summaryrefslogtreecommitdiffstats
path: root/js/public/UbiNodeDominatorTree.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /js/public/UbiNodeDominatorTree.h
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/public/UbiNodeDominatorTree.h')
-rw-r--r--js/public/UbiNodeDominatorTree.h691
1 files changed, 691 insertions, 0 deletions
diff --git a/js/public/UbiNodeDominatorTree.h b/js/public/UbiNodeDominatorTree.h
new file mode 100644
index 0000000000..199b59a992
--- /dev/null
+++ b/js/public/UbiNodeDominatorTree.h
@@ -0,0 +1,691 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef js_UbiNodeDominatorTree_h
+#define js_UbiNodeDominatorTree_h
+
+#include "mozilla/Attributes.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/Maybe.h"
+#include "mozilla/UniquePtr.h"
+
+#include <utility>
+
+#include "js/AllocPolicy.h"
+#include "js/UbiNode.h"
+#include "js/UbiNodePostOrder.h"
+#include "js/Utility.h"
+#include "js/Vector.h"
+
+namespace JS {
+namespace ubi {
+
+/**
+ * In a directed graph with a root node `R`, a node `A` is said to "dominate" a
+ * node `B` iff every path from `R` to `B` contains `A`. A node `A` is said to
+ * be the "immediate dominator" of a node `B` iff it dominates `B`, is not `B`
+ * itself, and does not dominate any other nodes which also dominate `B` in
+ * turn.
+ *
+ * If we take every node from a graph `G` and create a new graph `T` with edges
+ * to each node from its immediate dominator, then `T` is a tree (each node has
+ * only one immediate dominator, or none if it is the root). This tree is called
+ * a "dominator tree".
+ *
+ * This class represents a dominator tree constructed from a `JS::ubi::Node`
+ * heap graph. The domination relationship and dominator trees are useful tools
+ * for analyzing heap graphs because they tell you:
+ *
+ * - Exactly what could be reclaimed by the GC if some node `A` became
+ * unreachable: those nodes which are dominated by `A`,
+ *
+ * - The "retained size" of a node in the heap graph, in contrast to its
+ * "shallow size". The "shallow size" is the space taken by a node itself,
+ * not counting anything it references. The "retained size" of a node is its
+ * shallow size plus the size of all the things that would be collected if
+ * the original node wasn't (directly or indirectly) referencing them. In
+ * other words, the retained size is the shallow size of a node plus the
+ * shallow sizes of every other node it dominates. For example, the root
+ * node in a binary tree might have a small shallow size that does not take
+ * up much space itself, but it dominates the rest of the binary tree and
+ * its retained size is therefore significant (assuming no external
+ * references into the tree).
+ *
+ * The simple, engineered algorithm presented in "A Simple, Fast Dominance
+ * Algorithm" by Cooper el al[0] is used to find dominators and construct the
+ * dominator tree. This algorithm runs in O(n^2) time, but is faster in practice
+ * than alternative algorithms with better theoretical running times, such as
+ * Lengauer-Tarjan which runs in O(e * log(n)). The big caveat to that statement
+ * is that Cooper et al found it is faster in practice *on control flow graphs*
+ * and I'm not convinced that this property also holds on *heap* graphs. That
+ * said, the implementation of this algorithm is *much* simpler than
+ * Lengauer-Tarjan and has been found to be fast enough at least for the time
+ * being.
+ *
+ * [0]: http://www.cs.rice.edu/~keith/EMBED/dom.pdf
+ */
+class JS_PUBLIC_API DominatorTree {
+ private:
+ // Types.
+
+ using PredecessorSets = js::HashMap<Node, NodeSetPtr, js::DefaultHasher<Node>,
+ js::SystemAllocPolicy>;
+ using NodeToIndexMap = js::HashMap<Node, uint32_t, js::DefaultHasher<Node>,
+ js::SystemAllocPolicy>;
+ class DominatedSets;
+
+ public:
+ class DominatedSetRange;
+
+ /**
+ * A pointer to an immediately dominated node.
