write the codepage bytes into stage 3 */
+ switch(mbcsTable->outputType) {
+ case MBCS_OUTPUT_3:
+ case MBCS_OUTPUT_4_EUC:
+ p+=st3*3;
+ p[0]=(uint8_t)(value>>16);
+ p[1]=(uint8_t)(value>>8);
+ p[2]=(uint8_t)value;
+ break;
+ case MBCS_OUTPUT_4:
+ ((uint32_t *)p)[st3]=value;
+ break;
+ default:
+ /* 2 bytes per character */
+ ((uint16_t *)p)[st3]=(uint16_t)value;
+ break;
+ }
+
+ /* set the roundtrip flag */
+ *stage2|=(1UL<<(16+(c&0xf)));
+ }
+ return TRUE;
+ }
+
+static void
+reconstituteData(UConverterMBCSTable *mbcsTable,
+ uint32_t stage1Length, uint32_t stage2Length,
+ uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
+ UErrorCode *pErrorCode) {
+ uint16_t *stage1;
+ uint32_t *stage2;
+ uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
+ mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
+ if(mbcsTable->reconstitutedData==NULL) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
+
+ /* copy existing data and reroute the pointers */
+ stage1=(uint16_t *)mbcsTable->reconstitutedData;
+ uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
+
+ stage2=(uint32_t *)(stage1+stage1Length);
+ uprv_memcpy(stage2+(fullStage2Length-stage2Length),
+ mbcsTable->fromUnicodeTable+stage1Length,
+ stage2Length*4);
+
+ mbcsTable->fromUnicodeTable=stage1;
+ mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
+
+ /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
+ stage2=(uint32_t *)stage1;
+
+ /* reconstitute the initial part of stage 2 from the mbcsIndex */
+ {
+ int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
+ int32_t stageUTF8Index=0;
+ int32_t st1, st2, st3, i;
+
+ for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
+ st2=stage1[st1];
+ if(st2!=(int32_t)stage1Length/2) {
+ /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
+ for(i=0; i<16; ++i) {
+ st3=mbcsTable->mbcsIndex[stageUTF8Index++];
+ if(st3!=0) {
+ /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
+ st3>>=4;
+ /*
+ * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
+ * allocated together as a single 64-block for access from the mbcsIndex
+ */
+ stage2[st2++]=st3++;
+ stage2[st2++]=st3++;
+ stage2[st2++]=st3++;
+ stage2[st2++]=st3;
+ } else {
+ /* no stage 3 block, skip */
+ st2+=4;
+ }
+ }
+ } else {
+ /* no stage 2 block, skip */
+ stageUTF8Index+=16;
+ }
+ }
+ }
+
+ /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
+ ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
+}
+
+/* MBCS setup functions ----------------------------------------------------- */
+
+static void U_CALLCONV
+ucnv_MBCSLoad(UConverterSharedData *sharedData,
+ UConverterLoadArgs *pArgs,
+ const uint8_t *raw,
+ UErrorCode *pErrorCode) {
+ UDataInfo info;
+ UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
+ _MBCSHeader *header=(_MBCSHeader *)raw;
+ uint32_t offset;
+ uint32_t headerLength;
+ UBool noFromU=FALSE;
+
+ if(header->version[0]==4) {
+ headerLength=MBCS_HEADER_V4_LENGTH;
+ } else if(header->version[0]==5 && header->version[1]>=3 &&
+ (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
+ headerLength=header->options&MBCS_OPT_LENGTH_MASK;
+ noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
+ } else {
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+
+ mbcsTable->outputType=(uint8_t)header->flags;
+ if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+
+ /* extension data, header version 4.2 and higher */
+ offset=header->flags>>8;
+ if(offset!=0) {
+ mbcsTable->extIndexes=(const int32_t *)(raw+offset);
+ }
+
+ if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
+ UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
+ UConverterSharedData *baseSharedData;
+ const int32_t *extIndexes;
+ const char *baseName;
+
+ /* extension-only file, load the base table and set values appropriately */
+ if((extIndexes=mbcsTable->extIndexes)==NULL) {
+ /* extension-only file without extension */
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+
+ if(pArgs->nestedLoads!=1) {
+ /* an extension table must not be loaded as a base table */
+ *pErrorCode=U_INVALID_TABLE_FILE;
+ return;
+ }
+
+ /* load the base table */
+ baseName=(const char *)header+headerLength*4;
+ if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
+ /* forbid loading this same extension-only file */
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+
+ /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
+ args.size=sizeof(UConverterLoadArgs);
+ args.nestedLoads=2;
+ args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
+ args.reserved=pArgs->reserved;
+ args.options=pArgs->options;
+ args.pkg=pArgs->pkg;
+ args.name=baseName;
+ baseSharedData=ucnv_load(&args, pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
+ baseSharedData->mbcs.baseSharedData!=NULL
+ ) {
+ ucnv_unload(baseSharedData);
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+ if(pArgs->onlyTestIsLoadable) {
+ /*
+ * Exit as soon as we know that we can load the converter
+ * and the format is valid and supported.
+ * The worst that can happen in the following code is a memory
+ * allocation error.
+ */
+ ucnv_unload(baseSharedData);
+ return;
+ }
+
+ /* copy the base table data */
+ uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
+
+ /* overwrite values with relevant ones for the extension converter */
+ mbcsTable->baseSharedData=baseSharedData;
+ mbcsTable->extIndexes=extIndexes;
+
+ /*
+ * It would be possible to share the swapLFNL data with a base converter,
+ * but the generated name would have to be different, and the memory
+ * would have to be free'd only once.
+ * It is easier to just create the data for the extension converter
+ * separately when it is requested.
+ */
+ mbcsTable->swapLFNLStateTable=NULL;
+ mbcsTable->swapLFNLFromUnicodeBytes=NULL;
+ mbcsTable->swapLFNLName=NULL;
+
+ /*
+ * The reconstitutedData must be deleted only when the base converter
+ * is unloaded.
+ */
+ mbcsTable->reconstitutedData=NULL;
+
+ /*
+ * Set a special, runtime-only outputType if the extension converter
+ * is a DBCS version of a base converter that also maps single bytes.
+ */
+ if( sharedData->staticData->conversionType==UCNV_DBCS ||
+ (sharedData->staticData->conversionType==UCNV_MBCS &&
+ sharedData->staticData->minBytesPerChar>=2)
+ ) {
+ if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
+ /* the base converter is SI/SO-stateful */
+ int32_t entry;
+
+ /* get the dbcs state from the state table entry for SO=0x0e */
+ entry=mbcsTable->stateTable[0][0xe];
+ if( MBCS_ENTRY_IS_FINAL(entry) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
+ MBCS_ENTRY_FINAL_STATE(entry)!=0
+ ) {
+ mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
+
+ mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
+ }
+ } else if(
+ baseSharedData->staticData->conversionType==UCNV_MBCS &&
+ baseSharedData->staticData->minBytesPerChar==1 &&
+ baseSharedData->staticData->maxBytesPerChar==2 &&
+ mbcsTable->countStates<=127
+ ) {
+ /* non-stateful base converter, need to modify the state table */
+ int32_t (*newStateTable)[256];
+ int32_t *state;
+ int32_t i, count;
+
+ /* allocate a new state table and copy the base state table contents */
+ count=mbcsTable->countStates;
+ newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
+ if(newStateTable==NULL) {
+ ucnv_unload(baseSharedData);
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
+
+ /* change all final single-byte entries to go to a new all-illegal state */
+ state=newStateTable[0];
+ for(i=0; i<256; ++i) {
+ if(MBCS_ENTRY_IS_FINAL(state[i])) {
+ state[i]=MBCS_ENTRY_TRANSITION(count, 0);
+ }
+ }
+
+ /* build the new all-illegal state */
+ state=newStateTable[count];
+ for(i=0; i<256; ++i) {
+ state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
+ }
+ mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
+ mbcsTable->countStates=(uint8_t)(count+1);
+ mbcsTable->stateTableOwned=TRUE;
+
+ mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
+ }
+ }
+
+ /*
+ * unlike below for files with base tables, do not get the unicodeMask
+ * from the sharedData; instead, use the base table's unicodeMask,
+ * which we copied in the memcpy above;
+ * this is necessary because the static data unicodeMask, especially
+ * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
+ */
+ } else {
+ /* conversion file with a base table; an additional extension table is optional */
+ /* make sure that the output type is known */
+ switch(mbcsTable->outputType) {
+ case MBCS_OUTPUT_1:
+ case MBCS_OUTPUT_2:
+ case MBCS_OUTPUT_3:
+ case MBCS_OUTPUT_4:
+ case MBCS_OUTPUT_3_EUC:
+ case MBCS_OUTPUT_4_EUC:
+ case MBCS_OUTPUT_2_SISO:
+ /* OK */
+ break;
+ default:
+ *pErrorCode=U_INVALID_TABLE_FORMAT;
+ return;
+ }
+ if(pArgs->onlyTestIsLoadable) {
+ /*
+ * Exit as soon as we know that we can load the converter
+ * and the format is valid and supported.
+ * The worst that can happen in the following code is a memory
+ * allocation error.
+ */
+ return;
+ }
+
+ mbcsTable->countStates=(uint8_t)header->countStates;
+ mbcsTable->countToUFallbacks=header->countToUFallbacks;
+ mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
+ mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
+ mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
+
+ mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
+ mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
+ mbcsTable->fromUBytesLength=header->fromUBytesLength;
+
+ /*
+ * converter versions 6.1 and up contain a unicodeMask that is
+ * used here to select the most efficient function implementations
+ */
+ info.size=sizeof(UDataInfo);
+ udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
+ if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
+ /* mask off possible future extensions to be safe */
+ mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
+ } else {
+ /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
+ mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
+ }
+
+ /*
+ * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
+ * Check for the header version, SBCS vs. MBCS, and for whether the
+ * data structures are optimized for code points as high as what the
+ * runtime code is designed for.
+ * The implementation does not handle mapping tables with entries for
+ * unpaired surrogates.
+ */
+ if( header->version[1]>=3 &&
+ (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
+ (mbcsTable->countStates==1 ?
+ (header->version[2]>=(SBCS_FAST_MAX>>8)) :
+ (header->version[2]>=(MBCS_FAST_MAX>>8))
+ )
+ ) {
+ mbcsTable->utf8Friendly=TRUE;
+
+ if(mbcsTable->countStates==1) {
+ /*
+ * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
+ * Build a table with indexes to each block, to be used instead of
+ * the regular stage 1/2 table.
+ */
+ int32_t i;
+ for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
+ mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
+ }
+ /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
+ mbcsTable->maxFastUChar=SBCS_FAST_MAX;
+ } else {
+ /*
+ * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
+ * The .cnv file is prebuilt with an additional stage table with indexes
+ * to each block.