+ *
+ * Don't use this type directly; it is no safer than regular pointers. This
+ * is only for use indirectly with range-based for loops and
+ * `DominatedSetRange`.
+ *
+ * @see JS::ubi::DominatorTree::getDominatedSet
+ */
+ class DominatedNodePtr {
+ friend class DominatedSetRange;
+
+ const JS::ubi::Vector<Node>& postOrder;
+ const uint32_t* ptr;
+
+ DominatedNodePtr(const JS::ubi::Vector<Node>& postOrder,
+ const uint32_t* ptr)
+ : postOrder(postOrder), ptr(ptr) {}
+
+ public:
+ bool operator!=(const DominatedNodePtr& rhs) const {
+ return ptr != rhs.ptr;
+ }
+ void operator++() { ptr++; }
+ const Node& operator*() const { return postOrder[*ptr]; }
+ };
+
+ /**
+ * A range of immediately dominated `JS::ubi::Node`s for use with
+ * range-based for loops.
+ *
+ * @see JS::ubi::DominatorTree::getDominatedSet
+ */
+ class DominatedSetRange {
+ friend class DominatedSets;
+
+ const JS::ubi::Vector<Node>& postOrder;
+ const uint32_t* beginPtr;
+ const uint32_t* endPtr;
+
+ DominatedSetRange(JS::ubi::Vector<Node>& postOrder, const uint32_t* begin,
+ const uint32_t* end)
+ : postOrder(postOrder), beginPtr(begin), endPtr(end) {
+ MOZ_ASSERT(begin <= end);
+ }
+
+ public:
+ DominatedNodePtr begin() const {
+ MOZ_ASSERT(beginPtr <= endPtr);
+ return DominatedNodePtr(postOrder, beginPtr);
+ }
+
+ DominatedNodePtr end() const { return DominatedNodePtr(postOrder, endPtr); }
+
+ size_t length() const {
+ MOZ_ASSERT(beginPtr <= endPtr);
+ return endPtr - beginPtr;
+ }
+
+ /**
+ * Safely skip ahead `n` dominators in the range, in O(1) time.
+ *
+ * Example usage:
+ *
+ * mozilla::Maybe<DominatedSetRange> range =
+ * myDominatorTree.getDominatedSet(myNode);
+ * if (range.isNothing()) {
+ * // Handle unknown nodes however you see fit...
+ * return false;
+ * }
+ *
+ * // Don't care about the first ten, for whatever reason.
+ * range->skip(10);
+ * for (const JS::ubi::Node& dominatedNode : *range) {
+ * // ...
+ * }
+ */
+ void skip(size_t n) {
+ beginPtr += n;
+ if (beginPtr > endPtr) {
+ beginPtr = endPtr;
+ }
+ }
+ };
+
+ private:
+ /**
+ * The set of all dominated sets in a dominator tree.
+ *
+ * Internally stores the sets in a contiguous array, with a side table of
+ * indices into that contiguous array to denote the start index of each
+ * individual set.
+ */
+ class DominatedSets {
+ JS::ubi::Vector<uint32_t> dominated;
+ JS::ubi::Vector<uint32_t> indices;
+
+ DominatedSets(JS::ubi::Vector<uint32_t>&& dominated,
+ JS::ubi::Vector<uint32_t>&& indices)
+ : dominated(std::move(dominated)), indices(std::move(indices)) {}
+
+ public:
+ // DominatedSets is not copy-able.
+ DominatedSets(const DominatedSets& rhs) = delete;
+ DominatedSets& operator=(const DominatedSets& rhs) = delete;
+
+ // DominatedSets is move-able.
+ DominatedSets(DominatedSets&& rhs)
+ : dominated(std::move(rhs.dominated)), indices(std::move(rhs.indices)) {
+ MOZ_ASSERT(this != &rhs, "self-move not allowed");
+ }
+ DominatedSets& operator=(DominatedSets&& rhs) {
+ this->~DominatedSets();
+ new (this) DominatedSets(std::move(rhs));
+ return *this;
+ }
+
+ /**
+ * Create the DominatedSets given the mapping of a node index to its
+ * immediate dominator. Returns `Some` on success, `Nothing` on OOM
+ * failure.
+ */
+ static mozilla::Maybe<DominatedSets> Create(
+ const JS::ubi::Vector<uint32_t>& doms) {
+ auto length = doms.length();
+ MOZ_ASSERT(length < UINT32_MAX);
+
+ // Create a vector `dominated` holding a flattened set of buckets of
+ // immediately dominated children nodes, with a lookup table
+ // `indices` mapping from each node to the beginning of its bucket.
+ //
+ // This has three phases:
+ //
+ // 1. Iterate over the full set of nodes and count up the size of
+ // each bucket. These bucket sizes are temporarily stored in the
+ // `indices` vector.
+ //
+ // 2. Convert the `indices` vector to store the cumulative sum of
+ // the sizes of all buckets before each index, resulting in a
+ // mapping from node index to one past the end of that node's
+ // bucket.
+ //
+ // 3. Iterate over the full set of nodes again, filling in bucket
+ // entries from the end of the bucket's range to its
+ // beginning. This decrements each index as a bucket entry is
+ // filled in. After having filled in all of a bucket's entries,
+ // the index points to the start of the bucket.
+
+ JS::ubi::Vector<uint32_t> dominated;
+ JS::ubi::Vector<uint32_t> indices;
+ if (!dominated.growBy(length) || !indices.growBy(length)) {
+ return mozilla::Nothing();
+ }
+
+ // 1
+ memset(indices.begin(), 0, length * sizeof(uint32_t));
+ for (uint32_t i = 0; i < length; i++) {
+ indices[doms[i]]++;
+ }
+
+ // 2
+ uint32_t sumOfSizes = 0;
+ for (uint32_t i = 0; i < length; i++) {
+ sumOfSizes += indices[i];
+ MOZ_ASSERT(sumOfSizes <= length);
+ indices[i] = sumOfSizes;
+ }
+
+ // 3
+ for (uint32_t i = 0; i < length; i++) {
+ auto idxOfDom = doms[i];
+ indices[idxOfDom]--;
+ dominated[indices[idxOfDom]] = i;
+ }
+
+#ifdef DEBUG
+ // Assert that our buckets are non-overlapping and don't run off the
+ // end of the vector.
+ uint32_t lastIndex = 0;
+ for (uint32_t i = 0; i < length; i++) {
+ MOZ_ASSERT(indices[i] >= lastIndex);
+ MOZ_ASSERT(indices[i] < length);
+ lastIndex = indices[i];
+ }
+#endif
+
+ return mozilla::Some(
+ DominatedSets(std::move(dominated), std::move(indices)));
+ }
+
+ /**
+ * Get the set of nodes immediately dominated by the node at
+ * `postOrder[nodeIndex]`.
+ */
+ DominatedSetRange dominatedSet(JS::ubi::Vector<Node>& postOrder,
+ uint32_t nodeIndex) const {
+ MOZ_ASSERT(postOrder.length() == indices.length());
+ MOZ_ASSERT(nodeIndex < indices.length());
+ auto end = nodeIndex == indices.length() - 1
+ ? dominated.end()
+ : &dominated[indices[nodeIndex + 1]];
+ return DominatedSetRange(postOrder, &dominated[indices[nodeIndex]], end);
+ }
+ };
+
+ private:
+ // Data members.
+ JS::ubi::Vector<Node> postOrder;
+ NodeToIndexMap nodeToPostOrderIndex;
+ JS::ubi::Vector<uint32_t> doms;
+ DominatedSets dominatedSets;
+ mozilla::Maybe<JS::ubi::Vector<JS::ubi::Node::Size>> retainedSizes;
+
+ private:
+ // We use `UNDEFINED` as a sentinel value in the `doms` vector to signal
+ // that we haven't found any dominators for the node at the corresponding
+ // index in `postOrder` yet.