+ */
+ mbcsTable->mbcsIndex=(const uint16_t *)
+ (mbcsTable->fromUnicodeBytes+
+ (noFromU ? 0 : mbcsTable->fromUBytesLength));
+ mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
+ }
+ }
+
+ /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
+ {
+ uint32_t asciiRoundtrips=0xffffffff;
+ int32_t i;
+
+ for(i=0; i<0x80; ++i) {
+ if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
+ asciiRoundtrips&=~((uint32_t)1<<(i>>2));
+ }
+ }
+ mbcsTable->asciiRoundtrips=asciiRoundtrips;
+ }
+
+ if(noFromU) {
+ uint32_t stage1Length=
+ mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
+ 0x440 : 0x40;
+ uint32_t stage2Length=
+ (header->offsetFromUBytes-header->offsetFromUTable)/4-
+ stage1Length/2;
+ reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
+ }
+ }
+
+ /* Set the impl pointer here so that it is set for both extension-only and base tables. */
+ if(mbcsTable->utf8Friendly) {
+ if(mbcsTable->countStates==1) {
+ sharedData->impl=&_SBCSUTF8Impl;
+ } else {
+ if(mbcsTable->outputType==MBCS_OUTPUT_2) {
+ sharedData->impl=&_DBCSUTF8Impl;
+ }
+ }
+ }
+
+ if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
+ /*
+ * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
+ * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
+ */
+ mbcsTable->asciiRoundtrips=0;
+ }
+}
+
+static void U_CALLCONV
+ucnv_MBCSUnload(UConverterSharedData *sharedData) {
+ UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
+
+ if(mbcsTable->swapLFNLStateTable!=NULL) {
+ uprv_free(mbcsTable->swapLFNLStateTable);
+ }
+ if(mbcsTable->stateTableOwned) {
+ uprv_free((void *)mbcsTable->stateTable);
+ }
+ if(mbcsTable->baseSharedData!=NULL) {
+ ucnv_unload(mbcsTable->baseSharedData);
+ }
+ if(mbcsTable->reconstitutedData!=NULL) {
+ uprv_free(mbcsTable->reconstitutedData);
+ }
+}
+
+static void U_CALLCONV
+ucnv_MBCSOpen(UConverter *cnv,
+ UConverterLoadArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverterMBCSTable *mbcsTable;
+ const int32_t *extIndexes;
+ uint8_t outputType;
+ int8_t maxBytesPerUChar;
+
+ if(pArgs->onlyTestIsLoadable) {
+ return;
+ }
+
+ mbcsTable=&cnv->sharedData->mbcs;
+ outputType=mbcsTable->outputType;
+
+ if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
+ /* the swaplfnl option does not apply, remove it */
+ cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
+ }
+
+ if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ /* do this because double-checked locking is broken */
+ UBool isCached;
+
+ icu::umtx_lock(NULL);
+ isCached=mbcsTable->swapLFNLStateTable!=NULL;
+ icu::umtx_unlock(NULL);
+
+ if(!isCached) {
+ if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
+ if(U_FAILURE(*pErrorCode)) {
+ return; /* something went wrong */
+ }
+
+ /* the option does not apply, remove it */
+ cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
+ }
+ }
+ }
+
+ if(uprv_strstr(pArgs->name, "18030")!=NULL) {
+ if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
+ /* set a flag for GB 18030 mode, which changes the callback behavior */
+ cnv->options|=_MBCS_OPTION_GB18030;
+ }
+ } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
+ /* set a flag for KEIS converter, which changes the SI/SO character sequence */
+ cnv->options|=_MBCS_OPTION_KEIS;
+ } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
+ /* set a flag for JEF converter, which changes the SI/SO character sequence */
+ cnv->options|=_MBCS_OPTION_JEF;
+ } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
+ /* set a flag for JIPS converter, which changes the SI/SO character sequence */
+ cnv->options|=_MBCS_OPTION_JIPS;
+ }
+
+ /* fix maxBytesPerUChar depending on outputType and options etc. */
+ if(outputType==MBCS_OUTPUT_2_SISO) {
+ cnv->maxBytesPerUChar=3; /* SO+DBCS */
+ }
+
+ extIndexes=mbcsTable->extIndexes;
+ if(extIndexes!=NULL) {
+ maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
+ if(outputType==MBCS_OUTPUT_2_SISO) {
+ ++maxBytesPerUChar; /* SO + multiple DBCS */
+ }
+
+ if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
+ cnv->maxBytesPerUChar=maxBytesPerUChar;
+ }
+ }
+
+#if 0
+ /*
+ * documentation of UConverter fields used for status
+ * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
+ */
+
+ /* toUnicode */
+ cnv->toUnicodeStatus=0; /* offset */
+ cnv->mode=0; /* state */
+ cnv->toULength=0; /* byteIndex */
+
+ /* fromUnicode */
+ cnv->fromUChar32=0;
+ cnv->fromUnicodeStatus=1; /* prevLength */
+#endif
+}
+
+U_CDECL_BEGIN
+
+static const char* U_CALLCONV
+ucnv_MBCSGetName(const UConverter *cnv) {
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
+ return cnv->sharedData->mbcs.swapLFNLName;
+ } else {
+ return cnv->sharedData->staticData->name;
+ }
+}
+U_CDECL_END
+
+
+/* MBCS-to-Unicode conversion functions ------------------------------------- */
+
+static UChar32 U_CALLCONV
+ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
+ const _MBCSToUFallback *toUFallbacks;
+ uint32_t i, start, limit;
+
+ limit=mbcsTable->countToUFallbacks;
+ if(limit>0) {
+ /* do a binary search for the fallback mapping */
+ toUFallbacks=mbcsTable->toUFallbacks;
+ start=0;
+ while(start<limit-1) {
+ i=(start+limit)/2;
+ if(offset<toUFallbacks[i].offset) {
+ limit=i;
+ } else {
+ start=i;
+ }
+ }
+
+ /* did we really find it? */
+ if(offset==toUFallbacks[start].offset) {
+ return toUFallbacks[start].codePoint;
+ }
+ }
+
+ return 0xfffe;
+}
+
+/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
+static void
+ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const uint8_t *source, *sourceLimit;
+ UChar *target;
+ const UChar *targetLimit;
+ int32_t *offsets;
+
+ const int32_t (*stateTable)[256];
+
+ int32_t sourceIndex;
+
+ int32_t entry;
+ UChar c;
+ uint8_t action;
+
+ /* set up the local pointers */
+ cnv=pArgs->converter;
+ source=(const uint8_t *)pArgs->source;
+ sourceLimit=(const uint8_t *)pArgs->sourceLimit;
+ target=pArgs->target;
+ targetLimit=pArgs->targetLimit;
+ offsets=pArgs->offsets;
+
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
+ } else {
+ stateTable=cnv->sharedData->mbcs.stateTable;
+ }
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex=0;
+
+ /* conversion loop */
+ while(source<sourceLimit) {
+ /*
+ * This following test is to see if available input would overflow the output.
+ * It does not catch output of more than one code unit that
+ * overflows as a result of a surrogate pair or callback output
+ * from the last source byte.
+ * Therefore, those situations also test for overflows and will
+ * then break the loop, too.
+ */
+ if(target>=targetLimit) {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ entry=stateTable[0][*source++];
+ /* MBCS_ENTRY_IS_FINAL(entry) */
+
+ /* test the most common case first */
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+
+ /* normal end of action codes: prepare for a new character */
+ ++sourceIndex;
+ continue;
+ }
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_VALID_DIRECT_20 ||
+ (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
+ ) {
+ entry=MBCS_ENTRY_FINAL_VALUE(entry);
+ /* output surrogate pair */
+ *target++=(UChar)(0xd800|(UChar)(entry>>10));
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
+ if(target<targetLimit) {
+ *target++=c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ } else {
+ /* target overflow */
+ cnv->UCharErrorBuffer[0]=c;
+ cnv->UCharErrorBufferLength=1;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ ++sourceIndex;
+ continue;
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+
+ ++sourceIndex;
+ continue;
+ }
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ /* just fall through */
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ } else {
+ /* reserved, must never occur */
+ ++sourceIndex;
+ continue;
+ }
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ break;
+ } else /* unassigned sequences indicated with byteIndex>0 */ {
+ /* try an extension mapping */
+ pArgs->source=(const char *)source;
+ cnv->toUBytes[0]=*(source-1);
+ cnv->toULength=_extToU(cnv, cnv->sharedData,
+ 1, &source, sourceLimit,
+ &target, targetLimit,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ }
+ }
+ }
+
+ /* write back the updated pointers */
+ pArgs->source=(const char *)source;
+ pArgs->target=target;
+ pArgs->offsets=offsets;
+}
+
+/*
+ * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
+ * that only map to and from the BMP.
+ * In addition to single-byte optimizations, the offset calculations
+ * become much easier.
+ */
+static void
+ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const uint8_t *source, *sourceLimit, *lastSource;
+ UChar *target;
+ int32_t targetCapacity, length;
+ int32_t *offsets;
+
+ const int32_t (*stateTable)[256];
+
+ int32_t sourceIndex;
+
+ int32_t entry;
+ uint8_t action;
+
+ /* set up the local pointers */
+ cnv=pArgs->converter;
+ source=(const uint8_t *)pArgs->source;
+ sourceLimit=(const uint8_t *)pArgs->sourceLimit;
+ target=pArgs->target;
+ targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
+ offsets=pArgs->offsets;
+
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
+ } else {
+ stateTable=cnv->sharedData->mbcs.stateTable;
+ }
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex=0;
+ lastSource=source;
+
+ /*
+ * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
+ * for the minimum of the sourceLength and targetCapacity
+ */
+ length=(int32_t)(sourceLimit-source);
+ if(length<targetCapacity) {
+ targetCapacity=length;
+ }
+
+#if MBCS_UNROLL_SINGLE_TO_BMP
+ /* unrolling makes it faster on Pentium III/Windows 2000 */
+ /* unroll the loop with the most common case */
+unrolled:
+ if(targetCapacity>=16) {
+ int32_t count, loops, oredEntries;
+
+ loops=count=targetCapacity>>4;
+ do {
+ oredEntries=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ oredEntries|=entry=stateTable[0][*source++];
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+
+ /* were all 16 entries really valid? */
+ if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
+ /* no, return to the first of these 16 */
+ source-=16;
+ target-=16;
+ break;
+ }
+ } while(--count>0);
+ count=loops-count;
+ targetCapacity-=16*count;
+
+ if(offsets!=NULL) {
+ lastSource+=16*count;
+ while(count>0) {
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ --count;
+ }
+ }
+ }
+#endif
+
+ /* conversion loop */
+ while(targetCapacity > 0 && source < sourceLimit) {
+ entry=stateTable[0][*source++];
+ /* MBCS_ENTRY_IS_FINAL(entry) */
+
+ /* test the most common case first */
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ --targetCapacity;
+ continue;
+ }
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ --targetCapacity;
+ continue;
+ }
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ /* just fall through */
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ } else {
+ /* reserved, must never occur */
+ continue;
+ }
+
+ /* set offsets since the start or the last extension */
+ if(offsets!=NULL) {
+ int32_t count=(int32_t)(source-lastSource);
+
+ /* predecrement: do not set the offset for the callback-causing character */
+ while(--count>0) {
+ *offsets++=sourceIndex++;
+ }
+ /* offset and sourceIndex are now set for the current character */
+ }
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ break;
+ } else /* unassigned sequences indicated with byteIndex>0 */ {
+ /* try an extension mapping */
+ lastSource=source;
+ cnv->toUBytes[0]=*(source-1);
+ cnv->toULength=_extToU(cnv, cnv->sharedData,
+ 1, &source, sourceLimit,
+ &target, pArgs->targetLimit,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ sourceIndex+=1+(int32_t)(source-lastSource);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ }
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pArgs->targetLimit-target);
+ length=(int32_t)(sourceLimit-source);
+ if(length<targetCapacity) {
+ targetCapacity=length;
+ }
+ }
+
+#if MBCS_UNROLL_SINGLE_TO_BMP
+ /* unrolling makes it faster on Pentium III/Windows 2000 */
+ goto unrolled;
+#endif
+ }
+
+ if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ }
+
+ /* set offsets since the start or the last callback */
+ if(offsets!=NULL) {
+ size_t count=source-lastSource;
+ while(count>0) {
+ *offsets++=sourceIndex++;
+ --count;
+ }
+ }
+
+ /* write back the updated pointers */
+ pArgs->source=(const char *)source;
+ pArgs->target=target;
+ pArgs->offsets=offsets;
+}
+
+static UBool
+hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
+ const int32_t *row=stateTable[state];
+ int32_t b, entry;
+ /* First test for final entries in this state for some commonly valid byte values. */
+ entry=row[0xa1];
+ if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
+ ) {
+ return TRUE;
+ }
+ entry=row[0x41];
+ if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
+ ) {
+ return TRUE;
+ }
+ /* Then test for final entries in this state. */
+ for(b=0; b<=0xff; ++b) {
+ entry=row[b];
+ if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
+ ) {
+ return TRUE;
+ }
+ }
+ /* Then recurse for transition entries. */
+ for(b=0; b<=0xff; ++b) {
+ entry=row[b];
+ if( MBCS_ENTRY_IS_TRANSITION(entry) &&
+ hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
+ ) {
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+/*
+ * Is byte b a single/lead byte in this state?
+ * Recurse for transition states, because here we don't want to say that
+ * b is a lead byte if all byte sequences that start with b are illegal.
+ */
+static UBool
+isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
+ const int32_t *row=stateTable[state];
+ int32_t entry=row[b];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */
+ return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
+ } else {
+ uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
+ return FALSE; /* SI/SO are illegal for DBCS-only conversion */
+ } else {
+ return action!=MBCS_STATE_ILLEGAL;
+ }
+ }
+}
+
+U_CFUNC void
+ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const uint8_t *source, *sourceLimit;
+ UChar *target;
+ const UChar *targetLimit;
+ int32_t *offsets;
+
+ const int32_t (*stateTable)[256];
+ const uint16_t *unicodeCodeUnits;
+
+ uint32_t offset;
+ uint8_t state;
+ int8_t byteIndex;
+ uint8_t *bytes;
+
+ int32_t sourceIndex, nextSourceIndex;
+
+ int32_t entry;
+ UChar c;
+ uint8_t action;
+
+ /* use optimized function if possible */
+ cnv=pArgs->converter;
+
+ if(cnv->preToULength>0) {
+ /*
+ * pass sourceIndex=-1 because we continue from an earlier buffer
+ * in the future, this may change with continuous offsets
+ */
+ ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
+
+ if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
+ return;
+ }
+ }
+
+ if(cnv->sharedData->mbcs.countStates==1) {
+ if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
+ } else {
+ ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
+ }
+ return;
+ }
+
+ /* set up the local pointers */
+ source=(const uint8_t *)pArgs->source;
+ sourceLimit=(const uint8_t *)pArgs->sourceLimit;
+ target=pArgs->target;
+ targetLimit=pArgs->targetLimit;
+ offsets=pArgs->offsets;
+
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
+ } else {
+ stateTable=cnv->sharedData->mbcs.stateTable;
+ }
+ unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
+
+ /* get the converter state from UConverter */
+ offset=cnv->toUnicodeStatus;
+ byteIndex=cnv->toULength;
+ bytes=cnv->toUBytes;
+
+ /*
+ * if we are in the SBCS state for a DBCS-only converter,
+ * then load the DBCS state from the MBCS data
+ * (dbcsOnlyState==0 if it is not a DBCS-only converter)
+ */
+ if((state=(uint8_t)(cnv->mode))==0) {
+ state=cnv->sharedData->mbcs.dbcsOnlyState;
+ }
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex=byteIndex==0 ? 0 : -1;
+ nextSourceIndex=0;
+
+ /* conversion loop */
+ while(source<sourceLimit) {
+ /*
+ * This following test is to see if available input would overflow the output.