+ static const uint32_t UNDEFINED = UINT32_MAX;
+
+ DominatorTree(JS::ubi::Vector<Node>&& postOrder,
+ NodeToIndexMap&& nodeToPostOrderIndex,
+ JS::ubi::Vector<uint32_t>&& doms, DominatedSets&& dominatedSets)
+ : postOrder(std::move(postOrder)),
+ nodeToPostOrderIndex(std::move(nodeToPostOrderIndex)),
+ doms(std::move(doms)),
+ dominatedSets(std::move(dominatedSets)),
+ retainedSizes(mozilla::Nothing()) {}
+
+ static uint32_t intersect(JS::ubi::Vector<uint32_t>& doms, uint32_t finger1,
+ uint32_t finger2) {
+ while (finger1 != finger2) {
+ if (finger1 < finger2) {
+ finger1 = doms[finger1];
+ } else if (finger2 < finger1) {
+ finger2 = doms[finger2];
+ }
+ }
+ return finger1;
+ }
+
+ // Do the post order traversal of the heap graph and populate our
+ // predecessor sets.
+ static MOZ_MUST_USE bool doTraversal(JSContext* cx, AutoCheckCannotGC& noGC,
+ const Node& root,
+ JS::ubi::Vector<Node>& postOrder,
+ PredecessorSets& predecessorSets) {
+ uint32_t nodeCount = 0;
+ auto onNode = [&](const Node& node) {
+ nodeCount++;
+ if (MOZ_UNLIKELY(nodeCount == UINT32_MAX)) {
+ return false;
+ }
+ return postOrder.append(node);
+ };
+
+ auto onEdge = [&](const Node& origin, const Edge& edge) {
+ auto p = predecessorSets.lookupForAdd(edge.referent);
+ if (!p) {
+ mozilla::UniquePtr<NodeSet, DeletePolicy<NodeSet>> set(
+ js_new<NodeSet>());
+ if (!set || !predecessorSets.add(p, edge.referent, std::move(set))) {
+ return false;
+ }
+ }
+ MOZ_ASSERT(p && p->value());
+ return p->value()->put(origin);
+ };
+
+ PostOrder traversal(cx, noGC);
+ return traversal.addStart(root) && traversal.traverse(onNode, onEdge);
+ }
+
+ // Populates the given `map` with an entry for each node to its index in
+ // `postOrder`.
+ static MOZ_MUST_USE bool mapNodesToTheirIndices(
+ JS::ubi::Vector<Node>& postOrder, NodeToIndexMap& map) {
+ MOZ_ASSERT(map.empty());
+ MOZ_ASSERT(postOrder.length() < UINT32_MAX);
+ uint32_t length = postOrder.length();
+ if (!map.reserve(length)) {
+ return false;
+ }
+ for (uint32_t i = 0; i < length; i++) {
+ map.putNewInfallible(postOrder[i], i);
+ }
+ return true;
+ }
+
+ // Convert the Node -> NodeSet predecessorSets to a index -> Vector<index>
+ // form.
+ static MOZ_MUST_USE bool convertPredecessorSetsToVectors(
+ const Node& root, JS::ubi::Vector<Node>& postOrder,
+ PredecessorSets& predecessorSets, NodeToIndexMap& nodeToPostOrderIndex,
+ JS::ubi::Vector<JS::ubi::Vector<uint32_t>>& predecessorVectors) {
+ MOZ_ASSERT(postOrder.length() < UINT32_MAX);
+ uint32_t length = postOrder.length();
+
+ MOZ_ASSERT(predecessorVectors.length() == 0);
+ if (!predecessorVectors.growBy(length)) {
+ return false;
+ }
+
+ for (uint32_t i = 0; i < length - 1; i++) {
+ auto& node = postOrder[i];
+ MOZ_ASSERT(node != root,
+ "Only the last node should be root, since this was a post "
+ "order traversal.");
+
+ auto ptr = predecessorSets.lookup(node);
+ MOZ_ASSERT(ptr,
+ "Because this isn't the root, it had better have "
+ "predecessors, or else how "
+ "did we even find it.");
+
+ auto& predecessors = ptr->value();
+ if (!predecessorVectors[i].reserve(predecessors->count())) {
+ return false;
+ }
+ for (auto range = predecessors->all(); !range.empty(); range.popFront()) {
+ auto ptr = nodeToPostOrderIndex.lookup(range.front());
+ MOZ_ASSERT(ptr);
+ predecessorVectors[i].infallibleAppend(ptr->value());
+ }
+ }
+ predecessorSets.clearAndCompact();
+ return true;
+ }
+
+ // Initialize `doms` such that the immediate dominator of the `root` is the
+ // `root` itself and all others are `UNDEFINED`.
+ static MOZ_MUST_USE bool initializeDominators(JS::ubi::Vector<uint32_t>& doms,
+ uint32_t length) {
+ MOZ_ASSERT(doms.length() == 0);
+ if (!doms.growByUninitialized(length)) {
+ return false;
+ }
+ doms[length - 1] = length - 1;
+ for (uint32_t i = 0; i < length - 1; i++) {
+ doms[i] = UNDEFINED;
+ }
+ return true;
+ }
+
+ void assertSanity() const {
+ MOZ_ASSERT(postOrder.length() == doms.length());
+ MOZ_ASSERT(postOrder.length() == nodeToPostOrderIndex.count());
+ MOZ_ASSERT_IF(retainedSizes.isSome(),
+ postOrder.length() == retainedSizes->length());
+ }
+
+ MOZ_MUST_USE bool computeRetainedSizes(mozilla::MallocSizeOf mallocSizeOf) {
+ MOZ_ASSERT(retainedSizes.isNothing());
+ auto length = postOrder.length();
+
+ retainedSizes.emplace();
+ if (!retainedSizes->growBy(length)) {
+ retainedSizes = mozilla::Nothing();
+ return false;
+ }
+
+ // Iterate in forward order so that we know all of a node's children in
+ // the dominator tree have already had their retained size
+ // computed. Then we can simply say that the retained size of a node is
+ // its shallow size (JS::ubi::Node::size) plus the retained sizes of its
+ // immediate children in the tree.
+
+ for (uint32_t i = 0; i < length; i++) {
+ auto size = postOrder[i].size(mallocSizeOf);
+
+ for (const auto& dominated : dominatedSets.dominatedSet(postOrder, i)) {
+ // The root node dominates itself, but shouldn't contribute to
+ // its own retained size.
+ if (dominated == postOrder[length - 1]) {
+ MOZ_ASSERT(i == length - 1);
+ continue;
+ }
+
+ auto ptr = nodeToPostOrderIndex.lookup(dominated);
+ MOZ_ASSERT(ptr);
+ auto idxOfDominated = ptr->value();
+ MOZ_ASSERT(idxOfDominated < i);
+ size += retainedSizes.ref()[idxOfDominated];
+ }
+
+ retainedSizes.ref()[i] = size;
+ }
+
+ return true;
+ }
+
+ public:
+ // DominatorTree is not copy-able.
+ DominatorTree(const DominatorTree&) = delete;
+ DominatorTree& operator=(const DominatorTree&) = delete;
+
+ // DominatorTree is move-able.