+ * It does not catch output of more than one code unit that
+ * overflows as a result of a surrogate pair or callback output
+ * from the last source byte.
+ * Therefore, those situations also test for overflows and will
+ * then break the loop, too.
+ */
+ if(target>=targetLimit) {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ if(byteIndex==0) {
+ /* optimized loop for 1/2-byte input and BMP output */
+ if(offsets==NULL) {
+ do {
+ entry=stateTable[state][*source];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+
+ ++source;
+ if( source<sourceLimit &&
+ MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
+ (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
+ ) {
+ ++source;
+ *target++=c;
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+ offset=0;
+ } else {
+ /* set the state and leave the optimized loop */
+ bytes[0]=*(source-1);
+ byteIndex=1;
+ break;
+ }
+ } else {
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ ++source;
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+ } else {
+ /* leave the optimized loop */
+ break;
+ }
+ }
+ } while(source<sourceLimit && target<targetLimit);
+ } else /* offsets!=NULL */ {
+ do {
+ entry=stateTable[state][*source];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+
+ ++source;
+ if( source<sourceLimit &&
+ MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
+ (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
+ ) {
+ ++source;
+ *target++=c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ sourceIndex=(nextSourceIndex+=2);
+ }
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+ offset=0;
+ } else {
+ /* set the state and leave the optimized loop */
+ ++nextSourceIndex;
+ bytes[0]=*(source-1);
+ byteIndex=1;
+ break;
+ }
+ } else {
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ ++source;
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ sourceIndex=++nextSourceIndex;
+ }
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+ } else {
+ /* leave the optimized loop */
+ break;
+ }
+ }
+ } while(source<sourceLimit && target<targetLimit);
+ }
+
+ /*
+ * these tests and break statements could be put inside the loop
+ * if C had "break outerLoop" like Java
+ */
+ if(source>=sourceLimit) {
+ break;
+ }
+ if(target>=targetLimit) {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ ++nextSourceIndex;
+ bytes[byteIndex++]=*source++;
+ } else /* byteIndex>0 */ {
+ ++nextSourceIndex;
+ entry=stateTable[state][bytes[byteIndex++]=*source++];
+ }
+
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+ continue;
+ }
+
+ /* save the previous state for proper extension mapping with SI/SO-stateful converters */
+ cnv->mode=state;
+
+ /* set the next state early so that we can reuse the entry variable */
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_VALID_16) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset];
+ if(c<0xfffe) {
+ /* output BMP code point */
+ *target++=c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ } else if(c==0xfffe) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
+ /* output fallback BMP code point */
+ *target++=(UChar)entry;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ }
+ } else {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_VALID_DIRECT_16) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ } else if(action==MBCS_STATE_VALID_16_PAIR) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset++];
+ if(c<0xd800) {
+ /* output BMP code point below 0xd800 */
+ *target++=c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
+ /* output roundtrip or fallback surrogate pair */
+ *target++=(UChar)(c&0xdbff);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ if(target<targetLimit) {
+ *target++=unicodeCodeUnits[offset];
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ } else {
+ /* target overflow */
+ cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
+ cnv->UCharErrorBufferLength=1;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+
+ offset=0;
+ break;
+ }
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
+ /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
+ *target++=unicodeCodeUnits[offset];
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ } else if(c==0xffff) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
+ (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
+ ) {
+ entry=MBCS_ENTRY_FINAL_VALUE(entry);
+ /* output surrogate pair */
+ *target++=(UChar)(0xd800|(UChar)(entry>>10));
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
+ if(target<targetLimit) {
+ *target++=c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ } else {
+ /* target overflow */
+ cnv->UCharErrorBuffer[0]=c;
+ cnv->UCharErrorBufferLength=1;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+
+ offset=0;
+ break;
+ }
+ } else if(action==MBCS_STATE_CHANGE_ONLY) {
+ /*
+ * This serves as a state change without any output.
+ * It is useful for reading simple stateful encodings,
+ * for example using just Shift-In/Shift-Out codes.
+ * The 21 unused bits may later be used for more sophisticated
+ * state transitions.
+ */
+ if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
+ byteIndex=0;
+ } else {
+ /* SI/SO are illegal for DBCS-only conversion */
+ state=(uint8_t)(cnv->mode); /* restore the previous state */
+
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ /* output BMP code point */
+ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ byteIndex=0;
+ }
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ /* just fall through */
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ } else {
+ /* reserved, must never occur */
+ byteIndex=0;
+ }
+
+ /* end of action codes: prepare for a new character */
+ offset=0;
+
+ if(byteIndex==0) {
+ sourceIndex=nextSourceIndex;
+ } else if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ if(byteIndex>1) {
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ */
+ UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
+ int8_t i;
+ for(i=1;
+ i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
+ ++i) {}
+ if(i<byteIndex) {
+ /* Back out some bytes. */
+ int8_t backOutDistance=byteIndex-i;
+ int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
+ byteIndex=i; /* length of reported illegal byte sequence */
+ if(backOutDistance<=bytesFromThisBuffer) {
+ source-=backOutDistance;
+ } else {
+ /* Back out bytes from the previous buffer: Need to replay them. */
+ cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
+ /* preToULength is negative! */
+ uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
+ source=(const uint8_t *)pArgs->source;
+ }
+ }
+ }
+ break;
+ } else /* unassigned sequences indicated with byteIndex>0 */ {
+ /* try an extension mapping */
+ pArgs->source=(const char *)source;
+ byteIndex=_extToU(cnv, cnv->sharedData,
+ byteIndex, &source, sourceLimit,
+ &target, targetLimit,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ }
+ }
+ }
+
+ /* set the converter state back into UConverter */
+ cnv->toUnicodeStatus=offset;
+ cnv->mode=state;
+ cnv->toULength=byteIndex;
+
+ /* write back the updated pointers */
+ pArgs->source=(const char *)source;
+ pArgs->target=target;
+ pArgs->offsets=offsets;
+}
+
+/*
+ * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
+ * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
+ */
+static UChar32
+ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const int32_t (*stateTable)[256];
+ const uint8_t *source, *sourceLimit;
+
+ int32_t entry;
+ uint8_t action;
+
+ /* set up the local pointers */
+ cnv=pArgs->converter;
+ source=(const uint8_t *)pArgs->source;
+ sourceLimit=(const uint8_t *)pArgs->sourceLimit;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
+ } else {
+ stateTable=cnv->sharedData->mbcs.stateTable;
+ }
+
+ /* conversion loop */
+ while(source<sourceLimit) {
+ entry=stateTable[0][*source++];
+ /* MBCS_ENTRY_IS_FINAL(entry) */
+
+ /* write back the updated pointer early so that we can return directly */
+ pArgs->source=(const char *)source;
+
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ }
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if( action==MBCS_STATE_VALID_DIRECT_20 ||
+ (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
+ ) {
+ /* output supplementary code point */
+ return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ /* output BMP code point */
+ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ }
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ /* just fall through */
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ } else {
+ /* reserved, must never occur */
+ continue;
+ }
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ break;
+ } else /* unassigned sequence */ {
+ /* defer to the generic implementation */
+ pArgs->source=(const char *)source-1;
+ return UCNV_GET_NEXT_UCHAR_USE_TO_U;
+ }
+ }
+
+ /* no output because of empty input or only state changes */
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ return 0xffff;
+}
+
+/*
+ * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
+ * conversion without offset handling.
+ *
+ * When a character does not have a mapping to Unicode, then we return to the
+ * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
+ * handling.
+ * We also defer to the generic code in other complicated cases and have them
+ * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
+ *
+ * All normal mappings and errors are handled here.
+ */
+static UChar32 U_CALLCONV
+ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const uint8_t *source, *sourceLimit, *lastSource;
+
+ const int32_t (*stateTable)[256];
+ const uint16_t *unicodeCodeUnits;
+
+ uint32_t offset;
+ uint8_t state;
+
+ int32_t entry;
+ UChar32 c;
+ uint8_t action;
+
+ /* use optimized function if possible */
+ cnv=pArgs->converter;
+
+ if(cnv->preToULength>0) {
+ /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
+ return UCNV_GET_NEXT_UCHAR_USE_TO_U;
+ }
+
+ if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
+ /*
+ * Using the generic ucnv_getNextUChar() code lets us deal correctly
+ * with the rare case of a codepage that maps single surrogates
+ * without adding the complexity to this already complicated function here.
+ */
+ return UCNV_GET_NEXT_UCHAR_USE_TO_U;
+ } else if(cnv->sharedData->mbcs.countStates==1) {
+ return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
+ }
+
+ /* set up the local pointers */
+ source=lastSource=(const uint8_t *)pArgs->source;
+ sourceLimit=(const uint8_t *)pArgs->sourceLimit;
+
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
+ } else {
+ stateTable=cnv->sharedData->mbcs.stateTable;
+ }
+ unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
+
+ /* get the converter state from UConverter */
+ offset=cnv->toUnicodeStatus;
+
+ /*
+ * if we are in the SBCS state for a DBCS-only converter,
+ * then load the DBCS state from the MBCS data
+ * (dbcsOnlyState==0 if it is not a DBCS-only converter)
+ */
+ if((state=(uint8_t)(cnv->mode))==0) {
+ state=cnv->sharedData->mbcs.dbcsOnlyState;
+ }
+
+ /* conversion loop */
+ c=U_SENTINEL;
+ while(source<sourceLimit) {
+ entry=stateTable[state][*source++];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+
+ /* optimization for 1/2-byte input and BMP output */
+ if( source<sourceLimit &&
+ MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
+ MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
+ (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
+ ) {
+ ++source;
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+ /* output BMP code point */
+ break;
+ }
+ } else {
+ /* save the previous state for proper extension mapping with SI/SO-stateful converters */
+ cnv->mode=state;
+
+ /* set the next state early so that we can reuse the entry variable */
+ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_VALID_DIRECT_16) {
+ /* output BMP code point */
+ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ break;
+ } else if(action==MBCS_STATE_VALID_16) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset];
+ if(c<0xfffe) {
+ /* output BMP code point */
+ break;
+ } else if(c==0xfffe) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
+ break;
+ }
+ } else {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_VALID_16_PAIR) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset++];
+ if(c<0xd800) {
+ /* output BMP code point below 0xd800 */
+ break;
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
+ /* output roundtrip or fallback supplementary code point */
+ c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
+ break;
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
+ /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
+ c=unicodeCodeUnits[offset];
+ break;
+ } else if(c==0xffff) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
+ (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
+ ) {
+ /* output supplementary code point */
+ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
+ break;
+ } else if(action==MBCS_STATE_CHANGE_ONLY) {
+ /*
+ * This serves as a state change without any output.
+ * It is useful for reading simple stateful encodings,
+ * for example using just Shift-In/Shift-Out codes.
+ * The 21 unused bits may later be used for more sophisticated
+ * state transitions.