+ DominatorTree(DominatorTree&& rhs)
+ : postOrder(std::move(rhs.postOrder)),
+ nodeToPostOrderIndex(std::move(rhs.nodeToPostOrderIndex)),
+ doms(std::move(rhs.doms)),
+ dominatedSets(std::move(rhs.dominatedSets)),
+ retainedSizes(std::move(rhs.retainedSizes)) {
+ MOZ_ASSERT(this != &rhs, "self-move is not allowed");
+ }
+ DominatorTree& operator=(DominatorTree&& rhs) {
+ this->~DominatorTree();
+ new (this) DominatorTree(std::move(rhs));
+ return *this;
+ }
+
+ /**
+ * Construct a `DominatorTree` of the heap graph visible from `root`. The
+ * `root` is also used as the root of the resulting dominator tree.
+ *
+ * The resulting `DominatorTree` instance must not outlive the
+ * `JS::ubi::Node` graph it was constructed from.
+ *
+ * - For `JS::ubi::Node` graphs backed by the live heap graph, this means
+ * that the `DominatorTree`'s lifetime _must_ be contained within the
+ * scope of the provided `AutoCheckCannotGC` reference because a GC will
+ * invalidate the nodes.
+ *
+ * - For `JS::ubi::Node` graphs backed by some other offline structure
+ * provided by the embedder, the resulting `DominatorTree`'s lifetime is
+ * bounded by that offline structure's lifetime.
+ *
+ * In practice, this means that within SpiderMonkey we must treat
+ * `DominatorTree` as if it were backed by the live heap graph and trust
+ * that embedders with knowledge of the graph's implementation will do the
+ * Right Thing.
+ *
+ * Returns `mozilla::Nothing()` on OOM failure. It is the caller's
+ * responsibility to handle and report the OOM.
+ */
+ static mozilla::Maybe<DominatorTree> Create(JSContext* cx,
+ AutoCheckCannotGC& noGC,
+ const Node& root) {
+ JS::ubi::Vector<Node> postOrder;
+ PredecessorSets predecessorSets;
+ if (!doTraversal(cx, noGC, root, postOrder, predecessorSets)) {
+ return mozilla::Nothing();
+ }
+
+ MOZ_ASSERT(postOrder.length() < UINT32_MAX);
+ uint32_t length = postOrder.length();
+ MOZ_ASSERT(postOrder[length - 1] == root);
+
+ // From here on out we wish to avoid hash table lookups, and we use
+ // indices into `postOrder` instead of actual nodes wherever
+ // possible. This greatly improves the performance of this
+ // implementation, but we have to pay a little bit of upfront cost to
+ // convert our data structures to play along first.
+
+ NodeToIndexMap nodeToPostOrderIndex(postOrder.length());
+ if (!mapNodesToTheirIndices(postOrder, nodeToPostOrderIndex)) {
+ return mozilla::Nothing();
+ }
+
+ JS::ubi::Vector<JS::ubi::Vector<uint32_t>> predecessorVectors;
+ if (!convertPredecessorSetsToVectors(root, postOrder, predecessorSets,
+ nodeToPostOrderIndex,
+ predecessorVectors))
+ return mozilla::Nothing();
+
+ JS::ubi::Vector<uint32_t> doms;
+ if (!initializeDominators(doms, length)) {
+ return mozilla::Nothing();
+ }
+
+ bool changed = true;
+ while (changed) {
+ changed = false;
+
+ // Iterate over the non-root nodes in reverse post order.
+ for (uint32_t indexPlusOne = length - 1; indexPlusOne > 0;
+ indexPlusOne--) {
+ MOZ_ASSERT(postOrder[indexPlusOne - 1] != root);
+
+ // Take the intersection of every predecessor's dominator set;
+ // that is the current best guess at the immediate dominator for
+ // this node.