+ */
+ if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
+ /* SI/SO are illegal for DBCS-only conversion */
+ state=(uint8_t)(cnv->mode); /* restore the previous state */
+
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ /* output BMP code point */
+ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ break;
+ }
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ /* just fall through */
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ } else {
+ /* reserved (must never occur), or only state change */
+ offset=0;
+ lastSource=source;
+ continue;
+ }
+
+ /* end of action codes: prepare for a new character */
+ offset=0;
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ break;
+ } else /* unassigned sequence */ {
+ /* defer to the generic implementation */
+ cnv->toUnicodeStatus=0;
+ cnv->mode=state;
+ pArgs->source=(const char *)lastSource;
+ return UCNV_GET_NEXT_UCHAR_USE_TO_U;
+ }
+ }
+ }
+
+ if(c<0) {
+ if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
+ /* incomplete character byte sequence */
+ uint8_t *bytes=cnv->toUBytes;
+ cnv->toULength=(int8_t)(source-lastSource);
+ do {
+ *bytes++=*lastSource++;
+ } while(lastSource<source);
+ *pErrorCode=U_TRUNCATED_CHAR_FOUND;
+ } else if(U_FAILURE(*pErrorCode)) {
+ /* callback(illegal) */
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ */
+ UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
+ uint8_t *bytes=cnv->toUBytes;
+ *bytes++=*lastSource++; /* first byte */
+ if(lastSource==source) {
+ cnv->toULength=1;
+ } else /* lastSource<source: multi-byte character */ {
+ int8_t i;
+ for(i=1;
+ lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
+ ++i
+ ) {
+ *bytes++=*lastSource++;
+ }
+ cnv->toULength=i;
+ source=lastSource;
+ }
+ } else {
+ /* no output because of empty input or only state changes */
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ c=0xffff;
+ }
+
+ /* set the converter state back into UConverter, ready for a new character */
+ cnv->toUnicodeStatus=0;
+ cnv->mode=state;
+
+ /* write back the updated pointer */
+ pArgs->source=(const char *)source;
+ return c;
+}
+
+#if 0
+/*
+ * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
+ * Removal improves code coverage.
+ */
+/**
+ * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
+ * It does not handle the EBCDIC swaplfnl option (set in UConverter).
+ * It does not handle conversion extensions (_extToU()).
+ */
+U_CFUNC UChar32
+ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
+ uint8_t b, UBool useFallback) {
+ int32_t entry;
+ uint8_t action;
+
+ entry=sharedData->mbcs.stateTable[0][b];
+ /* MBCS_ENTRY_IS_FINAL(entry) */
+
+ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
+ /* output BMP code point */
+ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ }
+
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_VALID_DIRECT_20) {
+ /* output supplementary code point */
+ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(!TO_U_USE_FALLBACK(useFallback)) {
+ return 0xfffe;
+ }
+ /* output BMP code point */
+ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
+ if(!TO_U_USE_FALLBACK(useFallback)) {
+ return 0xfffe;
+ }
+ /* output supplementary code point */
+ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ return 0xfffe;
+ } else if(action==MBCS_STATE_ILLEGAL) {
+ return 0xffff;
+ } else {
+ /* reserved, must never occur */
+ return 0xffff;
+ }
+}
+#endif
+
+/*
+ * This is a simple version of _MBCSGetNextUChar() that is used
+ * by other converter implementations.
+ * It only returns an "assigned" result if it consumes the entire input.
+ * It does not use state from the converter, nor error codes.
+ * It does not handle the EBCDIC swaplfnl option (set in UConverter).
+ * It handles conversion extensions but not GB 18030.
+ *
+ * Return value:
+ * U+fffe unassigned
+ * U+ffff illegal
+ * otherwise the Unicode code point
+ */
+U_CFUNC UChar32
+ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
+ const char *source, int32_t length,
+ UBool useFallback) {
+ const int32_t (*stateTable)[256];
+ const uint16_t *unicodeCodeUnits;
+
+ uint32_t offset;
+ uint8_t state, action;
+
+ UChar32 c;
+ int32_t i, entry;
+
+ if(length<=0) {
+ /* no input at all: "illegal" */
+ return 0xffff;
+ }
+
+#if 0
+/*
+ * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
+ * TODO In future releases, verify that this function is never called for SBCS
+ * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
+ * Removal improves code coverage.
+ */
+ /* use optimized function if possible */
+ if(sharedData->mbcs.countStates==1) {
+ if(length==1) {
+ return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
+ } else {
+ return 0xffff; /* illegal: more than a single byte for an SBCS converter */
+ }
+ }
+#endif
+
+ /* set up the local pointers */
+ stateTable=sharedData->mbcs.stateTable;
+ unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
+
+ /* converter state */
+ offset=0;
+ state=sharedData->mbcs.dbcsOnlyState;
+
+ /* conversion loop */
+ for(i=0;;) {
+ entry=stateTable[state][(uint8_t)source[i++]];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+
+ if(i==length) {
+ return 0xffff; /* truncated character */
+ }
+ } else {
+ /*
+ * An if-else-if chain provides more reliable performance for
+ * the most common cases compared to a switch.
+ */
+ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
+ if(action==MBCS_STATE_VALID_16) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset];
+ if(c!=0xfffe) {
+ /* done */
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
+ c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
+ /* else done with 0xfffe */
+ }
+ break;
+ } else if(action==MBCS_STATE_VALID_DIRECT_16) {
+ /* output BMP code point */
+ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ break;
+ } else if(action==MBCS_STATE_VALID_16_PAIR) {
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ c=unicodeCodeUnits[offset++];
+ if(c<0xd800) {
+ /* output BMP code point below 0xd800 */
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
+ /* output roundtrip or fallback supplementary code point */
+ c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
+ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
+ /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
+ c=unicodeCodeUnits[offset];
+ } else if(c==0xffff) {
+ return 0xffff;
+ } else {
+ c=0xfffe;
+ }
+ break;
+ } else if(action==MBCS_STATE_VALID_DIRECT_20) {
+ /* output supplementary code point */
+ c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
+ break;
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
+ if(!TO_U_USE_FALLBACK(useFallback)) {
+ c=0xfffe;
+ break;
+ }
+ /* output BMP code point */
+ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
+ break;
+ } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
+ if(!TO_U_USE_FALLBACK(useFallback)) {
+ c=0xfffe;
+ break;
+ }
+ /* output supplementary code point */
+ c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
+ break;
+ } else if(action==MBCS_STATE_UNASSIGNED) {
+ c=0xfffe;
+ break;
+ }
+
+ /*
+ * forbid MBCS_STATE_CHANGE_ONLY for this function,
+ * and MBCS_STATE_ILLEGAL and reserved action codes
+ */
+ return 0xffff;
+ }
+ }
+
+ if(i!=length) {
+ /* illegal for this function: not all input consumed */
+ return 0xffff;
+ }
+
+ if(c==0xfffe) {
+ /* try an extension mapping */
+ const int32_t *cx=sharedData->mbcs.extIndexes;
+ if(cx!=NULL) {
+ return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
+ }
+ }
+
+ return c;
+}
+
+/* MBCS-from-Unicode conversion functions ----------------------------------- */
+
+/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
+static void
+ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const UChar *source, *sourceLimit;
+ uint8_t *target;
+ int32_t targetCapacity;
+ int32_t *offsets;
+
+ const uint16_t *table;
+ const uint16_t *mbcsIndex;
+ const uint8_t *bytes;
+
+ UChar32 c;
+
+ int32_t sourceIndex, nextSourceIndex;
+
+ uint32_t stage2Entry;
+ uint32_t asciiRoundtrips;
+ uint32_t value;
+ uint8_t unicodeMask;
+
+ /* use optimized function if possible */
+ cnv=pArgs->converter;
+ unicodeMask=cnv->sharedData->mbcs.unicodeMask;
+
+ /* set up the local pointers */
+ source=pArgs->source;
+ sourceLimit=pArgs->sourceLimit;
+ target=(uint8_t *)pArgs->target;
+ targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
+ offsets=pArgs->offsets;
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+ asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
+
+ /* get the converter state from UConverter */
+ c=cnv->fromUChar32;
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex= c==0 ? 0 : -1;
+ nextSourceIndex=0;
+
+ /* conversion loop */
+ if(c!=0 && targetCapacity>0) {
+ goto getTrail;
+ }
+
+ while(source<sourceLimit) {
+ /*
+ * This following test is to see if available input would overflow the output.
+ * It does not catch output of more than one byte that
+ * overflows as a result of a multi-byte character or callback output
+ * from the last source character.
+ * Therefore, those situations also test for overflows and will
+ * then break the loop, too.
+ */
+ if(targetCapacity>0) {
+ /*
+ * Get a correct Unicode code point:
+ * a single UChar for a BMP code point or
+ * a matched surrogate pair for a "supplementary code point".
+ */
+ c=*source++;
+ ++nextSourceIndex;
+ if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
+ *target++=(uint8_t)c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ sourceIndex=nextSourceIndex;
+ }
+ --targetCapacity;
+ c=0;
+ continue;
+ }
+ /*
+ * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
+ * to avoid dealing with surrogates.
+ * MBCS_FAST_MAX must be >=0xd7ff.
+ */
+ if(c<=0xd7ff) {
+ value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
+ /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
+ if(value==0) {
+ goto unassigned;
+ }
+ /* output the value */
+ } else {
+ /*
+ * This also tests if the codepage maps single surrogates.
+ * If it does, then surrogates are not paired but mapped separately.
+ * Note that in this case unmatched surrogates are not detected.
+ */
+ if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
+ if(U16_IS_SURROGATE_LEAD(c)) {
+getTrail:
+ if(source<sourceLimit) {
+ /* test the following code unit */
+ UChar trail=*source;
+ if(U16_IS_TRAIL(trail)) {
+ ++source;
+ ++nextSourceIndex;
+ c=U16_GET_SUPPLEMENTARY(c, trail);
+ if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ /* callback(unassigned) */
+ goto unassigned;
+ }
+ /* convert this supplementary code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ } else {
+ /* no more input */
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ }
+
+ /* convert the Unicode code point in c into codepage bytes */
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+
+ /* get the bytes and the length for the output */
+ /* MBCS_OUTPUT_2 */
+ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
+
+ /* is this code point assigned, or do we use fallbacks? */
+ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
+ (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
+ ) {
+ /*
+ * We allow a 0 byte output if the "assigned" bit is set for this entry.
+ * There is no way with this data structure for fallback output
+ * to be a zero byte.
+ */
+
+unassigned:
+ /* try an extension mapping */
+ pArgs->source=source;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &source, sourceLimit,
+ &target, target+targetCapacity,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ nextSourceIndex+=(int32_t)(source-pArgs->source);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
+
+ /* normal end of conversion: prepare for a new character */
+ sourceIndex=nextSourceIndex;
+ continue;
+ }
+ }
+ }
+
+ /* write the output character bytes from value and length */
+ /* from the first if in the loop we know that targetCapacity>0 */
+ if(value<=0xff) {
+ /* this is easy because we know that there is enough space */
+ *target++=(uint8_t)value;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ --targetCapacity;
+ } else /* length==2 */ {
+ *target++=(uint8_t)(value>>8);
+ if(2<=targetCapacity) {
+ *target++=(uint8_t)value;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ *offsets++=sourceIndex;
+ }
+ targetCapacity-=2;
+ } else {
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ cnv->charErrorBuffer[0]=(char)value;
+ cnv->charErrorBufferLength=1;
+
+ /* target overflow */
+ targetCapacity=0;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ c=0;
+ break;
+ }
+ }
+
+ /* normal end of conversion: prepare for a new character */
+ c=0;
+ sourceIndex=nextSourceIndex;
+ continue;
+ } else {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+
+ /* set the converter state back into UConverter */
+ cnv->fromUChar32=c;
+
+ /* write back the updated pointers */
+ pArgs->source=source;
+ pArgs->target=(char *)target;
+ pArgs->offsets=offsets;
+}
+
+/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
+static void
+ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const UChar *source, *sourceLimit;
+ uint8_t *target;
+ int32_t targetCapacity;
+ int32_t *offsets;
+
+ const uint16_t *table;
+ const uint16_t *results;
+
+ UChar32 c;
+
+ int32_t sourceIndex, nextSourceIndex;
+
+ uint16_t value, minValue;
+ UBool hasSupplementary;
+
+ /* set up the local pointers */
+ cnv=pArgs->converter;
+ source=pArgs->source;
+ sourceLimit=pArgs->sourceLimit;
+ target=(uint8_t *)pArgs->target;
+ targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
+ offsets=pArgs->offsets;
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+
+ if(cnv->useFallback) {
+ /* use all roundtrip and fallback results */
+ minValue=0x800;
+ } else {
+ /* use only roundtrips and fallbacks from private-use characters */
+ minValue=0xc00;
+ }
+ hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
+
+ /* get the converter state from UConverter */
+ c=cnv->fromUChar32;
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex= c==0 ? 0 : -1;
+ nextSourceIndex=0;
+
+ /* conversion loop */
+ if(c!=0 && targetCapacity>0) {
+ goto getTrail;
+ }
+
+ while(source<sourceLimit) {
+ /*
+ * This following test is to see if available input would overflow the output.
+ * It does not catch output of more than one byte that
+ * overflows as a result of a multi-byte character or callback output
+ * from the last source character.
+ * Therefore, those situations also test for overflows and will
+ * then break the loop, too.
+ */
+ if(targetCapacity>0) {
+ /*
+ * Get a correct Unicode code point:
+ * a single UChar for a BMP code point or
+ * a matched surrogate pair for a "supplementary code point".
+ */
+ c=*source++;
+ ++nextSourceIndex;
+ if(U16_IS_SURROGATE(c)) {
+ if(U16_IS_SURROGATE_LEAD(c)) {
+getTrail:
+ if(source<sourceLimit) {
+ /* test the following code unit */
+ UChar trail=*source;
+ if(U16_IS_TRAIL(trail)) {
+ ++source;
+ ++nextSourceIndex;
+ c=U16_GET_SUPPLEMENTARY(c, trail);
+ if(!hasSupplementary) {
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ /* callback(unassigned) */
+ goto unassigned;
+ }
+ /* convert this supplementary code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ } else {
+ /* no more input */
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ }
+
+ /* convert the Unicode code point in c into codepage bytes */
+ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+
+ /* is this code point assigned, or do we use fallbacks? */
+ if(value>=minValue) {
+ /* assigned, write the output character bytes from value and length */
+ /* length==1 */
+ /* this is easy because we know that there is enough space */
+ *target++=(uint8_t)value;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ --targetCapacity;
+
+ /* normal end of conversion: prepare for a new character */
+ c=0;
+ sourceIndex=nextSourceIndex;
+ } else { /* unassigned */
+unassigned:
+ /* try an extension mapping */
+ pArgs->source=source;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &source, sourceLimit,
+ &target, target+targetCapacity,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ nextSourceIndex+=(int32_t)(source-pArgs->source);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
+
+ /* normal end of conversion: prepare for a new character */
+ sourceIndex=nextSourceIndex;
+ }
+ }
+ } else {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+
+ /* set the converter state back into UConverter */
+ cnv->fromUChar32=c;
+
+ /* write back the updated pointers */
+ pArgs->source=source;
+ pArgs->target=(char *)target;
+ pArgs->offsets=offsets;
+}
+
+/*
+ * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
+ * that map only to and from the BMP.
+ * In addition to single-byte/state optimizations, the offset calculations
+ * become much easier.
+ * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
+ * but measurements have shown that this diminishes performance
+ * in more cases than it improves it.
+ * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
+ * for various MBCS and SBCS optimizations.
+ */
+static void
+ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const UChar *source, *sourceLimit, *lastSource;
+ uint8_t *target;
+ int32_t targetCapacity, length;
+ int32_t *offsets;
+
+ const uint16_t *table;
+ const uint16_t *results;
+
+ UChar32 c;
+
+ int32_t sourceIndex;
+
+ uint32_t asciiRoundtrips;
+ uint16_t value, minValue;
+
+ /* set up the local pointers */
+ cnv=pArgs->converter;
+ source=pArgs->source;
+ sourceLimit=pArgs->sourceLimit;
+ target=(uint8_t *)pArgs->target;
+ targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
+ offsets=pArgs->offsets;
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+ asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
+
+ if(cnv->useFallback) {
+ /* use all roundtrip and fallback results */
+ minValue=0x800;
+ } else {
+ /* use only roundtrips and fallbacks from private-use characters */
+ minValue=0xc00;
+ }
+
+ /* get the converter state from UConverter */
+ c=cnv->fromUChar32;
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ sourceIndex= c==0 ? 0 : -1;
+ lastSource=source;
+
+ /*
+ * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
+ * for the minimum of the sourceLength and targetCapacity
+ */
+ length=(int32_t)(sourceLimit-source);
+ if(length<targetCapacity) {
+ targetCapacity=length;
+ }
+
+ /* conversion loop */
+ if(c!=0 && targetCapacity>0) {
+ goto getTrail;
+ }
+
+#if MBCS_UNROLL_SINGLE_FROM_BMP
+ /* unrolling makes it slower on Pentium III/Windows 2000?! */
+ /* unroll the loop with the most common case */
+unrolled:
+ if(targetCapacity>=4) {
+ int32_t count, loops;
+ uint16_t andedValues;
+
+ loops=count=targetCapacity>>2;
+ do {
+ c=*source++;
+ andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ *target++=(uint8_t)value;
+ c=*source++;
+ andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ *target++=(uint8_t)value;
+ c=*source++;
+ andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ *target++=(uint8_t)value;
+ c=*source++;
+ andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ *target++=(uint8_t)value;
+
+ /* were all 4 entries really valid? */
+ if(andedValues<minValue) {
+ /* no, return to the first of these 4 */
+ source-=4;
+ target-=4;
+ break;
+ }
+ } while(--count>0);
+ count=loops-count;
+ targetCapacity-=4*count;
+
+ if(offsets!=NULL) {
+ lastSource+=4*count;
+ while(count>0) {
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ *offsets++=sourceIndex++;
+ --count;
+ }
+ }
+
+ c=0;
+ }
+#endif
+
+ while(targetCapacity>0) {
+ /*
+ * Get a correct Unicode code point:
+ * a single UChar for a BMP code point or
+ * a matched surrogate pair for a "supplementary code point".
+ */
+ c=*source++;
+ /*
+ * Do not immediately check for single surrogates:
+ * Assume that they are unassigned and check for them in that case.
+ * This speeds up the conversion of assigned characters.
+ */
+ /* convert the Unicode code point in c into codepage bytes */
+ if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
+ *target++=(uint8_t)c;
+ --targetCapacity;
+ c=0;
+ continue;
+ }
+ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ /* is this code point assigned, or do we use fallbacks? */
+ if(value>=minValue) {
+ /* assigned, write the output character bytes from value and length */
+ /* length==1 */
+ /* this is easy because we know that there is enough space */
+ *target++=(uint8_t)value;
+ --targetCapacity;
+
+ /* normal end of conversion: prepare for a new character */
+ c=0;
+ continue;
+ } else if(!U16_IS_SURROGATE(c)) {
+ /* normal, unassigned BMP character */
+ } else if(U16_IS_SURROGATE_LEAD(c)) {
+getTrail:
+ if(source<sourceLimit) {
+ /* test the following code unit */
+ UChar trail=*source;
+ if(U16_IS_TRAIL(trail)) {
+ ++source;
+ c=U16_GET_SUPPLEMENTARY(c, trail);
+ /* this codepage does not map supplementary code points */
+ /* callback(unassigned) */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ } else {
+ /* no more input */
+ if (pArgs->flush) {
+ *pErrorCode=U_TRUNCATED_CHAR_FOUND;
+ }
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+
+ /* c does not have a mapping */
+
+ /* get the number of code units for c to correctly advance sourceIndex */
+ length=U16_LENGTH(c);
+
+ /* set offsets since the start or the last extension */
+ if(offsets!=NULL) {
+ int32_t count=(int32_t)(source-lastSource);
+
+ /* do not set the offset for this character */
+ count-=length;
+
+ while(count>0) {
+ *offsets++=sourceIndex++;
+ --count;
+ }
+ /* offsets and sourceIndex are now set for the current character */
+ }
+
+ /* try an extension mapping */
+ lastSource=source;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &source, sourceLimit,
+ &target, (const uint8_t *)(pArgs->targetLimit),
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ sourceIndex+=length+(int32_t)(source-lastSource);
+ lastSource=source;
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
+ length=(int32_t)(sourceLimit-source);
+ if(length<targetCapacity) {
+ targetCapacity=length;
+ }
+ }
+
+#if MBCS_UNROLL_SINGLE_FROM_BMP
+ /* unrolling makes it slower on Pentium III/Windows 2000?! */
+ goto unrolled;
+#endif
+ }
+
+ if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ }
+
+ /* set offsets since the start or the last callback */
+ if(offsets!=NULL) {
+ size_t count=source-lastSource;
+ if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
+ /*
+ Caller gave us a partial supplementary character,
+ which this function couldn't convert in any case.
+ The callback will handle the offset.
+ */
+ count--;
+ }
+ while(count>0) {
+ *offsets++=sourceIndex++;
+ --count;
+ }
+ }
+
+ /* set the converter state back into UConverter */
+ cnv->fromUChar32=c;
+
+ /* write back the updated pointers */
+ pArgs->source=source;
+ pArgs->target=(char *)target;
+ pArgs->offsets=offsets;
+}
+
+U_CFUNC void
+ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv;
+ const UChar *source, *sourceLimit;
+ uint8_t *target;
+ int32_t targetCapacity;
+ int32_t *offsets;
+
+ const uint16_t *table;
+ const uint16_t *mbcsIndex;
+ const uint8_t *p, *bytes;
+ uint8_t outputType;
+
+ UChar32 c;
+
+ int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
+
+ uint32_t stage2Entry;
+ uint32_t asciiRoundtrips;
+ uint32_t value;
+ /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
+ uint8_t siBytes[2] = {0, 0};
+ uint8_t soBytes[2] = {0, 0};
+ uint8_t siLength, soLength;
+ int32_t length = 0, prevLength;
+ uint8_t unicodeMask;
+
+ cnv=pArgs->converter;
+
+ if(cnv->preFromUFirstCP>=0) {
+ /*
+ * pass sourceIndex=-1 because we continue from an earlier buffer
+ * in the future, this may change with continuous offsets
+ */
+ ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
+
+ if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
+ return;
+ }
+ }
+
+ /* use optimized function if possible */
+ outputType=cnv->sharedData->mbcs.outputType;
+ unicodeMask=cnv->sharedData->mbcs.unicodeMask;
+ if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
+ if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
+ } else {
+ ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
+ }
+ return;
+ } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
+ ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
+ return;
+ }
+
+ /* set up the local pointers */
+ source=pArgs->source;
+ sourceLimit=pArgs->sourceLimit;
+ target=(uint8_t *)pArgs->target;
+ targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
+ offsets=pArgs->offsets;
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ if(cnv->sharedData->mbcs.utf8Friendly) {
+ mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
+ } else {
+ mbcsIndex=NULL;
+ }
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+ asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
+
+ /* get the converter state from UConverter */
+ c=cnv->fromUChar32;
+
+ if(outputType==MBCS_OUTPUT_2_SISO) {
+ prevLength=cnv->fromUnicodeStatus;
+ if(prevLength==0) {
+ /* set the real value */
+ prevLength=1;
+ }
+ } else {
+ /* prevent fromUnicodeStatus from being set to something non-0 */
+ prevLength=0;
+ }
+
+ /* sourceIndex=-1 if the current character began in the previous buffer */
+ prevSourceIndex=-1;
+ sourceIndex= c==0 ? 0 : -1;
+ nextSourceIndex=0;
+
+ /* Get the SI/SO character for the converter */
+ siLength = static_cast<uint8_t>(getSISOBytes(SI, cnv->options, siBytes));
+ soLength = static_cast<uint8_t>(getSISOBytes(SO, cnv->options, soBytes));
+
+ /* conversion loop */
+ /*
+ * This is another piece of ugly code:
+ * A goto into the loop if the converter state contains a first surrogate
+ * from the previous function call.
+ * It saves me to check in each loop iteration a check of if(c==0)
+ * and duplicating the trail-surrogate-handling code in the else
+ * branch of that check.
+ * I could not find any other way to get around this other than
+ * using a function call for the conversion and callback, which would
+ * be even more inefficient.
+ *
+ * Markus Scherer 2000-jul-19
+ */
+ if(c!=0 && targetCapacity>0) {
+ goto getTrail;
+ }
+
+ while(source<sourceLimit) {
+ /*
+ * This following test is to see if available input would overflow the output.
+ * It does not catch output of more than one byte that
+ * overflows as a result of a multi-byte character or callback output
+ * from the last source character.
+ * Therefore, those situations also test for overflows and will
+ * then break the loop, too.
+ */
+ if(targetCapacity>0) {
+ /*
+ * Get a correct Unicode code point:
+ * a single UChar for a BMP code point or
+ * a matched surrogate pair for a "supplementary code point".
+ */
+ c=*source++;
+ ++nextSourceIndex;
+ if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
+ *target++=(uint8_t)c;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ prevSourceIndex=sourceIndex;
+ sourceIndex=nextSourceIndex;
+ }
+ --targetCapacity;
+ c=0;
+ continue;
+ }
+ /*
+ * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
+ * to avoid dealing with surrogates.
+ * MBCS_FAST_MAX must be >=0xd7ff.
+ */
+ if(c<=0xd7ff && mbcsIndex!=NULL) {
+ value=mbcsIndex[c>>6];
+
+ /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
+ /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
+ switch(outputType) {
+ case MBCS_OUTPUT_2:
+ value=((const uint16_t *)bytes)[value +(c&0x3f)];
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else {
+ length=1;
+ }
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_2_SISO:
+ /* 1/2-byte stateful with Shift-In/Shift-Out */
+ /*
+ * Save the old state in the converter object
+ * right here, then change the local prevLength state variable if necessary.
+ * Then, if this character turns out to be unassigned or a fallback that
+ * is not taken, the callback code must not save the new state in the converter
+ * because the new state is for a character that is not output.
+ * However, the callback must still restore the state from the converter
+ * in case the callback function changed it for its output.