+
+ uint32_t newIDomIdx = UNDEFINED;
+
+ auto& predecessors = predecessorVectors[indexPlusOne - 1];
+ auto range = predecessors.all();
+ for (; !range.empty(); range.popFront()) {
+ auto idx = range.front();
+ if (doms[idx] != UNDEFINED) {
+ newIDomIdx = idx;
+ break;
+ }
+ }
+
+ MOZ_ASSERT(newIDomIdx != UNDEFINED,
+ "Because the root is initialized to dominate itself and is "
+ "the first "
+ "node in every path, there must exist a predecessor to this "
+ "node that "
+ "also has a dominator.");
+
+ for (; !range.empty(); range.popFront()) {
+ auto idx = range.front();
+ if (doms[idx] != UNDEFINED) {
+ newIDomIdx = intersect(doms, newIDomIdx, idx);
+ }
+ }
+
+ // If the immediate dominator changed, we will have to do
+ // another pass of the outer while loop to continue the forward
+ // dataflow.
+ if (newIDomIdx != doms[indexPlusOne - 1]) {
+ doms[indexPlusOne - 1] = newIDomIdx;
+ changed = true;
+ }
+ }
+ }
+
+ auto maybeDominatedSets = DominatedSets::Create(doms);
+ if (maybeDominatedSets.isNothing()) {
+ return mozilla::Nothing();
+ }
+
+ return mozilla::Some(
+ DominatorTree(std::move(postOrder), std::move(nodeToPostOrderIndex),
+ std::move(doms), std::move(*maybeDominatedSets)));
+ }
+
+ /**
+ * Get the root node for this dominator tree.
+ */
+ const Node& root() const { return postOrder[postOrder.length() - 1]; }
+
+ /**
+ * Return the immediate dominator of the given `node`. If `node` was not
+ * reachable from the `root` that this dominator tree was constructed from,
+ * then return the null `JS::ubi::Node`.
+ */
+ Node getImmediateDominator(const Node& node) const {
+ assertSanity();
+ auto ptr = nodeToPostOrderIndex.lookup(node);
+ if (!ptr) {
+ return Node();
+ }
+
+ auto idx = ptr->value();
+ MOZ_ASSERT(idx < postOrder.length());
+ return postOrder[doms[idx]];
+ }
+
+ /**
+ * Get the set of nodes immediately dominated by the given `node`. If `node`
+ * is not a member of this dominator tree, return `Nothing`.
+ *
+ * Example usage:
+ *
+ * mozilla::Maybe<DominatedSetRange> range =
+ * myDominatorTree.getDominatedSet(myNode);
+ * if (range.isNothing()) {
+ * // Handle unknown node however you see fit...
+ * return false;
+ * }
+ *
+ * for (const JS::ubi::Node& dominatedNode : *range) {
+ * // Do something with each immediately dominated node...
+ * }
+ */
+ mozilla::Maybe<DominatedSetRange> getDominatedSet(const Node& node) {
+ assertSanity();
+ auto ptr = nodeToPostOrderIndex.lookup(node);
+ if (!ptr) {
+ return mozilla::Nothing();
+ }
+
+ auto idx = ptr->value();
+ MOZ_ASSERT(idx < postOrder.length());
+ return mozilla::Some(dominatedSets.dominatedSet(postOrder, idx));
+ }
+
+ /**
+ * Get the retained size of the given `node`. The size is placed in
+ * `outSize`, or 0 if `node` is not a member of the dominator tree. Returns
+ * false on OOM failure, leaving `outSize` unchanged.
+ */
+ MOZ_MUST_USE bool getRetainedSize(const Node& node,
+ mozilla::MallocSizeOf mallocSizeOf,
+ Node::Size& outSize) {
+ assertSanity();
+ auto ptr = nodeToPostOrderIndex.lookup(node);
+ if (!ptr) {
+ outSize = 0;
+ return true;
+ }
+
+ if (retainedSizes.isNothing() && !computeRetainedSizes(mallocSizeOf)) {
+ return false;
+ }
+
+ auto idx = ptr->value();
+ MOZ_ASSERT(idx < postOrder.length());
+ outSize = retainedSizes.ref()[idx];
+ return true;
+ }
+};
+
+} // namespace ubi
+} // namespace JS
+
+#endif // js_UbiNodeDominatorTree_h