+ */
+ cnv->fromUnicodeStatus=prevLength; /* save the old state */
+ value=((const uint16_t *)bytes)[value +(c&0x3f)];
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else if(prevLength<=1) {
+ length=1;
+ } else {
+ /* change from double-byte mode to single-byte */
+ if (siLength == 1) {
+ value|=(uint32_t)siBytes[0]<<8;
+ length = 2;
+ } else if (siLength == 2) {
+ value|=(uint32_t)siBytes[1]<<8;
+ value|=(uint32_t)siBytes[0]<<16;
+ length = 3;
+ }
+ prevLength=1;
+ }
+ } else {
+ if(prevLength==2) {
+ length=2;
+ } else {
+ /* change from single-byte mode to double-byte */
+ if (soLength == 1) {
+ value|=(uint32_t)soBytes[0]<<16;
+ length = 3;
+ } else if (soLength == 2) {
+ value|=(uint32_t)soBytes[1]<<16;
+ value|=(uint32_t)soBytes[0]<<24;
+ length = 4;
+ }
+ prevLength=2;
+ }
+ }
+ break;
+ case MBCS_OUTPUT_DBCS_ONLY:
+ /* table with single-byte results, but only DBCS mappings used */
+ value=((const uint16_t *)bytes)[value +(c&0x3f)];
+ if(value<=0xff) {
+ /* no mapping or SBCS result, not taken for DBCS-only */
+ goto unassigned;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_3:
+ p=bytes+(value+(c&0x3f))*3;
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else {
+ length=1;
+ }
+ } else if(value<=0xffff) {
+ length=2;
+ } else {
+ length=3;
+ }
+ break;
+ case MBCS_OUTPUT_4:
+ value=((const uint32_t *)bytes)[value +(c&0x3f)];
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else {
+ length=1;
+ }
+ } else if(value<=0xffff) {
+ length=2;
+ } else if(value<=0xffffff) {
+ length=3;
+ } else {
+ length=4;
+ }
+ break;
+ case MBCS_OUTPUT_3_EUC:
+ value=((const uint16_t *)bytes)[value +(c&0x3f)];
+ /* EUC 16-bit fixed-length representation */
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else {
+ length=1;
+ }
+ } else if((value&0x8000)==0) {
+ value|=0x8e8000;
+ length=3;
+ } else if((value&0x80)==0) {
+ value|=0x8f0080;
+ length=3;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_4_EUC:
+ p=bytes+(value+(c&0x3f))*3;
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ /* EUC 16-bit fixed-length representation applied to the first two bytes */
+ if(value<=0xff) {
+ if(value==0) {
+ goto unassigned;
+ } else {
+ length=1;
+ }
+ } else if(value<=0xffff) {
+ length=2;
+ } else if((value&0x800000)==0) {
+ value|=0x8e800000;
+ length=4;
+ } else if((value&0x8000)==0) {
+ value|=0x8f008000;
+ length=4;
+ } else {
+ length=3;
+ }
+ break;
+ default:
+ /* must not occur */
+ /*
+ * To avoid compiler warnings that value & length may be
+ * used without having been initialized, we set them here.
+ * In reality, this is unreachable code.
+ * Not having a default branch also causes warnings with
+ * some compilers.
+ */
+ value=0;
+ length=0;
+ break;
+ }
+ /* output the value */
+ } else {
+ /*
+ * This also tests if the codepage maps single surrogates.
+ * If it does, then surrogates are not paired but mapped separately.
+ * Note that in this case unmatched surrogates are not detected.
+ */
+ if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
+ if(U16_IS_SURROGATE_LEAD(c)) {
+getTrail:
+ if(source<sourceLimit) {
+ /* test the following code unit */
+ UChar trail=*source;
+ if(U16_IS_TRAIL(trail)) {
+ ++source;
+ ++nextSourceIndex;
+ c=U16_GET_SUPPLEMENTARY(c, trail);
+ if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ cnv->fromUnicodeStatus=prevLength; /* save the old state */
+ /* callback(unassigned) */
+ goto unassigned;
+ }
+ /* convert this supplementary code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ } else {
+ /* no more input */
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ break;
+ }
+ }
+
+ /* convert the Unicode code point in c into codepage bytes */
+
+ /*
+ * The basic lookup is a triple-stage compact array (trie) lookup.
+ * For details see the beginning of this file.
+ *
+ * Single-byte codepages are handled with a different data structure
+ * by _MBCSSingle... functions.
+ *
+ * The result consists of a 32-bit value from stage 2 and
+ * a pointer to as many bytes as are stored per character.
+ * The pointer points to the character's bytes in stage 3.
+ * Bits 15..0 of the stage 2 entry contain the stage 3 index
+ * for that pointer, while bits 31..16 are flags for which of
+ * the 16 characters in the block are roundtrip-assigned.
+ *
+ * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
+ * respectively as uint32_t, in the platform encoding.
+ * For 3-byte codepages, the bytes are always stored in big-endian order.
+ *
+ * For EUC encodings that use only either 0x8e or 0x8f as the first
+ * byte of their longest byte sequences, the first two bytes in
+ * this third stage indicate with their 7th bits whether these bytes
+ * are to be written directly or actually need to be preceeded by
+ * one of the two Single-Shift codes. With this, the third stage
+ * stores one byte fewer per character than the actual maximum length of
+ * EUC byte sequences.
+ *
+ * Other than that, leading zero bytes are removed and the other
+ * bytes output. A single zero byte may be output if the "assigned"
+ * bit in stage 2 was on.
+ * The data structure does not support zero byte output as a fallback,
+ * and also does not allow output of leading zeros.
+ */
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+
+ /* get the bytes and the length for the output */
+ switch(outputType) {
+ case MBCS_OUTPUT_2:
+ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
+ if(value<=0xff) {
+ length=1;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_2_SISO:
+ /* 1/2-byte stateful with Shift-In/Shift-Out */
+ /*
+ * Save the old state in the converter object
+ * right here, then change the local prevLength state variable if necessary.
+ * Then, if this character turns out to be unassigned or a fallback that
+ * is not taken, the callback code must not save the new state in the converter
+ * because the new state is for a character that is not output.
+ * However, the callback must still restore the state from the converter
+ * in case the callback function changed it for its output.
+ */
+ cnv->fromUnicodeStatus=prevLength; /* save the old state */
+ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
+ if(value<=0xff) {
+ if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
+ /* no mapping, leave value==0 */
+ length=0;
+ } else if(prevLength<=1) {
+ length=1;
+ } else {
+ /* change from double-byte mode to single-byte */
+ if (siLength == 1) {
+ value|=(uint32_t)siBytes[0]<<8;
+ length = 2;
+ } else if (siLength == 2) {
+ value|=(uint32_t)siBytes[1]<<8;
+ value|=(uint32_t)siBytes[0]<<16;
+ length = 3;
+ }
+ prevLength=1;
+ }
+ } else {
+ if(prevLength==2) {
+ length=2;
+ } else {
+ /* change from single-byte mode to double-byte */
+ if (soLength == 1) {
+ value|=(uint32_t)soBytes[0]<<16;
+ length = 3;
+ } else if (soLength == 2) {
+ value|=(uint32_t)soBytes[1]<<16;
+ value|=(uint32_t)soBytes[0]<<24;
+ length = 4;
+ }
+ prevLength=2;
+ }
+ }
+ break;
+ case MBCS_OUTPUT_DBCS_ONLY:
+ /* table with single-byte results, but only DBCS mappings used */
+ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
+ if(value<=0xff) {
+ /* no mapping or SBCS result, not taken for DBCS-only */
+ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
+ length=0;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_3:
+ p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else {
+ length=3;
+ }
+ break;
+ case MBCS_OUTPUT_4:
+ value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else if(value<=0xffffff) {
+ length=3;
+ } else {
+ length=4;
+ }
+ break;
+ case MBCS_OUTPUT_3_EUC:
+ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
+ /* EUC 16-bit fixed-length representation */
+ if(value<=0xff) {
+ length=1;
+ } else if((value&0x8000)==0) {
+ value|=0x8e8000;
+ length=3;
+ } else if((value&0x80)==0) {
+ value|=0x8f0080;
+ length=3;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_4_EUC:
+ p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ /* EUC 16-bit fixed-length representation applied to the first two bytes */
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else if((value&0x800000)==0) {
+ value|=0x8e800000;
+ length=4;
+ } else if((value&0x8000)==0) {
+ value|=0x8f008000;
+ length=4;
+ } else {
+ length=3;
+ }
+ break;
+ default:
+ /* must not occur */
+ /*
+ * To avoid compiler warnings that value & length may be
+ * used without having been initialized, we set them here.
+ * In reality, this is unreachable code.
+ * Not having a default branch also causes warnings with
+ * some compilers.
+ */
+ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
+ length=0;
+ break;
+ }
+
+ /* is this code point assigned, or do we use fallbacks? */
+ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
+ (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
+ ) {
+ /*
+ * We allow a 0 byte output if the "assigned" bit is set for this entry.
+ * There is no way with this data structure for fallback output
+ * to be a zero byte.
+ */
+
+unassigned:
+ /* try an extension mapping */
+ pArgs->source=source;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &source, sourceLimit,
+ &target, target+targetCapacity,
+ &offsets, sourceIndex,
+ pArgs->flush,
+ pErrorCode);
+ nextSourceIndex+=(int32_t)(source-pArgs->source);
+ prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
+
+ /* normal end of conversion: prepare for a new character */
+ if(offsets!=NULL) {
+ prevSourceIndex=sourceIndex;
+ sourceIndex=nextSourceIndex;
+ }
+ continue;
+ }
+ }
+ }
+
+ /* write the output character bytes from value and length */
+ /* from the first if in the loop we know that targetCapacity>0 */
+ if(length<=targetCapacity) {
+ if(offsets==NULL) {
+ switch(length) {
+ /* each branch falls through to the next one */
+ case 4:
+ *target++=(uint8_t)(value>>24);
+ U_FALLTHROUGH;
+ case 3:
+ *target++=(uint8_t)(value>>16);
+ U_FALLTHROUGH;
+ case 2:
+ *target++=(uint8_t)(value>>8);
+ U_FALLTHROUGH;
+ case 1:
+ *target++=(uint8_t)value;
+ U_FALLTHROUGH;
+ default:
+ /* will never occur */
+ break;
+ }
+ } else {
+ switch(length) {
+ /* each branch falls through to the next one */
+ case 4:
+ *target++=(uint8_t)(value>>24);
+ *offsets++=sourceIndex;
+ U_FALLTHROUGH;
+ case 3:
+ *target++=(uint8_t)(value>>16);
+ *offsets++=sourceIndex;
+ U_FALLTHROUGH;
+ case 2:
+ *target++=(uint8_t)(value>>8);
+ *offsets++=sourceIndex;
+ U_FALLTHROUGH;
+ case 1:
+ *target++=(uint8_t)value;
+ *offsets++=sourceIndex;
+ U_FALLTHROUGH;
+ default:
+ /* will never occur */
+ break;
+ }
+ }
+ targetCapacity-=length;
+ } else {
+ uint8_t *charErrorBuffer;
+
+ /*
+ * We actually do this backwards here:
+ * In order to save an intermediate variable, we output
+ * first to the overflow buffer what does not fit into the
+ * regular target.
+ */
+ /* we know that 1<=targetCapacity<length<=4 */
+ length-=targetCapacity;
+ charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
+ switch(length) {
+ /* each branch falls through to the next one */
+ case 3:
+ *charErrorBuffer++=(uint8_t)(value>>16);
+ U_FALLTHROUGH;
+ case 2:
+ *charErrorBuffer++=(uint8_t)(value>>8);
+ U_FALLTHROUGH;
+ case 1:
+ *charErrorBuffer=(uint8_t)value;
+ U_FALLTHROUGH;
+ default:
+ /* will never occur */
+ break;
+ }
+ cnv->charErrorBufferLength=(int8_t)length;
+
+ /* now output what fits into the regular target */
+ value>>=8*length; /* length was reduced by targetCapacity */
+ switch(targetCapacity) {
+ /* each branch falls through to the next one */
+ case 3:
+ *target++=(uint8_t)(value>>16);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ U_FALLTHROUGH;
+ case 2:
+ *target++=(uint8_t)(value>>8);
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ U_FALLTHROUGH;
+ case 1:
+ *target++=(uint8_t)value;
+ if(offsets!=NULL) {
+ *offsets++=sourceIndex;
+ }
+ U_FALLTHROUGH;
+ default:
+ /* will never occur */
+ break;
+ }
+
+ /* target overflow */
+ targetCapacity=0;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ c=0;
+ break;
+ }
+
+ /* normal end of conversion: prepare for a new character */
+ c=0;
+ if(offsets!=NULL) {
+ prevSourceIndex=sourceIndex;
+ sourceIndex=nextSourceIndex;
+ }
+ continue;
+ } else {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+
+ /*
+ * the end of the input stream and detection of truncated input
+ * are handled by the framework, but for EBCDIC_STATEFUL conversion
+ * we need to emit an SI at the very end
+ *
+ * conditions:
+ * successful
+ * EBCDIC_STATEFUL in DBCS mode
+ * end of input and no truncated input
+ */
+ if( U_SUCCESS(*pErrorCode) &&
+ outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
+ pArgs->flush && source>=sourceLimit && c==0
+ ) {
+ /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
+ if(targetCapacity>0) {
+ *target++=(uint8_t)siBytes[0];
+ if (siLength == 2) {
+ if (targetCapacity<2) {
+ cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
+ cnv->charErrorBufferLength=1;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ } else {
+ *target++=(uint8_t)siBytes[1];
+ }
+ }
+ if(offsets!=NULL) {
+ /* set the last source character's index (sourceIndex points at sourceLimit now) */
+ *offsets++=prevSourceIndex;
+ }
+ } else {
+ /* target is full */
+ cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
+ if (siLength == 2) {
+ cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
+ }
+ cnv->charErrorBufferLength=siLength;
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ }
+ prevLength=1; /* we switched into SBCS */
+ }
+
+ /* set the converter state back into UConverter */
+ cnv->fromUChar32=c;
+ cnv->fromUnicodeStatus=prevLength;
+
+ /* write back the updated pointers */
+ pArgs->source=source;
+ pArgs->target=(char *)target;
+ pArgs->offsets=offsets;
+}
+
+/*
+ * This is another simple conversion function for internal use by other
+ * conversion implementations.
+ * It does not use the converter state nor call callbacks.
+ * It does not handle the EBCDIC swaplfnl option (set in UConverter).
+ * It handles conversion extensions but not GB 18030.
+ *
+ * It converts one single Unicode code point into codepage bytes, encoded
+ * as one 32-bit value. The function returns the number of bytes in *pValue:
+ * 1..4 the number of bytes in *pValue
+ * 0 unassigned (*pValue undefined)
+ * -1 illegal (currently not used, *pValue undefined)
+ *
+ * *pValue will contain the resulting bytes with the last byte in bits 7..0,
+ * the second to last byte in bits 15..8, etc.
+ * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
+ */
+U_CFUNC int32_t
+ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
+ UChar32 c, uint32_t *pValue,
+ UBool useFallback) {
+ const int32_t *cx;
+ const uint16_t *table;
+#if 0
+/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
+ const uint8_t *p;
+#endif
+ uint32_t stage2Entry;
+ uint32_t value;
+ int32_t length;
+
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ table=sharedData->mbcs.fromUnicodeTable;
+
+ /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
+ if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
+ value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
+ /* is this code point assigned, or do we use fallbacks? */
+ if(useFallback ? value>=0x800 : value>=0xc00) {
+ *pValue=value&0xff;
+ return 1;
+ }
+ } else /* outputType!=MBCS_OUTPUT_1 */ {
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+
+ /* get the bytes and the length for the output */
+ switch(sharedData->mbcs.outputType) {
+ case MBCS_OUTPUT_2:
+ value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ if(value<=0xff) {
+ length=1;
+ } else {
+ length=2;
+ }
+ break;
+#if 0
+/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
+ case MBCS_OUTPUT_DBCS_ONLY:
+ /* table with single-byte results, but only DBCS mappings used */
+ value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ if(value<=0xff) {
+ /* no mapping or SBCS result, not taken for DBCS-only */
+ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
+ length=0;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_3:
+ p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else {
+ length=3;
+ }
+ break;
+ case MBCS_OUTPUT_4:
+ value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else if(value<=0xffffff) {
+ length=3;
+ } else {
+ length=4;
+ }
+ break;
+ case MBCS_OUTPUT_3_EUC:
+ value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ /* EUC 16-bit fixed-length representation */
+ if(value<=0xff) {
+ length=1;
+ } else if((value&0x8000)==0) {
+ value|=0x8e8000;
+ length=3;
+ } else if((value&0x80)==0) {
+ value|=0x8f0080;
+ length=3;
+ } else {
+ length=2;
+ }
+ break;
+ case MBCS_OUTPUT_4_EUC:
+ p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ /* EUC 16-bit fixed-length representation applied to the first two bytes */
+ if(value<=0xff) {
+ length=1;
+ } else if(value<=0xffff) {
+ length=2;
+ } else if((value&0x800000)==0) {
+ value|=0x8e800000;
+ length=4;
+ } else if((value&0x8000)==0) {
+ value|=0x8f008000;
+ length=4;
+ } else {
+ length=3;
+ }
+ break;
+#endif
+ default:
+ /* must not occur */
+ return -1;
+ }
+
+ /* is this code point assigned, or do we use fallbacks? */
+ if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
+ (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
+ ) {
+ /*
+ * We allow a 0 byte output if the "assigned" bit is set for this entry.
+ * There is no way with this data structure for fallback output
+ * to be a zero byte.
+ */
+ /* assigned */
+ *pValue=value;
+ return length;
+ }
+ }
+ }
+
+ cx=sharedData->mbcs.extIndexes;
+ if(cx!=NULL) {
+ length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
+ return length>=0 ? length : -length; /* return abs(length); */
+ }
+
+ /* unassigned */
+ return 0;
+}
+
+
+#if 0
+/*
+ * This function has been moved to ucnv2022.c for inlining.
+ * This implementation is here only for documentation purposes
+ */
+
+/**
+ * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
+ * It does not handle the EBCDIC swaplfnl option (set in UConverter).
+ * It does not handle conversion extensions (_extFromU()).
+ *
+ * It returns the codepage byte for the code point, or -1 if it is unassigned.
+ */
+U_CFUNC int32_t
+ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
+ UChar32 c,
+ UBool useFallback) {
+ const uint16_t *table;
+ int32_t value;
+
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ return -1;
+ }
+
+ /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
+ table=sharedData->mbcs.fromUnicodeTable;
+
+ /* get the byte for the output */
+ value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
+ /* is this code point assigned, or do we use fallbacks? */
+ if(useFallback ? value>=0x800 : value>=0xc00) {
+ return value&0xff;
+ } else {
+ return -1;
+ }
+}
+#endif
+
+/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
+
+/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
+static const UChar32
+utf8_offsets[5]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
+
+static void U_CALLCONV
+ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
+ UConverterToUnicodeArgs *pToUArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *utf8, *cnv;
+ const uint8_t *source, *sourceLimit;
+ uint8_t *target;
+ int32_t targetCapacity;
+
+ const uint16_t *table, *sbcsIndex;
+ const uint16_t *results;
+
+ int8_t oldToULength, toULength, toULimit;
+
+ UChar32 c;
+ uint8_t b, t1, t2;
+
+ uint32_t asciiRoundtrips;
+ uint16_t value, minValue = 0;
+ UBool hasSupplementary;
+
+ /* set up the local pointers */
+ utf8=pToUArgs->converter;
+ cnv=pFromUArgs->converter;
+ source=(uint8_t *)pToUArgs->source;
+ sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
+ target=(uint8_t *)pFromUArgs->target;
+ targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+ asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
+
+ if(cnv->useFallback) {
+ /* use all roundtrip and fallback results */
+ minValue=0x800;
+ } else {
+ /* use only roundtrips and fallbacks from private-use characters */
+ minValue=0xc00;
+ }
+ hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
+
+ /* get the converter state from the UTF-8 UConverter */
+ if(utf8->toULength > 0) {
+ toULength=oldToULength=utf8->toULength;
+ toULimit=(int8_t)utf8->mode;
+ c=(UChar32)utf8->toUnicodeStatus;
+ } else {
+ toULength=oldToULength=toULimit=0;
+ c = 0;
+ }
+
+ // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
+ // If the buffer ends with a truncated 2- or 3-byte sequence,
+ // then we reduce the sourceLimit to before that,
+ // and collect the remaining bytes after the conversion loop.
+ {
+ // Do not go back into the bytes that will be read for finishing a partial
+ // sequence from the previous buffer.
+ int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
+ if(length>0) {
+ uint8_t b1=*(sourceLimit-1);
+ if(U8_IS_SINGLE(b1)) {
+ // common ASCII character
+ } else if(U8_IS_TRAIL(b1) && length>=2) {
+ uint8_t b2=*(sourceLimit-2);
+ if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
+ // truncated 3-byte sequence
+ sourceLimit-=2;
+ }
+ } else if(0xc2<=b1 && b1<0xf0) {
+ // truncated 2- or 3-byte sequence
+ --sourceLimit;
+ }
+ }
+ }
+
+ if(c!=0 && targetCapacity>0) {
+ utf8->toUnicodeStatus=0;
+ utf8->toULength=0;
+ goto moreBytes;
+ /*
+ * Note: We could avoid the goto by duplicating some of the moreBytes
+ * code, but only up to the point of collecting a complete UTF-8
+ * sequence; then recurse for the toUBytes[toULength]
+ * and then continue with normal conversion.
+ *
+ * If so, move this code to just after initializing the minimum
+ * set of local variables for reading the UTF-8 input
+ * (utf8, source, target, limits but not cnv, table, minValue, etc.).
+ *
+ * Potential advantages:
+ * - avoid the goto
+ * - oldToULength could become a local variable in just those code blocks
+ * that deal with buffer boundaries
+ * - possibly faster if the goto prevents some compiler optimizations
+ * (this would need measuring to confirm)
+ * Disadvantage:
+ * - code duplication
+ */
+ }
+
+ /* conversion loop */
+ while(source<sourceLimit) {
+ if(targetCapacity>0) {
+ b=*source++;
+ if(U8_IS_SINGLE(b)) {
+ /* convert ASCII */
+ if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
+ *target++=(uint8_t)b;
+ --targetCapacity;
+ continue;
+ } else {
+ c=b;
+ value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
+ }
+ } else {
+ if(b<0xe0) {
+ if( /* handle U+0080..U+07FF inline */
+ b>=0xc2 &&
+ (t1=(uint8_t)(*source-0x80)) <= 0x3f
+ ) {
+ c=b&0x1f;
+ ++source;
+ value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
+ if(value>=minValue) {
+ *target++=(uint8_t)value;
+ --targetCapacity;
+ continue;
+ } else {
+ c=(c<<6)|t1;
+ }
+ } else {
+ c=-1;
+ }
+ } else if(b==0xe0) {
+ if( /* handle U+0800..U+0FFF inline */
+ (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
+ (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
+ ) {
+ c=t1;
+ source+=2;
+ value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
+ if(value>=minValue) {
+ *target++=(uint8_t)value;
+ --targetCapacity;
+ continue;
+ } else {
+ c=(c<<6)|t2;
+ }
+ } else {
+ c=-1;
+ }
+ } else {
+ c=-1;
+ }
+
+ if(c<0) {
+ /* handle "complicated" and error cases, and continuing partial characters */
+ oldToULength=0;
+ toULength=1;
+ toULimit=U8_COUNT_BYTES_NON_ASCII(b);
+ c=b;
+moreBytes:
+ while(toULength<toULimit) {
+ /*
+ * The sourceLimit may have been adjusted before the conversion loop
+ * to stop before a truncated sequence.
+ * Here we need to use the real limit in case we have two truncated
+ * sequences at the end.
+ * See ticket #7492.
+ */
+ if(source<(uint8_t *)pToUArgs->sourceLimit) {
+ b=*source;
+ if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
+ ++source;
+ ++toULength;
+ c=(c<<6)+b;
+ } else {
+ break; /* sequence too short, stop with toULength<toULimit */
+ }
+ } else {
+ /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
+ source-=(toULength-oldToULength);
+ while(oldToULength<toULength) {
+ utf8->toUBytes[oldToULength++]=*source++;
+ }
+ utf8->toUnicodeStatus=c;
+ utf8->toULength=toULength;
+ utf8->mode=toULimit;
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+ return;
+ }
+ }
+
+ if(toULength==toULimit) {
+ c-=utf8_offsets[toULength];
+ if(toULength<=3) { /* BMP */
+ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ } else {
+ /* supplementary code point */
+ if(!hasSupplementary) {
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ value=0;
+ } else {
+ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
+ }
+ }
+ } else {
+ /* error handling: illegal UTF-8 byte sequence */
+ source-=(toULength-oldToULength);
+ while(oldToULength<toULength) {
+ utf8->toUBytes[oldToULength++]=*source++;
+ }
+ utf8->toULength=toULength;
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ return;
+ }
+ }
+ }
+
+ if(value>=minValue) {
+ /* output the mapping for c */
+ *target++=(uint8_t)value;
+ --targetCapacity;
+ } else {
+ /* value<minValue means c is unassigned (unmappable) */
+ /*
+ * Try an extension mapping.
+ * Pass in no source because we don't have UTF-16 input.
+ * If we have a partial match on c, we will return and revert
+ * to UTF-8->UTF-16->charset conversion.
+ */
+ static const UChar nul=0;
+ const UChar *noSource=&nul;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &noSource, noSource,
+ &target, target+targetCapacity,
+ NULL, -1,
+ pFromUArgs->flush,
+ pErrorCode);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ cnv->fromUChar32=c;
+ break;
+ } else if(cnv->preFromUFirstCP>=0) {
+ /*
+ * Partial match, return and revert to pivoting.
+ * In normal from-UTF-16 conversion, we would just continue
+ * but then exit the loop because the extension match would
+ * have consumed the source.
+ */
+ *pErrorCode=U_USING_DEFAULT_WARNING;
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
+ }
+ }
+ } else {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+
+ /*
+ * The sourceLimit may have been adjusted before the conversion loop
+ * to stop before a truncated sequence.
+ * If so, then collect the truncated sequence now.
+ */
+ if(U_SUCCESS(*pErrorCode) &&
+ cnv->preFromUFirstCP<0 &&
+ source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
+ c=utf8->toUBytes[0]=b=*source++;
+ toULength=1;
+ toULimit=U8_COUNT_BYTES(b);
+ while(source<sourceLimit) {
+ utf8->toUBytes[toULength++]=b=*source++;
+ c=(c<<6)+b;
+ }
+ utf8->toUnicodeStatus=c;
+ utf8->toULength=toULength;
+ utf8->mode=toULimit;
+ }
+
+ /* write back the updated pointers */
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+}
+
+static void U_CALLCONV
+ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
+ UConverterToUnicodeArgs *pToUArgs,
+ UErrorCode *pErrorCode) {
+ UConverter *utf8, *cnv;
+ const uint8_t *source, *sourceLimit;
+ uint8_t *target;
+ int32_t targetCapacity;
+
+ const uint16_t *table, *mbcsIndex;
+ const uint16_t *results;
+
+ int8_t oldToULength, toULength, toULimit;
+
+ UChar32 c;
+ uint8_t b, t1, t2;
+
+ uint32_t stage2Entry;
+ uint32_t asciiRoundtrips;
+ uint16_t value = 0;
+ UBool hasSupplementary;
+
+ /* set up the local pointers */
+ utf8=pToUArgs->converter;
+ cnv=pFromUArgs->converter;
+ source=(uint8_t *)pToUArgs->source;
+ sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
+ target=(uint8_t *)pFromUArgs->target;
+ targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
+
+ table=cnv->sharedData->mbcs.fromUnicodeTable;
+ mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
+ if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
+ results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
+ } else {
+ results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
+ }
+ asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
+
+ hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
+
+ /* get the converter state from the UTF-8 UConverter */
+ if(utf8->toULength > 0) {
+ toULength=oldToULength=utf8->toULength;
+ toULimit=(int8_t)utf8->mode;
+ c=(UChar32)utf8->toUnicodeStatus;
+ } else {
+ toULength=oldToULength=toULimit=0;
+ c = 0;
+ }
+
+ // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
+ // If the buffer ends with a truncated 2- or 3-byte sequence,
+ // then we reduce the sourceLimit to before that,
+ // and collect the remaining bytes after the conversion loop.
+ {
+ // Do not go back into the bytes that will be read for finishing a partial
+ // sequence from the previous buffer.
+ int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
+ if(length>0) {
+ uint8_t b1=*(sourceLimit-1);
+ if(U8_IS_SINGLE(b1)) {
+ // common ASCII character
+ } else if(U8_IS_TRAIL(b1) && length>=2) {
+ uint8_t b2=*(sourceLimit-2);
+ if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
+ // truncated 3-byte sequence
+ sourceLimit-=2;
+ }
+ } else if(0xc2<=b1 && b1<0xf0) {
+ // truncated 2- or 3-byte sequence
+ --sourceLimit;
+ }
+ }
+ }
+
+ if(c!=0 && targetCapacity>0) {
+ utf8->toUnicodeStatus=0;
+ utf8->toULength=0;
+ goto moreBytes;
+ /* See note in ucnv_SBCSFromUTF8() about this goto. */
+ }
+
+ /* conversion loop */
+ while(source<sourceLimit) {
+ if(targetCapacity>0) {
+ b=*source++;
+ if(U8_IS_SINGLE(b)) {
+ /* convert ASCII */
+ if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
+ *target++=b;
+ --targetCapacity;
+ continue;
+ } else {
+ value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
+ if(value==0) {
+ c=b;
+ goto unassigned;
+ }
+ }
+ } else {
+ if(b>=0xe0) {
+ if( /* handle U+0800..U+D7FF inline */
+ b<=0xed && // do not assume maxFastUChar>0xd7ff
+ U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0]) &&
+ (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
+ ) {
+ c=((b&0xf)<<6)|(t1&0x3f);
+ source+=2;
+ value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
+ if(value==0) {
+ c=(c<<6)|t2;
+ goto unassigned;
+ }
+ } else {
+ c=-1;
+ }
+ } else {
+ if( /* handle U+0080..U+07FF inline */
+ b>=0xc2 &&
+ (t1=(uint8_t)(*source-0x80)) <= 0x3f
+ ) {
+ c=b&0x1f;
+ ++source;
+ value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
+ if(value==0) {
+ c=(c<<6)|t1;
+ goto unassigned;
+ }
+ } else {
+ c=-1;
+ }
+ }
+
+ if(c<0) {
+ /* handle "complicated" and error cases, and continuing partial characters */
+ oldToULength=0;
+ toULength=1;
+ toULimit=U8_COUNT_BYTES_NON_ASCII(b);
+ c=b;
+moreBytes:
+ while(toULength<toULimit) {
+ /*
+ * The sourceLimit may have been adjusted before the conversion loop
+ * to stop before a truncated sequence.
+ * Here we need to use the real limit in case we have two truncated
+ * sequences at the end.
+ * See ticket #7492.
+ */
+ if(source<(uint8_t *)pToUArgs->sourceLimit) {
+ b=*source;
+ if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
+ ++source;
+ ++toULength;
+ c=(c<<6)+b;
+ } else {
+ break; /* sequence too short, stop with toULength<toULimit */
+ }
+ } else {
+ /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
+ source-=(toULength-oldToULength);
+ while(oldToULength<toULength) {
+ utf8->toUBytes[oldToULength++]=*source++;
+ }
+ utf8->toUnicodeStatus=c;
+ utf8->toULength=toULength;
+ utf8->mode=toULimit;
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+ return;
+ }
+ }
+
+ if(toULength==toULimit) {
+ c-=utf8_offsets[toULength];
+ if(toULength<=3) { /* BMP */
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+ } else {
+ /* supplementary code point */
+ if(!hasSupplementary) {
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ stage2Entry=0;
+ } else {
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+ }
+ }
+ } else {
+ /* error handling: illegal UTF-8 byte sequence */
+ source-=(toULength-oldToULength);
+ while(oldToULength<toULength) {
+ utf8->toUBytes[oldToULength++]=*source++;
+ }
+ utf8->toULength=toULength;
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+ *pErrorCode=U_ILLEGAL_CHAR_FOUND;
+ return;
+ }
+
+ /* get the bytes and the length for the output */
+ /* MBCS_OUTPUT_2 */
+ value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
+
+ /* is this code point assigned, or do we use fallbacks? */
+ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
+ (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
+ ) {
+ goto unassigned;
+ }
+ }
+ }
+
+ /* write the output character bytes from value and length */
+ /* from the first if in the loop we know that targetCapacity>0 */
+ if(value<=0xff) {
+ /* this is easy because we know that there is enough space */
+ *target++=(uint8_t)value;
+ --targetCapacity;
+ } else /* length==2 */ {
+ *target++=(uint8_t)(value>>8);
+ if(2<=targetCapacity) {
+ *target++=(uint8_t)value;
+ targetCapacity-=2;
+ } else {
+ cnv->charErrorBuffer[0]=(char)value;
+ cnv->charErrorBufferLength=1;
+
+ /* target overflow */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+ continue;
+
+unassigned:
+ {
+ /*
+ * Try an extension mapping.
+ * Pass in no source because we don't have UTF-16 input.
+ * If we have a partial match on c, we will return and revert
+ * to UTF-8->UTF-16->charset conversion.
+ */
+ static const UChar nul=0;
+ const UChar *noSource=&nul;
+ c=_extFromU(cnv, cnv->sharedData,
+ c, &noSource, noSource,
+ &target, target+targetCapacity,
+ NULL, -1,
+ pFromUArgs->flush,
+ pErrorCode);
+
+ if(U_FAILURE(*pErrorCode)) {
+ /* not mappable or buffer overflow */
+ cnv->fromUChar32=c;
+ break;
+ } else if(cnv->preFromUFirstCP>=0) {
+ /*
+ * Partial match, return and revert to pivoting.
+ * In normal from-UTF-16 conversion, we would just continue
+ * but then exit the loop because the extension match would
+ * have consumed the source.
+ */
+ *pErrorCode=U_USING_DEFAULT_WARNING;
+ break;
+ } else {
+ /* a mapping was written to the target, continue */
+
+ /* recalculate the targetCapacity after an extension mapping */
+ targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
+ continue;
+ }
+ }
+ } else {
+ /* target is full */
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+
+ /*
+ * The sourceLimit may have been adjusted before the conversion loop
+ * to stop before a truncated sequence.
+ * If so, then collect the truncated sequence now.
+ */
+ if(U_SUCCESS(*pErrorCode) &&
+ cnv->preFromUFirstCP<0 &&
+ source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
+ c=utf8->toUBytes[0]=b=*source++;
+ toULength=1;
+ toULimit=U8_COUNT_BYTES(b);
+ while(source<sourceLimit) {
+ utf8->toUBytes[toULength++]=b=*source++;
+ c=(c<<6)+b;
+ }
+ utf8->toUnicodeStatus=c;
+ utf8->toULength=toULength;
+ utf8->mode=toULimit;
+ }
+
+ /* write back the updated pointers */
+ pToUArgs->source=(char *)source;
+ pFromUArgs->target=(char *)target;
+}
+
+/* miscellaneous ------------------------------------------------------------ */
+
+static void U_CALLCONV
+ucnv_MBCSGetStarters(const UConverter* cnv,
+ UBool starters[256],
+ UErrorCode *) {
+ const int32_t *state0;
+ int i;
+
+ state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
+ for(i=0; i<256; ++i) {
+ /* all bytes that cause a state transition from state 0 are lead bytes */
+ starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
+ }
+}
+
+/*
+ * This is an internal function that allows other converter implementations
+ * to check whether a byte is a lead byte.
+ */
+U_CFUNC UBool
+ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
+ return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
+}
+
+static void U_CALLCONV
+ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
+ int32_t offsetIndex,
+ UErrorCode *pErrorCode) {
+ UConverter *cnv=pArgs->converter;
+ char *p, *subchar;
+ char buffer[4];
+ int32_t length;
+
+ /* first, select between subChar and subChar1 */
+ if( cnv->subChar1!=0 &&
+ (cnv->sharedData->mbcs.extIndexes!=NULL ?
+ cnv->useSubChar1 :
+ (cnv->invalidUCharBuffer[0]<=0xff))
+ ) {
+ /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
+ subchar=(char *)&cnv->subChar1;
+ length=1;
+ } else {
+ /* select subChar in all other cases */
+ subchar=(char *)cnv->subChars;
+ length=cnv->subCharLen;
+ }
+
+ /* reset the selector for the next code point */
+ cnv->useSubChar1=FALSE;
+
+ if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
+ p=buffer;
+
+ /* fromUnicodeStatus contains prevLength */
+ switch(length) {
+ case 1:
+ if(cnv->fromUnicodeStatus==2) {
+ /* DBCS mode and SBCS sub char: change to SBCS */
+ cnv->fromUnicodeStatus=1;
+ *p++=UCNV_SI;
+ }
+ *p++=subchar[0];
+ break;
+ case 2:
+ if(cnv->fromUnicodeStatus<=1) {
+ /* SBCS mode and DBCS sub char: change to DBCS */
+ cnv->fromUnicodeStatus=2;
+ *p++=UCNV_SO;
+ }
+ *p++=subchar[0];
+ *p++=subchar[1];
+ break;
+ default:
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ subchar=buffer;
+ length=(int32_t)(p-buffer);
+ }
+
+ ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
+}
+
+U_CFUNC UConverterType
+ucnv_MBCSGetType(const UConverter* converter) {
+ /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
+ if(converter->sharedData->mbcs.countStates==1) {
+ return (UConverterType)UCNV_SBCS;
+ } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
+ return (UConverterType)UCNV_EBCDIC_STATEFUL;
+ } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
+ return (UConverterType)UCNV_DBCS;
+ }
+ return (UConverterType)UCNV_MBCS;
+}
+
+#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */