diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /js/src/jit/mips64/Simulator-mips64.cpp | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/mips64/Simulator-mips64.cpp')
-rw-r--r-- | js/src/jit/mips64/Simulator-mips64.cpp | 4076 |
1 files changed, 4076 insertions, 0 deletions
diff --git a/js/src/jit/mips64/Simulator-mips64.cpp b/js/src/jit/mips64/Simulator-mips64.cpp new file mode 100644 index 0000000000..91cd31bf1f --- /dev/null +++ b/js/src/jit/mips64/Simulator-mips64.cpp @@ -0,0 +1,4076 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/mips64/Simulator-mips64.h" + +#include "mozilla/Casting.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/IntegerPrintfMacros.h" +#include "mozilla/Likely.h" +#include "mozilla/MathAlgorithms.h" + +#include <float.h> +#include <limits> + +#include "jit/AtomicOperations.h" +#include "jit/mips64/Assembler-mips64.h" +#include "js/UniquePtr.h" +#include "js/Utility.h" +#include "threading/LockGuard.h" +#include "vm/Runtime.h" +#include "wasm/WasmInstance.h" +#include "wasm/WasmSignalHandlers.h" + +#define I8(v) static_cast<int8_t>(v) +#define I16(v) static_cast<int16_t>(v) +#define U16(v) static_cast<uint16_t>(v) +#define I32(v) static_cast<int32_t>(v) +#define U32(v) static_cast<uint32_t>(v) +#define I64(v) static_cast<int64_t>(v) +#define U64(v) static_cast<uint64_t>(v) +#define I128(v) static_cast<__int128_t>(v) +#define U128(v) static_cast<__uint128_t>(v) + +#define I32_CHECK(v) \ + ({ \ + MOZ_ASSERT(I64(I32(v)) == I64(v)); \ + I32((v)); \ + }) + +namespace js { +namespace jit { + +static const Instr kCallRedirInstr = + op_special | MAX_BREAK_CODE << FunctionBits | ff_break; + +// Utils functions. +static uint32_t GetFCSRConditionBit(uint32_t cc) { + if (cc == 0) { + return 23; + } + return 24 + cc; +} + +// ----------------------------------------------------------------------------- +// MIPS assembly various constants. + +class SimInstruction { + public: + enum { + kInstrSize = 4, + // On MIPS PC cannot actually be directly accessed. We behave as if PC was + // always the value of the current instruction being executed. + kPCReadOffset = 0 + }; + + // Get the raw instruction bits. + inline Instr instructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void setInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int bit(int nr) const { return (instructionBits() >> nr) & 1; } + + // Read a bit field out of the instruction bits. + inline int bits(int hi, int lo) const { + return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Instruction type. + enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 }; + + // Get the encoding type of the instruction. + Type instructionType() const; + + // Accessors for the different named fields used in the MIPS encoding. + inline OpcodeField opcodeValue() const { + return static_cast<OpcodeField>( + bits(OpcodeShift + OpcodeBits - 1, OpcodeShift)); + } + + inline int rsValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(RSShift + RSBits - 1, RSShift); + } + + inline int rtValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(RTShift + RTBits - 1, RTShift); + } + + inline int rdValue() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return bits(RDShift + RDBits - 1, RDShift); + } + + inline int saValue() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return bits(SAShift + SABits - 1, SAShift); + } + + inline int functionValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(FunctionShift + FunctionBits - 1, FunctionShift); + } + + inline int fdValue() const { return bits(FDShift + FDBits - 1, FDShift); } + + inline int fsValue() const { return bits(FSShift + FSBits - 1, FSShift); } + + inline int ftValue() const { return bits(FTShift + FTBits - 1, FTShift); } + + inline int frValue() const { return bits(FRShift + FRBits - 1, FRShift); } + + // Float Compare condition code instruction bits. + inline int fcccValue() const { + return bits(FCccShift + FCccBits - 1, FCccShift); + } + + // Float Branch condition code instruction bits. + inline int fbccValue() const { + return bits(FBccShift + FBccBits - 1, FBccShift); + } + + // Float Branch true/false instruction bit. + inline int fbtrueValue() const { + return bits(FBtrueShift + FBtrueBits - 1, FBtrueShift); + } + + // Return the fields at their original place in the instruction encoding. + inline OpcodeField opcodeFieldRaw() const { + return static_cast<OpcodeField>(instructionBits() & OpcodeMask); + } + + inline int rsFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return instructionBits() & RSMask; + } + + // Same as above function, but safe to call within instructionType(). + inline int rsFieldRawNoAssert() const { return instructionBits() & RSMask; } + + inline int rtFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return instructionBits() & RTMask; + } + + inline int rdFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return instructionBits() & RDMask; + } + + inline int saFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return instructionBits() & SAMask; + } + + inline int functionFieldRaw() const { + return instructionBits() & FunctionMask; + } + + // Get the secondary field according to the opcode. + inline int secondaryValue() const { + OpcodeField op = opcodeFieldRaw(); + switch (op) { + case op_special: + case op_special2: + return functionValue(); + case op_cop1: + return rsValue(); + case op_regimm: + return rtValue(); + default: + return ff_null; + } + } + + inline int32_t imm16Value() const { + MOZ_ASSERT(instructionType() == kImmediateType); + return bits(Imm16Shift + Imm16Bits - 1, Imm16Shift); + } + + inline int32_t imm26Value() const { + MOZ_ASSERT(instructionType() == kJumpType); + return bits(Imm26Shift + Imm26Bits - 1, Imm26Shift); + } + + // Say if the instruction should not be used in a branch delay slot. + bool isForbiddenInBranchDelay() const; + // Say if the instruction 'links'. e.g. jal, bal. + bool isLinkingInstruction() const; + // Say if the instruction is a debugger break/trap. + bool isTrap() const; + + private: + SimInstruction() = delete; + SimInstruction(const SimInstruction& other) = delete; + void operator=(const SimInstruction& other) = delete; +}; + +bool SimInstruction::isForbiddenInBranchDelay() const { + const int op = opcodeFieldRaw(); + switch (op) { + case op_j: + case op_jal: + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + case op_beql: + case op_bnel: + case op_blezl: + case op_bgtzl: + return true; + case op_regimm: + switch (rtFieldRaw()) { + case rt_bltz: + case rt_bgez: + case rt_bltzal: + case rt_bgezal: + return true; + default: + return false; + }; + break; + case op_special: + switch (functionFieldRaw()) { + case ff_jr: + case ff_jalr: + return true; + default: + return false; + }; + break; + default: + return false; + }; +} + +bool SimInstruction::isLinkingInstruction() const { + const int op = opcodeFieldRaw(); + switch (op) { + case op_jal: + return true; + case op_regimm: + switch (rtFieldRaw()) { + case rt_bgezal: + case rt_bltzal: + return true; + default: + return false; + }; + case op_special: + switch (functionFieldRaw()) { + case ff_jalr: + return true; + default: + return false; + }; + default: + return false; + }; +} + +bool SimInstruction::isTrap() const { + if (opcodeFieldRaw() != op_special) { + return false; + } else { + switch (functionFieldRaw()) { + case ff_break: + return instructionBits() != kCallRedirInstr; + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + return bits(15, 6) != kWasmTrapCode; + default: + return false; + }; + } +} + +SimInstruction::Type SimInstruction::instructionType() const { + switch (opcodeFieldRaw()) { + case op_special: + switch (functionFieldRaw()) { + case ff_jr: + case ff_jalr: + case ff_sync: + case ff_break: + case ff_sll: + case ff_dsll: + case ff_dsll32: + case ff_srl: + case ff_dsrl: + case ff_dsrl32: + case ff_sra: + case ff_dsra: + case ff_dsra32: + case ff_sllv: + case ff_dsllv: + case ff_srlv: + case ff_dsrlv: + case ff_srav: + case ff_dsrav: + case ff_mfhi: + case ff_mflo: + case ff_mult: + case ff_dmult: + case ff_multu: + case ff_dmultu: + case ff_div: + case ff_ddiv: + case ff_divu: + case ff_ddivu: + case ff_add: + case ff_dadd: + case ff_addu: + case ff_daddu: + case ff_sub: + case ff_dsub: + case ff_subu: + case ff_dsubu: + case ff_and: + case ff_or: + case ff_xor: + case ff_nor: + case ff_slt: + case ff_sltu: + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + case ff_movz: + case ff_movn: + case ff_movci: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_special2: + switch (functionFieldRaw()) { + case ff_mul: + case ff_clz: + case ff_dclz: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_special3: + switch (functionFieldRaw()) { + case ff_ins: + case ff_dins: + case ff_dinsm: + case ff_dinsu: + case ff_ext: + case ff_dext: + case ff_dextm: + case ff_dextu: + case ff_bshfl: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_cop1: // Coprocessor instructions. + switch (rsFieldRawNoAssert()) { + case rs_bc1: // Branch on coprocessor condition. + return kImmediateType; + default: + return kRegisterType; + }; + break; + case op_cop1x: + return kRegisterType; + // 16 bits Immediate type instructions. e.g.: addi dest, src, imm16. + case op_regimm: + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + case op_addi: + case op_daddi: + case op_addiu: + case op_daddiu: + case op_slti: + case op_sltiu: + case op_andi: + case op_ori: + case op_xori: + case op_lui: + case op_beql: + case op_bnel: + case op_blezl: + case op_bgtzl: + case op_lb: + case op_lbu: + case op_lh: + case op_lhu: + case op_lw: + case op_lwu: + case op_lwl: + case op_lwr: + case op_ll: + case op_lld: + case op_ld: + case op_ldl: + case op_ldr: + case op_sb: + case op_sh: + case op_sw: + case op_swl: + case op_swr: + case op_sc: + case op_scd: + case op_sd: + case op_sdl: + case op_sdr: + case op_lwc1: + case op_ldc1: + case op_swc1: + case op_sdc1: + return kImmediateType; + // 26 bits immediate type instructions. e.g.: j imm26. + case op_j: + case op_jal: + return kJumpType; + default: + return kUnsupported; + }; + return kUnsupported; +} + +// C/C++ argument slots size. +const int kCArgSlotCount = 0; +const int kCArgsSlotsSize = kCArgSlotCount * sizeof(uintptr_t); +const int kBranchReturnOffset = 2 * SimInstruction::kInstrSize; + +class CachePage { + public: + static const int LINE_VALID = 0; + static const int LINE_INVALID = 1; + + static const int kPageShift = 12; + static const int kPageSize = 1 << kPageShift; + static const int kPageMask = kPageSize - 1; + static const int kLineShift = 2; // The cache line is only 4 bytes right now. + static const int kLineLength = 1 << kLineShift; + static const int kLineMask = kLineLength - 1; + + CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } + + char* validityByte(int offset) { + return &validity_map_[offset >> kLineShift]; + } + + char* cachedData(int offset) { return &data_[offset]; } + + private: + char data_[kPageSize]; // The cached data. + static const int kValidityMapSize = kPageSize >> kLineShift; + char validity_map_[kValidityMapSize]; // One byte per line. +}; + +// Protects the icache() and redirection() properties of the +// Simulator. +class AutoLockSimulatorCache : public LockGuard<Mutex> { + using Base = LockGuard<Mutex>; + + public: + explicit AutoLockSimulatorCache() + : Base(SimulatorProcess::singleton_->cacheLock_) {} +}; + +mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + SimulatorProcess::ICacheCheckingDisableCount( + 1); // Checking is disabled by default. +SimulatorProcess* SimulatorProcess::singleton_ = nullptr; + +int64_t Simulator::StopSimAt = -1; + +Simulator* Simulator::Create() { + auto sim = MakeUnique<Simulator>(); + if (!sim) { + return nullptr; + } + + if (!sim->init()) { + return nullptr; + } + + int64_t stopAt; + char* stopAtStr = getenv("MIPS_SIM_STOP_AT"); + if (stopAtStr && sscanf(stopAtStr, "%" PRIi64, &stopAt) == 1) { + fprintf(stderr, "\nStopping simulation at icount %" PRIi64 "\n", stopAt); + Simulator::StopSimAt = stopAt; + } + + return sim.release(); +} + +void Simulator::Destroy(Simulator* sim) { js_delete(sim); } + +// The MipsDebugger class is used by the simulator while debugging simulated +// code. +class MipsDebugger { + public: + explicit MipsDebugger(Simulator* sim) : sim_(sim) {} + + void stop(SimInstruction* instr); + void debug(); + // Print all registers with a nice formatting. + void printAllRegs(); + void printAllRegsIncludingFPU(); + + private: + // We set the breakpoint code to 0xfffff to easily recognize it. + static const Instr kBreakpointInstr = op_special | ff_break | 0xfffff << 6; + static const Instr kNopInstr = op_special | ff_sll; + + Simulator* sim_; + + int64_t getRegisterValue(int regnum); + int64_t getFPURegisterValueLong(int regnum); + float getFPURegisterValueFloat(int regnum); + double getFPURegisterValueDouble(int regnum); + bool getValue(const char* desc, int64_t* value); + + // Set or delete a breakpoint. Returns true if successful. + bool setBreakpoint(SimInstruction* breakpc); + bool deleteBreakpoint(SimInstruction* breakpc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void undoBreakpoints(); + void redoBreakpoints(); +}; + +static void UNSUPPORTED() { + printf("Unsupported instruction.\n"); + MOZ_CRASH(); +} + +void MipsDebugger::stop(SimInstruction* instr) { + // Get the stop code. + uint32_t code = instr->bits(25, 6); + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize); + // Update this stop description. + if (!sim_->watchedStops_[code].desc_) { + sim_->watchedStops_[code].desc_ = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + printf("Simulator hit stop %u: %s\n", code, msg); + } else { + printf("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); + debug(); +} + +int64_t MipsDebugger::getRegisterValue(int regnum) { + if (regnum == kPCRegister) { + return sim_->get_pc(); + } + return sim_->getRegister(regnum); +} + +int64_t MipsDebugger::getFPURegisterValueLong(int regnum) { + return sim_->getFpuRegister(regnum); +} + +float MipsDebugger::getFPURegisterValueFloat(int regnum) { + return sim_->getFpuRegisterFloat(regnum); +} + +double MipsDebugger::getFPURegisterValueDouble(int regnum) { + return sim_->getFpuRegisterDouble(regnum); +} + +bool MipsDebugger::getValue(const char* desc, int64_t* value) { + Register reg = Register::FromName(desc); + if (reg != InvalidReg) { + *value = getRegisterValue(reg.code()); + return true; + } + + if (strncmp(desc, "0x", 2) == 0) { + return sscanf(desc, "%" PRIu64, reinterpret_cast<uint64_t*>(value)) == 1; + } + return sscanf(desc, "%" PRIi64, value) == 1; +} + +bool MipsDebugger::setBreakpoint(SimInstruction* breakpc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_ != nullptr) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = breakpc; + sim_->break_instr_ = breakpc->instructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + +bool MipsDebugger::deleteBreakpoint(SimInstruction* breakpc) { + if (sim_->break_pc_ != nullptr) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = nullptr; + sim_->break_instr_ = 0; + return true; +} + +void MipsDebugger::undoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } +} + +void MipsDebugger::redoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(kBreakpointInstr); + } +} + +void MipsDebugger::printAllRegs() { + int64_t value; + for (uint32_t i = 0; i < Registers::Total; i++) { + value = getRegisterValue(i); + printf("%3s: 0x%016" PRIx64 " %20" PRIi64 " ", Registers::GetName(i), + value, value); + + if (i % 2) { + printf("\n"); + } + } + printf("\n"); + + value = getRegisterValue(Simulator::LO); + printf(" LO: 0x%016" PRIx64 " %20" PRIi64 " ", value, value); + value = getRegisterValue(Simulator::HI); + printf(" HI: 0x%016" PRIx64 " %20" PRIi64 "\n", value, value); + value = getRegisterValue(Simulator::pc); + printf(" pc: 0x%016" PRIx64 "\n", value); +} + +void MipsDebugger::printAllRegsIncludingFPU() { + printAllRegs(); + + printf("\n\n"); + // f0, f1, f2, ... f31. + for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(i), getFPURegisterValueLong(i), + getFPURegisterValueFloat(i), getFPURegisterValueDouble(i)); + } +} + +static char* ReadLine(const char* prompt) { + UniqueChars result; + char lineBuf[256]; + int offset = 0; + bool keepGoing = true; + fprintf(stdout, "%s", prompt); + fflush(stdout); + while (keepGoing) { + if (fgets(lineBuf, sizeof(lineBuf), stdin) == nullptr) { + // fgets got an error. Just give up. + return nullptr; + } + int len = strlen(lineBuf); + if (len > 0 && lineBuf[len - 1] == '\n') { + // Since we read a new line we are done reading the line. This + // will exit the loop after copying this buffer into the result. + keepGoing = false; + } + if (!result) { + // Allocate the initial result and make room for the terminating '\0' + result.reset(js_pod_malloc<char>(len + 1)); + if (!result) { + return nullptr; + } + } else { + // Allocate a new result with enough room for the new addition. + int new_len = offset + len + 1; + char* new_result = js_pod_malloc<char>(new_len); + if (!new_result) { + return nullptr; + } + // Copy the existing input into the new array and set the new + // array as the result. + memcpy(new_result, result.get(), offset * sizeof(char)); + result.reset(new_result); + } + // Copy the newly read line into the result. + memcpy(result.get() + offset, lineBuf, len * sizeof(char)); + offset += len; + } + + MOZ_ASSERT(result); + result[offset] = '\0'; + return result.release(); +} + +static void DisassembleInstruction(uint64_t pc) { + uint8_t* bytes = reinterpret_cast<uint8_t*>(pc); + char hexbytes[256]; + sprintf(hexbytes, "0x%x 0x%x 0x%x 0x%x", bytes[0], bytes[1], bytes[2], + bytes[3]); + char llvmcmd[1024]; + sprintf(llvmcmd, + "bash -c \"echo -n '%p'; echo '%s' | " + "llvm-mc -disassemble -arch=mips64el -mcpu=mips64r2 | " + "grep -v pure_instructions | grep -v .text\"", + static_cast<void*>(bytes), hexbytes); + if (system(llvmcmd)) { + printf("Cannot disassemble instruction.\n"); + } +} + +void MipsDebugger::debug() { + intptr_t lastPC = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // Make sure to have a proper terminating character if reaching the limit. + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + undoBreakpoints(); + + while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { + if (lastPC != sim_->get_pc()) { + DisassembleInstruction(sim_->get_pc()); + lastPC = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == nullptr) { + break; + } else { + char* last_input = sim_->lastDebuggerInput(); + if (strcmp(line, "\n") == 0 && last_input != nullptr) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->setLastDebuggerInput(line); + } + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = sscanf(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(sim_->get_pc()); + if (!instr->isTrap()) { + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + } else { + // Allow si to jump over generated breakpoints. + printf("/!\\ Jumping over generated breakpoint.\n"); + sim_->set_pc(sim_->get_pc() + SimInstruction::kInstrSize); + } + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // Execute the one instruction we broke at with breakpoints disabled. + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2) { + int64_t value; + if (strcmp(arg1, "all") == 0) { + printAllRegs(); + } else if (strcmp(arg1, "allf") == 0) { + printAllRegsIncludingFPU(); + } else { + Register reg = Register::FromName(arg1); + FloatRegisters::Encoding fReg = FloatRegisters::FromName(arg1); + if (reg != InvalidReg) { + value = getRegisterValue(reg.code()); + printf("%s: 0x%016" PRIi64 " %20" PRIi64 " \n", arg1, value, + value); + } else if (fReg != FloatRegisters::Invalid) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(fReg), + getFPURegisterValueLong(fReg), + getFPURegisterValueFloat(fReg), + getFPURegisterValueDouble(fReg)); + } else { + printf("%s unrecognized\n", arg1); + } + } + } else { + printf("print <register> or print <fpu register> single\n"); + } + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + int64_t* cur = nullptr; + int64_t* end = nullptr; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<int64_t*>(sim_->getRegister(Simulator::sp)); + } else { // Command "mem". + int64_t value; + if (!getValue(arg1, &value)) { + printf("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<int64_t*>(value); + next_arg++; + } + + int64_t words; + if (argc == next_arg) { + words = 10; + } else { + if (!getValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + printf(" %p: 0x%016" PRIx64 " %20" PRIi64, cur, *cur, *cur); + printf("\n"); + cur++; + } + + } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || + (strcmp(cmd, "di") == 0)) { + uint8_t* cur = nullptr; + uint8_t* end = nullptr; + + if (argc == 1) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + end = cur + (10 * SimInstruction::kInstrSize); + } else if (argc == 2) { + Register reg = Register::FromName(arg1); + if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * SimInstruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * SimInstruction::kInstrSize); + } + } + } else { + int64_t value1; + int64_t value2; + if (getValue(arg1, &value1) && getValue(arg2, &value2)) { + cur = reinterpret_cast<uint8_t*>(value1); + end = cur + (value2 * SimInstruction::kInstrSize); + } + } + + while (cur < end) { + DisassembleInstruction(uint64_t(cur)); + cur += SimInstruction::kInstrSize; + } + } else if (strcmp(cmd, "gdb") == 0) { + printf("relinquishing control to gdb\n"); + asm("int $3"); + printf("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + int64_t value; + if (getValue(arg1, &value)) { + if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) { + printf("setting breakpoint failed\n"); + } + } else { + printf("%s unrecognized\n", arg1); + } + } else { + printf("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!deleteBreakpoint(nullptr)) { + printf("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "flags") == 0) { + printf("No flags on MIPS !\n"); + } else if (strcmp(cmd, "stop") == 0) { + int64_t value; + intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; + SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); + SimInstruction* msg_address = reinterpret_cast<SimInstruction*>( + stop_pc + SimInstruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->setInstructionBits(kNopInstr); + msg_address->setInstructionBits(kNopInstr); + } else { + printf("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + printf("Stop information:\n"); + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->printStopInfo(i); + } + } else if (getValue(arg2, &value)) { + sim_->printStopInfo(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->enableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->enableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->disableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->disableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } + } else { + printf("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + printf("cont\n"); + printf(" continue execution (alias 'c')\n"); + printf("stepi\n"); + printf(" step one instruction (alias 'si')\n"); + printf("print <register>\n"); + printf(" print register content (alias 'p')\n"); + printf(" use register name 'all' to print all registers\n"); + printf("printobject <register>\n"); + printf(" print an object from a register (alias 'po')\n"); + printf("stack [<words>]\n"); + printf(" dump stack content, default dump 10 words)\n"); + printf("mem <address> [<words>]\n"); + printf(" dump memory content, default dump 10 words)\n"); + printf("flags\n"); + printf(" print flags\n"); + printf("disasm [<instructions>]\n"); + printf("disasm [<address/register>]\n"); + printf("disasm [[<address/register>] <instructions>]\n"); + printf(" disassemble code, default is 10 instructions\n"); + printf(" from pc (alias 'di')\n"); + printf("gdb\n"); + printf(" enter gdb\n"); + printf("break <address>\n"); + printf(" set a break point on the address\n"); + printf("del\n"); + printf(" delete the breakpoint\n"); + printf("stop feature:\n"); + printf(" Description:\n"); + printf(" Stops are debug instructions inserted by\n"); + printf(" the Assembler::stop() function.\n"); + printf(" When hitting a stop, the Simulator will\n"); + printf(" stop and and give control to the Debugger.\n"); + printf(" All stop codes are watched:\n"); + printf(" - They can be enabled / disabled: the Simulator\n"); + printf(" will / won't stop when hitting them.\n"); + printf(" - The Simulator keeps track of how many times they \n"); + printf(" are met. (See the info command.) Going over a\n"); + printf(" disabled stop still increases its counter. \n"); + printf(" Commands:\n"); + printf(" stop info all/<code> : print infos about number <code>\n"); + printf(" or all stop(s).\n"); + printf(" stop enable/disable all/<code> : enables / disables\n"); + printf(" all or number <code> stop(s)\n"); + printf(" stop unstop\n"); + printf(" ignore the stop instruction at the current location\n"); + printf(" from now on\n"); + } else { + printf("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + redoBreakpoints(); + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + +void Simulator::setLastDebuggerInput(char* input) { + js_free(lastDebuggerInput_); + lastDebuggerInput_ = input; +} + +static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache, + void* page) { + SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); + if (p) { + return p->value(); + } + AutoEnterOOMUnsafeRegion oomUnsafe; + CachePage* new_page = js_new<CachePage>(); + if (!new_page || !i_cache.add(p, page, new_page)) { + oomUnsafe.crash("Simulator CachePage"); + } + return new_page; +} + +// Flush from start up to and not including start + size. +static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache, + intptr_t start, int size) { + MOZ_ASSERT(size <= CachePage::kPageSize); + MOZ_ASSERT(AllOnOnePage(start, size - 1)); + MOZ_ASSERT((start & CachePage::kLineMask) == 0); + MOZ_ASSERT((size & CachePage::kLineMask) == 0); + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(i_cache, page); + char* valid_bytemap = cache_page->validityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + +static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache, + void* start_addr, size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePageLocked(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + MOZ_ASSERT((start & CachePage::kPageMask) == 0); + offset = 0; + } + if (size != 0) { + FlushOnePageLocked(i_cache, start, size); + } +} + +/* static */ +void SimulatorProcess::checkICacheLocked(SimInstruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(icache(), page); + char* cache_valid_byte = cache_page->validityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); + + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + int cmpret = + memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset), + SimInstruction::kInstrSize); + MOZ_ASSERT(cmpret == 0); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + +HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) { + return U32(reinterpret_cast<uintptr_t>(l)) >> 2; +} + +bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) { + MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); + MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); + return k == l; +} + +/* static */ +void SimulatorProcess::FlushICache(void* start_addr, size_t size) { + if (!ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + js::jit::FlushICacheLocked(icache(), start_addr, size); + } +} + +Simulator::Simulator() { + // Set up simulator support first. Some of this information is needed to + // setup the architecture state. + + // Note, allocation and anything that depends on allocated memory is + // deferred until init(), in order to handle OOM properly. + + stack_ = nullptr; + stackLimit_ = 0; + pc_modified_ = false; + icount_ = 0; + break_count_ = 0; + break_pc_ = nullptr; + break_instr_ = 0; + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < Register::kNumSimuRegisters; i++) { + registers_[i] = 0; + } + for (int i = 0; i < Simulator::FPURegister::kNumFPURegisters; i++) { + FPUregisters_[i] = 0; + } + FCSR_ = 0; + LLBit_ = false; + LLAddr_ = 0; + lastLLValue_ = 0; + + // The ra and pc are initialized to a known bad value that will cause an + // access violation if the simulator ever tries to execute it. + registers_[pc] = bad_ra; + registers_[ra] = bad_ra; + + for (int i = 0; i < kNumExceptions; i++) { + exceptions[i] = 0; + } + + lastDebuggerInput_ = nullptr; +} + +bool Simulator::init() { + // Allocate 2MB for the stack. Note that we will only use 1MB, see below. + static const size_t stackSize = 2 * 1024 * 1024; + stack_ = js_pod_malloc<char>(stackSize); + if (!stack_) { + return false; + } + + // Leave a safety margin of 1MB to prevent overrunning the stack when + // pushing values (total stack size is 2MB). + stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<int64_t>(stack_) + stackSize - 64; + + return true; +} + +// When the generated code calls an external reference we need to catch that in +// the simulator. The external reference will be a function compiled for the +// host architecture. We need to call that function instead of trying to +// execute it with the simulator. We do that by redirecting the external +// reference to a swi (software-interrupt) instruction that is handled by +// the simulator. We write the original destination of the jump just at a known +// offset from the swi instruction so the simulator knows what to call. +class Redirection { + friend class SimulatorProcess; + + // sim's lock must already be held. + Redirection(void* nativeFunction, ABIFunctionType type) + : nativeFunction_(nativeFunction), + swiInstruction_(kCallRedirInstr), + type_(type), + next_(nullptr) { + next_ = SimulatorProcess::redirection(); + if (!SimulatorProcess::ICacheCheckingDisableCount) { + FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(), + SimInstruction::kInstrSize); + } + SimulatorProcess::setRedirection(this); + } + + public: + void* addressOfSwiInstruction() { return &swiInstruction_; } + void* nativeFunction() const { return nativeFunction_; } + ABIFunctionType type() const { return type_; } + + static Redirection* Get(void* nativeFunction, ABIFunctionType type) { + AutoLockSimulatorCache als; + + Redirection* current = SimulatorProcess::redirection(); + for (; current != nullptr; current = current->next_) { + if (current->nativeFunction_ == nativeFunction) { + MOZ_ASSERT(current->type() == type); + return current; + } + } + + // Note: we can't use js_new here because the constructor is private. + AutoEnterOOMUnsafeRegion oomUnsafe; + Redirection* redir = js_pod_malloc<Redirection>(1); + if (!redir) { + oomUnsafe.crash("Simulator redirection"); + } + new (redir) Redirection(nativeFunction, type); + return redir; + } + + static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { + uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); + uint8_t* addrOfRedirection = + addrOfSwi - offsetof(Redirection, swiInstruction_); + return reinterpret_cast<Redirection*>(addrOfRedirection); + } + + private: + void* nativeFunction_; + uint32_t swiInstruction_; + ABIFunctionType type_; + Redirection* next_; +}; + +Simulator::~Simulator() { js_free(stack_); } + +SimulatorProcess::SimulatorProcess() + : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) { + if (getenv("MIPS_SIM_ICACHE_CHECKS")) { + ICacheCheckingDisableCount = 0; + } +} + +SimulatorProcess::~SimulatorProcess() { + Redirection* r = redirection_; + while (r) { + Redirection* next = r->next_; + js_delete(r); + r = next; + } +} + +/* static */ +void* Simulator::RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type) { + Redirection* redirection = Redirection::Get(nativeFunction, type); + return redirection->addressOfSwiInstruction(); +} + +// Get the active Simulator for the current thread. +Simulator* Simulator::Current() { + JSContext* cx = TlsContext.get(); + MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime())); + return cx->simulator(); +} + +// Sets the register in the architecture state. It will also deal with updating +// Simulator internal state for special registers such as PC. +void Simulator::setRegister(int reg, int64_t value) { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == pc) { + pc_modified_ = true; + } + + // Zero register always holds 0. + registers_[reg] = (reg == 0) ? 0 : value; +} + +void Simulator::setFpuRegister(int fpureg, int64_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + FPUregisters_[fpureg] = value; +} + +void Simulator::setFpuRegisterLo(int fpureg, int32_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setFpuRegisterHi(int fpureg, int32_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1) = value; +} + +void Simulator::setFpuRegisterFloat(int fpureg, float value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setFpuRegisterDouble(int fpureg, double value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]) = value; +} + +// Get the register from the architecture state. This function does handle +// the special case of accessing the PC register. +int64_t Simulator::getRegister(int reg) const { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == 0) { + return 0; + } + return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); +} + +int64_t Simulator::getFpuRegister(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return FPUregisters_[fpureg]; +} + +int32_t Simulator::getFpuRegisterLo(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]); +} + +int32_t Simulator::getFpuRegisterHi(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1); +} + +float Simulator::getFpuRegisterFloat(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]); +} + +double Simulator::getFpuRegisterDouble(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]); +} + +void Simulator::setCallResultDouble(double result) { + setFpuRegisterDouble(f0, result); +} + +void Simulator::setCallResultFloat(float result) { + setFpuRegisterFloat(f0, result); +} + +void Simulator::setCallResult(int64_t res) { setRegister(v0, res); } + +void Simulator::setCallResult(__int128_t res) { + setRegister(v0, I64(res)); + setRegister(v1, I64(res >> 64)); +} + +// Helper functions for setting and testing the FCSR register's bits. +void Simulator::setFCSRBit(uint32_t cc, bool value) { + if (value) { + FCSR_ |= (1 << cc); + } else { + FCSR_ &= ~(1 << cc); + } +} + +bool Simulator::testFCSRBit(uint32_t cc) { return FCSR_ & (1 << cc); } + +// Sets the rounding error codes in FCSR based on the result of the rounding. +// Returns true if the operation was invalid. +template <typename T> +bool Simulator::setFCSRRoundError(double original, double rounded) { + bool ret = false; + + setFCSRBit(kFCSRInexactCauseBit, false); + setFCSRBit(kFCSRUnderflowCauseBit, false); + setFCSRBit(kFCSROverflowCauseBit, false); + setFCSRBit(kFCSRInvalidOpCauseBit, false); + + if (!std::isfinite(original) || !std::isfinite(rounded)) { + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + if (original != rounded) { + setFCSRBit(kFCSRInexactFlagBit, true); + setFCSRBit(kFCSRInexactCauseBit, true); + } + + if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { + setFCSRBit(kFCSRUnderflowFlagBit, true); + setFCSRBit(kFCSRUnderflowCauseBit, true); + ret = true; + } + + if ((long double)rounded > (long double)std::numeric_limits<T>::max() || + (long double)rounded < (long double)std::numeric_limits<T>::min()) { + setFCSRBit(kFCSROverflowFlagBit, true); + setFCSRBit(kFCSROverflowCauseBit, true); + // The reference is not really clear but it seems this is required: + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + return ret; +} + +// Raw access to the PC register. +void Simulator::set_pc(int64_t value) { + pc_modified_ = true; + registers_[pc] = value; +} + +bool Simulator::has_bad_pc() const { + return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); +} + +// Raw access to the PC register without the special adjustment when reading. +int64_t Simulator::get_pc() const { return registers_[pc]; } + +JS::ProfilingFrameIterator::RegisterState Simulator::registerState() { + wasm::RegisterState state; + state.pc = (void*)get_pc(); + state.fp = (void*)getRegister(fp); + state.sp = (void*)getRegister(sp); + state.lr = (void*)getRegister(ra); + return state; +} + +// MIPS memory instructions (except lw(d)l/r , sw(d)l/r) trap on unaligned +// memory access enabling the OS to handle them via trap-and-emulate. Note that +// simulator runs have the runtime system running directly on the host system +// and only generated code is executed in the simulator. Since the host is +// typically IA32 it will not trap on unaligned memory access. We assume that +// that executing correct generated code will not produce unaligned memory +// access, so we explicitly check for address alignment and trap. Note that +// trapping does not occur when executing wasm code, which requires that +// unaligned memory access provides correct result. + +uint8_t Simulator::readBU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return 0xff; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + +int8_t Simulator::readB(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + +void Simulator::writeB(uint64_t addr, uint8_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + +void Simulator::writeB(uint64_t addr, int8_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + +uint16_t Simulator::readHU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return 0xffff; + } + + if ((addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; + } + printf("Unaligned unsigned halfword read at 0x%016" PRIx64 + ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int16_t Simulator::readH(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + if ((addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; + } + printf("Unaligned signed halfword read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR + "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeH(uint64_t addr, uint16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned unsigned halfword write at 0x%016" PRIx64 + ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +void Simulator::writeH(uint64_t addr, int16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned halfword write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +uint32_t Simulator::readWU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if ((addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int32_t Simulator::readW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if ((addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeW(uint64_t addr, uint32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if ((addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +void Simulator::writeW(uint64_t addr, int32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if ((addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +int64_t Simulator::readDW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + if ((addr & kPointerAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeDW(uint64_t addr, int64_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & kPointerAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int64_t* ptr = reinterpret_cast<int64_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +double Simulator::readD(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return NAN; + } + + if ((addr & kDoubleAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + double* ptr = reinterpret_cast<double*>(addr); + return *ptr; + } + printf("Unaligned (double) read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeD(uint64_t addr, double value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & kDoubleAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + double* ptr = reinterpret_cast<double*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned (double) write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +int Simulator::loadLinkedW(uint64_t addr, SimInstruction* instr) { + if ((addr & 3) == 0) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + volatile int32_t* ptr = reinterpret_cast<volatile int32_t*>(addr); + int32_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalW(uint64_t addr, int value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & 3) == 0) { + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int32_t expected = int32_t(lastLLValue_); + int32_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int32_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int64_t Simulator::loadLinkedD(uint64_t addr, SimInstruction* instr) { + if ((addr & kPointerAlignmentMask) == 0) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + volatile int64_t* ptr = reinterpret_cast<volatile int64_t*>(addr); + int64_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalD(uint64_t addr, int64_t value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & kPointerAlignmentMask) == 0) { + SharedMem<int64_t*> ptr = + SharedMem<int64_t*>::shared(reinterpret_cast<int64_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int64_t expected = lastLLValue_; + int64_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int64_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +uintptr_t Simulator::stackLimit() const { return stackLimit_; } + +uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; } + +bool Simulator::overRecursed(uintptr_t newsp) const { + if (newsp == 0) { + newsp = getRegister(sp); + } + return newsp <= stackLimit(); +} + +bool Simulator::overRecursedWithExtra(uint32_t extra) const { + uintptr_t newsp = getRegister(sp) - extra; + return newsp <= stackLimit(); +} + +// Unsupported instructions use format to print an error and stop execution. +void Simulator::format(SimInstruction* instr, const char* format) { + printf("Simulator found unsupported instruction:\n 0x%016lx: %s\n", + reinterpret_cast<intptr_t>(instr), format); + MOZ_CRASH(); +} + +// Note: With the code below we assume that all runtime calls return a 64 bits +// result. If they don't, the v1 result register contains a bogus value, which +// is fine because it is caller-saved. +typedef int64_t (*Prototype_General0)(); +typedef int64_t (*Prototype_General1)(int64_t arg0); +typedef int64_t (*Prototype_General2)(int64_t arg0, int64_t arg1); +typedef int64_t (*Prototype_General3)(int64_t arg0, int64_t arg1, int64_t arg2); +typedef int64_t (*Prototype_General4)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_General5)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4); +typedef int64_t (*Prototype_General6)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5); +typedef int64_t (*Prototype_General7)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5, + int64_t arg6); +typedef int64_t (*Prototype_General8)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5, + int64_t arg6, int64_t arg7); +typedef int32_t (*Prototype_Int_GeneralGeneralGeneralInt64)(int64_t arg0, + int64_t arg1, + int64_t arg2, + int64_t arg3); +typedef int32_t (*Prototype_Int_GeneralGeneralInt64Int64)(int64_t arg0, + int64_t arg1, + int64_t arg2, + int64_t arg3); +typedef double (*Prototype_Double_None)(); +typedef double (*Prototype_Double_Double)(double arg0); +typedef double (*Prototype_Double_Int)(int64_t arg0); +typedef int64_t (*Prototype_Int_Double)(double arg0); +typedef int64_t (*Prototype_Int_DoubleIntInt)(double arg0, int64_t arg1, + int64_t arg2); +typedef int64_t (*Prototype_Int_IntDoubleIntInt)(int64_t arg0, double arg1, + int64_t arg2, int64_t arg3); +typedef float (*Prototype_Float32_Float32)(float arg0); +typedef int64_t (*Prototype_Int_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1); +typedef float (*Prototype_Float32_IntInt)(int64_t arg0, int64_t arg1); + +typedef double (*Prototype_Double_DoubleInt)(double arg0, int64_t arg1); +typedef double (*Prototype_Double_IntDouble)(int64_t arg0, double arg1); +typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1); +typedef int64_t (*Prototype_Int_IntDouble)(int64_t arg0, double arg1); + +typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, + double arg2); +typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, + double arg1, + double arg2, + double arg3); + +// Software interrupt instructions are used by the simulator to call into C++. +void Simulator::softwareInterrupt(SimInstruction* instr) { + int32_t func = instr->functionFieldRaw(); + uint32_t code = (func == ff_break) ? instr->bits(25, 6) : -1; + + // We first check if we met a call_rt_redirected. + if (instr->instructionBits() == kCallRedirInstr) { +#if !defined(USES_N64_ABI) + MOZ_CRASH("Only N64 ABI supported."); +#else + Redirection* redirection = Redirection::FromSwiInstruction(instr); + int64_t arg0 = getRegister(a0); + int64_t arg1 = getRegister(a1); + int64_t arg2 = getRegister(a2); + int64_t arg3 = getRegister(a3); + int64_t arg4 = getRegister(a4); + int64_t arg5 = getRegister(a5); + + // This is dodgy but it works because the C entry stubs are never moved. + // See comment in codegen-arm.cc and bug 1242173. + int64_t saved_ra = getRegister(ra); + + intptr_t external = + reinterpret_cast<intptr_t>(redirection->nativeFunction()); + + bool stack_aligned = (getRegister(sp) & (ABIStackAlignment - 1)) == 0; + if (!stack_aligned) { + fprintf(stderr, "Runtime call with unaligned stack!\n"); + MOZ_CRASH(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + switch (redirection->type()) { + case Args_General0: { + Prototype_General0 target = + reinterpret_cast<Prototype_General0>(external); + int64_t result = target(); + setCallResult(result); + break; + } + case Args_General1: { + Prototype_General1 target = + reinterpret_cast<Prototype_General1>(external); + int64_t result = target(arg0); + setCallResult(result); + break; + } + case Args_General2: { + Prototype_General2 target = + reinterpret_cast<Prototype_General2>(external); + int64_t result = target(arg0, arg1); + setCallResult(result); + break; + } + case Args_General3: { + Prototype_General3 target = + reinterpret_cast<Prototype_General3>(external); + int64_t result = target(arg0, arg1, arg2); + if (external == intptr_t(&js::wasm::Instance::wake)) { + result = int32_t(result); + } + setCallResult(result); + break; + } + case Args_General4: { + Prototype_General4 target = + reinterpret_cast<Prototype_General4>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + setCallResult(result); + break; + } + case Args_General5: { + Prototype_General5 target = + reinterpret_cast<Prototype_General5>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + setCallResult(result); + break; + } + case Args_General6: { + Prototype_General6 target = + reinterpret_cast<Prototype_General6>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + setCallResult(result); + break; + } + case Args_General7: { + Prototype_General7 target = + reinterpret_cast<Prototype_General7>(external); + int64_t arg6 = getRegister(a6); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + setCallResult(result); + break; + } + case Args_General8: { + Prototype_General8 target = + reinterpret_cast<Prototype_General8>(external); + int64_t arg6 = getRegister(a6); + int64_t arg7 = getRegister(a7); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + setCallResult(result); + break; + } + case Args_Double_None: { + Prototype_Double_None target = + reinterpret_cast<Prototype_Double_None>(external); + double dresult = target(); + setCallResultDouble(dresult); + break; + } + case Args_Int_Double: { + double dval0 = getFpuRegisterDouble(12); + Prototype_Int_Double target = + reinterpret_cast<Prototype_Int_Double>(external); + int64_t result = target(dval0); + if (external == intptr_t((int32_t(*)(double))JS::ToInt32)) { + result = int32_t(result); + } + setRegister(v0, result); + break; + } + case Args_Int_GeneralGeneralGeneralInt64: { + Prototype_Int_GeneralGeneralGeneralInt64 target = + reinterpret_cast<Prototype_Int_GeneralGeneralGeneralInt64>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + if (external == intptr_t(&js::wasm::Instance::wait_i32)) { + result = int32_t(result); + } + setRegister(v0, result); + break; + } + case Args_Int_GeneralGeneralInt64Int64: { + Prototype_Int_GeneralGeneralInt64Int64 target = + reinterpret_cast<Prototype_Int_GeneralGeneralInt64Int64>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + if (external == intptr_t(&js::wasm::Instance::wait_i64)) { + result = int32_t(result); + } + setRegister(v0, result); + break; + } + case Args_Int_DoubleIntInt: { + double dval = getFpuRegisterDouble(12); + Prototype_Int_DoubleIntInt target = + reinterpret_cast<Prototype_Int_DoubleIntInt>(external); + int64_t result = target(dval, arg1, arg2); + setRegister(v0, result); + break; + } + case Args_Int_IntDoubleIntInt: { + double dval = getFpuRegisterDouble(13); + Prototype_Int_IntDoubleIntInt target = + reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external); + int64_t result = target(arg0, dval, arg2, arg3); + setRegister(v0, result); + break; + } + case Args_Double_Double: { + double dval0 = getFpuRegisterDouble(12); + Prototype_Double_Double target = + reinterpret_cast<Prototype_Double_Double>(external); + double dresult = target(dval0); + setCallResultDouble(dresult); + break; + } + case Args_Float32_Float32: { + float fval0; + fval0 = getFpuRegisterFloat(12); + Prototype_Float32_Float32 target = + reinterpret_cast<Prototype_Float32_Float32>(external); + float fresult = target(fval0); + setCallResultFloat(fresult); + break; + } + case Args_Int_Float32: { + float fval0; + fval0 = getFpuRegisterFloat(12); + Prototype_Int_Float32 target = + reinterpret_cast<Prototype_Int_Float32>(external); + int64_t result = target(fval0); + setRegister(v0, result); + break; + } + case Args_Float32_Float32Float32: { + float fval0; + float fval1; + fval0 = getFpuRegisterFloat(12); + fval1 = getFpuRegisterFloat(13); + Prototype_Float32_Float32Float32 target = + reinterpret_cast<Prototype_Float32_Float32Float32>(external); + float fresult = target(fval0, fval1); + setCallResultFloat(fresult); + break; + } + case Args_Float32_IntInt: { + Prototype_Float32_IntInt target = + reinterpret_cast<Prototype_Float32_IntInt>(external); + float fresult = target(arg0, arg1); + setCallResultFloat(fresult); + break; + } + case Args_Double_Int: { + Prototype_Double_Int target = + reinterpret_cast<Prototype_Double_Int>(external); + double dresult = target(arg0); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleInt: { + double dval0 = getFpuRegisterDouble(12); + Prototype_Double_DoubleInt target = + reinterpret_cast<Prototype_Double_DoubleInt>(external); + double dresult = target(dval0, arg1); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDouble: { + double dval0 = getFpuRegisterDouble(12); + double dval1 = getFpuRegisterDouble(13); + Prototype_Double_DoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDouble>(external); + double dresult = target(dval0, dval1); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntDouble: { + double dval1 = getFpuRegisterDouble(13); + Prototype_Double_IntDouble target = + reinterpret_cast<Prototype_Double_IntDouble>(external); + double dresult = target(arg0, dval1); + setCallResultDouble(dresult); + break; + } + case Args_Int_IntDouble: { + double dval1 = getFpuRegisterDouble(13); + Prototype_Int_IntDouble target = + reinterpret_cast<Prototype_Int_IntDouble>(external); + int64_t result = target(arg0, dval1); + setRegister(v0, result); + break; + } + case Args_Double_DoubleDoubleDouble: { + double dval0 = getFpuRegisterDouble(12); + double dval1 = getFpuRegisterDouble(13); + double dval2 = getFpuRegisterDouble(14); + Prototype_Double_DoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external); + double dresult = target(dval0, dval1, dval2); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDoubleDoubleDouble: { + double dval0 = getFpuRegisterDouble(12); + double dval1 = getFpuRegisterDouble(13); + double dval2 = getFpuRegisterDouble(14); + double dval3 = getFpuRegisterDouble(15); + Prototype_Double_DoubleDoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>( + external); + double dresult = target(dval0, dval1, dval2, dval3); + setCallResultDouble(dresult); + break; + } + default: + MOZ_CRASH("call"); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + setRegister(ra, saved_ra); + set_pc(getRegister(ra)); +#endif + } else if (func == ff_break && code <= kMaxStopCode) { + if (isWatchpoint(code)) { + printWatchpoint(code); + } else { + increaseStopCounter(code); + handleStop(code, instr); + } + } else { + switch (func) { + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + if (instr->bits(15, 6) == kWasmTrapCode) { + uint8_t* newPC; + if (wasm::HandleIllegalInstruction(registerState(), &newPC)) { + set_pc(int64_t(newPC)); + return; + } + } + }; + // All remaining break_ codes, and all traps are handled here. + MipsDebugger dbg(this); + dbg.debug(); + } +} + +// Stop helper functions. +bool Simulator::isWatchpoint(uint32_t code) { + return (code <= kMaxWatchpointCode); +} + +void Simulator::printWatchpoint(uint32_t code) { + MipsDebugger dbg(this); + ++break_count_; + printf("\n---- break %d marker: %20" PRIi64 " (instr count: %20" PRIi64 + ") ----\n", + code, break_count_, icount_); + dbg.printAllRegs(); // Print registers and continue running. +} + +void Simulator::handleStop(uint32_t code, SimInstruction* instr) { + // Stop if it is enabled, otherwise go on jumping over the stop + // and the message address. + if (isEnabledStop(code)) { + MipsDebugger dbg(this); + dbg.stop(instr); + } else { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } +} + +bool Simulator::isStopInstruction(SimInstruction* instr) { + int32_t func = instr->functionFieldRaw(); + uint32_t code = U32(instr->bits(25, 6)); + return (func == ff_break) && code > kMaxWatchpointCode && + code <= kMaxStopCode; +} + +bool Simulator::isEnabledStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + MOZ_ASSERT(code > kMaxWatchpointCode); + return !(watchedStops_[code].count_ & kStopDisabledBit); +} + +void Simulator::enableStop(uint32_t code) { + if (!isEnabledStop(code)) { + watchedStops_[code].count_ &= ~kStopDisabledBit; + } +} + +void Simulator::disableStop(uint32_t code) { + if (isEnabledStop(code)) { + watchedStops_[code].count_ |= kStopDisabledBit; + } +} + +void Simulator::increaseStopCounter(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + if ((watchedStops_[code].count_ & ~(1 << 31)) == 0x7fffffff) { + printf( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watchedStops_[code].count_ = 0; + enableStop(code); + } else { + watchedStops_[code].count_++; + } +} + +// Print a stop status. +void Simulator::printStopInfo(uint32_t code) { + if (code <= kMaxWatchpointCode) { + printf("That is a watchpoint, not a stop.\n"); + return; + } else if (code > kMaxStopCode) { + printf("Code too large, only %u stops can be used\n", kMaxStopCode + 1); + return; + } + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watchedStops_[code].count_ & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watchedStops_[code].desc_) { + printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, + count, watchedStops_[code].desc_); + } else { + printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } +} + +void Simulator::signalExceptions() { + for (int i = 1; i < kNumExceptions; i++) { + if (exceptions[i] != 0) { + MOZ_CRASH("Error: Exception raised."); + } + } +} + +// Helper function for decodeTypeRegister. +void Simulator::configureTypeRegister(SimInstruction* instr, int64_t& alu_out, + __int128& i128hilo, + unsigned __int128& u128hilo, + int64_t& next_pc, + int32_t& return_addr_reg, + bool& do_interrupt) { + // Every local variable declared here needs to be const. + // This is to make sure that changed values are sent back to + // decodeTypeRegister correctly. + + // Instruction fields. + const OpcodeField op = instr->opcodeFieldRaw(); + const int32_t rs_reg = instr->rsValue(); + const int64_t rs = getRegister(rs_reg); + const int32_t rt_reg = instr->rtValue(); + const int64_t rt = getRegister(rt_reg); + const int32_t rd_reg = instr->rdValue(); + const uint32_t sa = instr->saValue(); + + const int32_t fs_reg = instr->fsValue(); + __int128 temp; + + // ---------- Configuration. + switch (op) { + case op_cop1: // Coprocessor instructions. + switch (instr->rsFieldRaw()) { + case rs_bc1: // Handled in DecodeTypeImmed, should never come here. + MOZ_CRASH(); + break; + case rs_cfc1: + // At the moment only FCSR is supported. + MOZ_ASSERT(fs_reg == kFCSRRegister); + alu_out = FCSR_; + break; + case rs_mfc1: + alu_out = getFpuRegisterLo(fs_reg); + break; + case rs_dmfc1: + alu_out = getFpuRegister(fs_reg); + break; + case rs_mfhc1: + alu_out = getFpuRegisterHi(fs_reg); + break; + case rs_ctc1: + case rs_mtc1: + case rs_dmtc1: + case rs_mthc1: + // Do the store in the execution step. + break; + case rs_s: + case rs_d: + case rs_w: + case rs_l: + case rs_ps: + // Do everything in the execution step. + break; + default: + MOZ_CRASH(); + }; + break; + case op_cop1x: + break; + case op_special: + switch (instr->functionFieldRaw()) { + case ff_jr: + case ff_jalr: + next_pc = getRegister(instr->rsValue()); + return_addr_reg = instr->rdValue(); + break; + case ff_sll: + alu_out = I64(I32(rt) << sa); + break; + case ff_dsll: + alu_out = rt << sa; + break; + case ff_dsll32: + alu_out = rt << (sa + 32); + break; + case ff_srl: + if (rs_reg == 0) { + // Regular logical right shift of a word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = I64(I32(U32(I32_CHECK(rt)) >> sa)); + } else { + // Logical right-rotate of a word by a fixed number of bits. This + // is special case of SRL instruction, added in MIPS32 Release 2. + // RS field is equal to 00001. + alu_out = I64(I32((U32(I32_CHECK(rt)) >> sa) | + (U32(I32_CHECK(rt)) << (32 - sa)))); + } + break; + case ff_dsrl: + if (rs_reg == 0) { + // Regular logical right shift of a double word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = U64(rt) >> sa; + } else { + // Logical right-rotate of a word by a fixed number of bits. This + // is special case of DSRL instruction, added in MIPS64 Release 2. + // RS field is equal to 00001. + alu_out = (U64(rt) >> sa) | (U64(rt) << (64 - sa)); + } + break; + case ff_dsrl32: + if (rs_reg == 0) { + // Regular logical right shift of a double word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = U64(rt) >> (sa + 32); + } else { + // Logical right-rotate of a double word by a fixed number of bits. + // This is special case of DSRL instruction, added in MIPS64 + // Release 2. RS field is equal to 00001. + alu_out = (U64(rt) >> (sa + 32)) | (U64(rt) << (64 - (sa + 32))); + } + break; + case ff_sra: + alu_out = I64(I32_CHECK(rt)) >> sa; + break; + case ff_dsra: + alu_out = rt >> sa; + break; + case ff_dsra32: + alu_out = rt >> (sa + 32); + break; + case ff_sllv: + alu_out = I64(I32(rt) << rs); + break; + case ff_dsllv: + alu_out = rt << rs; + break; + case ff_srlv: + if (sa == 0) { + // Regular logical right-shift of a word by a variable number of + // bits instruction. SA field is always equal to 0. + alu_out = I64(I32(U32(I32_CHECK(rt)) >> rs)); + } else { + // Logical right-rotate of a word by a variable number of bits. + // This is special case od SRLV instruction, added in MIPS32 + // Release 2. SA field is equal to 00001. + alu_out = I64(I32((U32(I32_CHECK(rt)) >> rs) | + (U32(I32_CHECK(rt)) << (32 - rs)))); + } + break; + case ff_dsrlv: + if (sa == 0) { + // Regular logical right-shift of a double word by a variable number + // of bits instruction. SA field is always equal to 0. + alu_out = U64(rt) >> rs; + } else { + // Logical right-rotate of a double word by a variable number of + // bits. This is special case od DSRLV instruction, added in MIPS64 + // Release 2. SA field is equal to 00001. + alu_out = (U64(rt) >> rs) | (U64(rt) << (64 - rs)); + } + break; + case ff_srav: + alu_out = I64(I32_CHECK(rt) >> rs); + break; + case ff_dsrav: + alu_out = rt >> rs; + break; + case ff_mfhi: + alu_out = getRegister(HI); + break; + case ff_mflo: + alu_out = getRegister(LO); + break; + case ff_mult: + i128hilo = I64(U32(I32_CHECK(rs))) * I64(U32(I32_CHECK(rt))); + break; + case ff_dmult: + i128hilo = I128(rs) * I128(rt); + break; + case ff_multu: + u128hilo = U64(U32(I32_CHECK(rs))) * U64(U32(I32_CHECK(rt))); + break; + case ff_dmultu: + u128hilo = U128(rs) * U128(rt); + break; + case ff_add: + alu_out = I32_CHECK(rs) + I32_CHECK(rt); + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I32(alu_out); + break; + case ff_dadd: + temp = I128(rs) + I128(rt); + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I64(temp); + break; + case ff_addu: + alu_out = I32(I32_CHECK(rs) + I32_CHECK(rt)); + break; + case ff_daddu: + alu_out = rs + rt; + break; + case ff_sub: + alu_out = I32_CHECK(rs) - I32_CHECK(rt); + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerUnderflow] = 1; + } + alu_out = I32(alu_out); + break; + case ff_dsub: + temp = I128(rs) - I128(rt); + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerUnderflow] = 1; + } + alu_out = I64(temp); + break; + case ff_subu: + alu_out = I32(I32_CHECK(rs) - I32_CHECK(rt)); + break; + case ff_dsubu: + alu_out = rs - rt; + break; + case ff_and: + alu_out = rs & rt; + break; + case ff_or: + alu_out = rs | rt; + break; + case ff_xor: + alu_out = rs ^ rt; + break; + case ff_nor: + alu_out = ~(rs | rt); + break; + case ff_slt: + alu_out = I64(rs) < I64(rt) ? 1 : 0; + break; + case ff_sltu: + alu_out = U64(rs) < U64(rt) ? 1 : 0; + break; + case ff_sync: + break; + // Break and trap instructions. + case ff_break: + do_interrupt = true; + break; + case ff_tge: + do_interrupt = rs >= rt; + break; + case ff_tgeu: + do_interrupt = U64(rs) >= U64(rt); + break; + case ff_tlt: + do_interrupt = rs < rt; + break; + case ff_tltu: + do_interrupt = U64(rs) < U64(rt); + break; + case ff_teq: + do_interrupt = rs == rt; + break; + case ff_tne: + do_interrupt = rs != rt; + break; + case ff_movn: + case ff_movz: + case ff_movci: + // No action taken on decode. + break; + case ff_div: + if (I32_CHECK(rs) == INT_MIN && I32_CHECK(rt) == -1) { + i128hilo = U32(INT_MIN); + } else { + uint32_t div = I32_CHECK(rs) / I32_CHECK(rt); + uint32_t mod = I32_CHECK(rs) % I32_CHECK(rt); + i128hilo = (I64(mod) << 32) | div; + } + break; + case ff_ddiv: + if (I64(rs) == INT64_MIN && I64(rt) == -1) { + i128hilo = U64(INT64_MIN); + } else { + uint64_t div = rs / rt; + uint64_t mod = rs % rt; + i128hilo = (I128(mod) << 64) | div; + } + break; + case ff_divu: { + uint32_t div = U32(I32_CHECK(rs)) / U32(I32_CHECK(rt)); + uint32_t mod = U32(I32_CHECK(rs)) % U32(I32_CHECK(rt)); + i128hilo = (U64(mod) << 32) | div; + } break; + case ff_ddivu: + if (0 == rt) { + i128hilo = (I128(Unpredictable) << 64) | I64(Unpredictable); + } else { + uint64_t div = U64(rs) / U64(rt); + uint64_t mod = U64(rs) % U64(rt); + i128hilo = (I128(mod) << 64) | div; + } + break; + default: + MOZ_CRASH(); + }; + break; + case op_special2: + switch (instr->functionFieldRaw()) { + case ff_mul: + alu_out = I32(I32_CHECK(rs) * + I32_CHECK(rt)); // Only the lower 32 bits are kept. + break; + case ff_clz: + alu_out = U32(I32_CHECK(rs)) ? __builtin_clz(U32(I32_CHECK(rs))) : 32; + break; + case ff_dclz: + alu_out = U64(rs) ? __builtin_clzl(U64(rs)) : 64; + break; + default: + MOZ_CRASH(); + }; + break; + case op_special3: + switch (instr->functionFieldRaw()) { + case ff_ins: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 1; + uint32_t mask = (1 << size) - 1; + if (lsb > msb) { + alu_out = Unpredictable; + } else { + alu_out = (U32(I32_CHECK(rt)) & ~(mask << lsb)) | + ((U32(I32_CHECK(rs)) & mask) << lsb); + } + break; + } + case ff_dins: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 1; + uint64_t mask = (1ul << size) - 1; + if (lsb > msb) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + } + break; + } + case ff_dinsm: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 33; + uint64_t mask = (1ul << size) - 1; + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + break; + } + case ff_dinsu: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa + 32; + uint16_t size = msb - lsb + 33; + uint64_t mask = (1ul << size) - 1; + if (sa > msb) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + } + break; + } + case ff_ext: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 1; + uint32_t mask = (1 << size) - 1; + if ((lsb + msb) > 31) { + alu_out = Unpredictable; + } else { + alu_out = (U32(I32_CHECK(rs)) & (mask << lsb)) >> lsb; + } + break; + } + case ff_dext: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 1; + uint64_t mask = (1ul << size) - 1; + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + break; + } + case ff_dextm: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 33; + uint64_t mask = (1ul << size) - 1; + if ((lsb + msb + 32 + 1) > 64) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + } + break; + } + case ff_dextu: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa + 32; + uint16_t size = msb + 1; + uint64_t mask = (1ul << size) - 1; + if ((lsb + msb + 1) > 64) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + } + break; + } + case ff_bshfl: { // Mips32r2 instruction. + if (16 == sa) { // seb + alu_out = I64(I8(I32_CHECK(rt))); + } else if (24 == sa) { // seh + alu_out = I64(I16(I32_CHECK(rt))); + } + break; + } + default: + MOZ_CRASH(); + }; + break; + default: + MOZ_CRASH(); + }; +} + +// Handle execution based on instruction types. +void Simulator::decodeTypeRegister(SimInstruction* instr) { + // Instruction fields. + const OpcodeField op = instr->opcodeFieldRaw(); + const int32_t rs_reg = instr->rsValue(); + const int64_t rs = getRegister(rs_reg); + const int32_t rt_reg = instr->rtValue(); + const int64_t rt = getRegister(rt_reg); + const int32_t rd_reg = instr->rdValue(); + + const int32_t fr_reg = instr->frValue(); + const int32_t fs_reg = instr->fsValue(); + const int32_t ft_reg = instr->ftValue(); + const int32_t fd_reg = instr->fdValue(); + __int128 i128hilo = 0; + unsigned __int128 u128hilo = 0; + + // ALU output. + // It should not be used as is. Instructions using it should always + // initialize it first. + int64_t alu_out = 0x12345678; + + // For break and trap instructions. + bool do_interrupt = false; + + // For jr and jalr. + // Get current pc. + int64_t current_pc = get_pc(); + // Next pc + int64_t next_pc = 0; + int32_t return_addr_reg = 31; + + // Set up the variables if needed before executing the instruction. + configureTypeRegister(instr, alu_out, i128hilo, u128hilo, next_pc, + return_addr_reg, do_interrupt); + + // ---------- Raise exceptions triggered. + signalExceptions(); + + // ---------- Execution. + switch (op) { + case op_cop1: + switch (instr->rsFieldRaw()) { + case rs_bc1: // Branch on coprocessor condition. + MOZ_CRASH(); + break; + case rs_cfc1: + setRegister(rt_reg, alu_out); + [[fallthrough]]; + case rs_mfc1: + setRegister(rt_reg, alu_out); + break; + case rs_dmfc1: + setRegister(rt_reg, alu_out); + break; + case rs_mfhc1: + setRegister(rt_reg, alu_out); + break; + case rs_ctc1: + // At the moment only FCSR is supported. + MOZ_ASSERT(fs_reg == kFCSRRegister); + FCSR_ = registers_[rt_reg]; + break; + case rs_mtc1: + setFpuRegisterLo(fs_reg, registers_[rt_reg]); + break; + case rs_dmtc1: + setFpuRegister(fs_reg, registers_[rt_reg]); + break; + case rs_mthc1: + setFpuRegisterHi(fs_reg, registers_[rt_reg]); + break; + case rs_s: + float f, ft_value, fs_value; + uint32_t cc, fcsr_cc; + int64_t i64; + fs_value = getFpuRegisterFloat(fs_reg); + ft_value = getFpuRegisterFloat(ft_reg); + cc = instr->fcccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + switch (instr->functionFieldRaw()) { + case ff_add_fmt: + setFpuRegisterFloat(fd_reg, fs_value + ft_value); + break; + case ff_sub_fmt: + setFpuRegisterFloat(fd_reg, fs_value - ft_value); + break; + case ff_mul_fmt: + setFpuRegisterFloat(fd_reg, fs_value * ft_value); + break; + case ff_div_fmt: + setFpuRegisterFloat(fd_reg, fs_value / ft_value); + break; + case ff_abs_fmt: + setFpuRegisterFloat(fd_reg, fabsf(fs_value)); + break; + case ff_mov_fmt: + setFpuRegisterFloat(fd_reg, fs_value); + break; + case ff_neg_fmt: + setFpuRegisterFloat(fd_reg, -fs_value); + break; + case ff_sqrt_fmt: + setFpuRegisterFloat(fd_reg, sqrtf(fs_value)); + break; + case ff_c_un_fmt: + setFCSRBit(fcsr_cc, + mozilla::IsNaN(fs_value) || mozilla::IsNaN(ft_value)); + break; + case ff_c_eq_fmt: + setFCSRBit(fcsr_cc, (fs_value == ft_value)); + break; + case ff_c_ueq_fmt: + setFCSRBit(fcsr_cc, + (fs_value == ft_value) || (mozilla::IsNaN(fs_value) || + mozilla::IsNaN(ft_value))); + break; + case ff_c_olt_fmt: + setFCSRBit(fcsr_cc, (fs_value < ft_value)); + break; + case ff_c_ult_fmt: + setFCSRBit(fcsr_cc, + (fs_value < ft_value) || (mozilla::IsNaN(fs_value) || + mozilla::IsNaN(ft_value))); + break; + case ff_c_ole_fmt: + setFCSRBit(fcsr_cc, (fs_value <= ft_value)); + break; + case ff_c_ule_fmt: + setFCSRBit(fcsr_cc, + (fs_value <= ft_value) || (mozilla::IsNaN(fs_value) || + mozilla::IsNaN(ft_value))); + break; + case ff_cvt_d_fmt: + f = getFpuRegisterFloat(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(f)); + break; + case ff_cvt_w_fmt: // Convert float to word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_w_fmt: { // Round double to word (round half to + // even). + float rounded = std::floor(fs_value + 0.5); + int32_t result = I32(rounded); + if ((result & 1) != 0 && result - fs_value == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_trunc_w_fmt: { // Truncate float to word (round towards 0). + float rounded = truncf(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_floor_w_fmt: { // Round float to word towards negative + // infinity. + float rounded = std::floor(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_ceil_w_fmt: { // Round double to word towards positive + // infinity. + float rounded = std::ceil(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_cvt_l_fmt: // Mips64r2: Truncate float to 64-bit long-word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_l_fmt: { // Mips64r2 instruction. + float rounded = fs_value > 0 ? std::floor(fs_value + 0.5) + : std::ceil(fs_value - 0.5); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_trunc_l_fmt: { // Mips64r2 instruction. + float rounded = truncf(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_floor_l_fmt: { // Mips64r2 instruction. + float rounded = std::floor(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_ceil_l_fmt: { // Mips64r2 instruction. + float rounded = std::ceil(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_cvt_ps_s: + case ff_c_f_fmt: + MOZ_CRASH(); + break; + case ff_movf_fmt: + if (testFCSRBit(fcsr_cc)) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + case ff_movz_fmt: + if (rt == 0) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + case ff_movn_fmt: + if (rt != 0) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + default: + MOZ_CRASH(); + } + break; + case rs_d: + double dt_value, ds_value; + ds_value = getFpuRegisterDouble(fs_reg); + dt_value = getFpuRegisterDouble(ft_reg); + cc = instr->fcccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + switch (instr->functionFieldRaw()) { + case ff_add_fmt: + setFpuRegisterDouble(fd_reg, ds_value + dt_value); + break; + case ff_sub_fmt: + setFpuRegisterDouble(fd_reg, ds_value - dt_value); + break; + case ff_mul_fmt: + setFpuRegisterDouble(fd_reg, ds_value * dt_value); + break; + case ff_div_fmt: + setFpuRegisterDouble(fd_reg, ds_value / dt_value); + break; + case ff_abs_fmt: + setFpuRegisterDouble(fd_reg, fabs(ds_value)); + break; + case ff_mov_fmt: + setFpuRegisterDouble(fd_reg, ds_value); + break; + case ff_neg_fmt: + setFpuRegisterDouble(fd_reg, -ds_value); + break; + case ff_sqrt_fmt: + setFpuRegisterDouble(fd_reg, sqrt(ds_value)); + break; + case ff_c_un_fmt: + setFCSRBit(fcsr_cc, + mozilla::IsNaN(ds_value) || mozilla::IsNaN(dt_value)); + break; + case ff_c_eq_fmt: + setFCSRBit(fcsr_cc, (ds_value == dt_value)); + break; + case ff_c_ueq_fmt: + setFCSRBit(fcsr_cc, + (ds_value == dt_value) || (mozilla::IsNaN(ds_value) || + mozilla::IsNaN(dt_value))); + break; + case ff_c_olt_fmt: + setFCSRBit(fcsr_cc, (ds_value < dt_value)); + break; + case ff_c_ult_fmt: + setFCSRBit(fcsr_cc, + (ds_value < dt_value) || (mozilla::IsNaN(ds_value) || + mozilla::IsNaN(dt_value))); + break; + case ff_c_ole_fmt: + setFCSRBit(fcsr_cc, (ds_value <= dt_value)); + break; + case ff_c_ule_fmt: + setFCSRBit(fcsr_cc, + (ds_value <= dt_value) || (mozilla::IsNaN(ds_value) || + mozilla::IsNaN(dt_value))); + break; + case ff_cvt_w_fmt: // Convert double to word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_w_fmt: { // Round double to word (round half to + // even). + double rounded = std::floor(ds_value + 0.5); + int32_t result = I32(rounded); + if ((result & 1) != 0 && result - ds_value == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_trunc_w_fmt: { // Truncate double to word (round towards + // 0). + double rounded = trunc(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_floor_w_fmt: { // Round double to word towards negative + // infinity. + double rounded = std::floor(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_ceil_w_fmt: { // Round double to word towards positive + // infinity. + double rounded = std::ceil(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_cvt_s_fmt: // Convert double to float (single). + setFpuRegisterFloat(fd_reg, static_cast<float>(ds_value)); + break; + case ff_cvt_l_fmt: // Mips64r2: Truncate double to 64-bit + // long-word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_l_fmt: { // Mips64r2 instruction. + double rounded = ds_value > 0 ? std::floor(ds_value + 0.5) + : std::ceil(ds_value - 0.5); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_trunc_l_fmt: { // Mips64r2 instruction. + double rounded = trunc(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_floor_l_fmt: { // Mips64r2 instruction. + double rounded = std::floor(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_ceil_l_fmt: { // Mips64r2 instruction. + double rounded = std::ceil(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_c_f_fmt: + MOZ_CRASH(); + break; + case ff_movz_fmt: + if (rt == 0) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + case ff_movn_fmt: + if (rt != 0) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + case ff_movf_fmt: + // location of cc field in MOVF is equal to float branch + // instructions + cc = instr->fbccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + if (testFCSRBit(fcsr_cc)) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + default: + MOZ_CRASH(); + } + break; + case rs_w: + switch (instr->functionFieldRaw()) { + case ff_cvt_s_fmt: // Convert word to float (single). + i64 = getFpuRegisterLo(fs_reg); + setFpuRegisterFloat(fd_reg, static_cast<float>(i64)); + break; + case ff_cvt_d_fmt: // Convert word to double. + i64 = getFpuRegisterLo(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(i64)); + break; + default: + MOZ_CRASH(); + }; + break; + case rs_l: + switch (instr->functionFieldRaw()) { + case ff_cvt_d_fmt: // Mips64r2 instruction. + i64 = getFpuRegister(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(i64)); + break; + case ff_cvt_s_fmt: + i64 = getFpuRegister(fs_reg); + setFpuRegisterFloat(fd_reg, static_cast<float>(i64)); + break; + default: + MOZ_CRASH(); + } + break; + case rs_ps: + break; + default: + MOZ_CRASH(); + }; + break; + case op_cop1x: + switch (instr->functionFieldRaw()) { + case ff_madd_s: + float fr, ft, fs; + fr = getFpuRegisterFloat(fr_reg); + fs = getFpuRegisterFloat(fs_reg); + ft = getFpuRegisterFloat(ft_reg); + setFpuRegisterFloat(fd_reg, fs * ft + fr); + break; + case ff_madd_d: + double dr, dt, ds; + dr = getFpuRegisterDouble(fr_reg); + ds = getFpuRegisterDouble(fs_reg); + dt = getFpuRegisterDouble(ft_reg); + setFpuRegisterDouble(fd_reg, ds * dt + dr); + break; + default: + MOZ_CRASH(); + }; + break; + case op_special: + switch (instr->functionFieldRaw()) { + case ff_jr: { + SimInstruction* branch_delay_instr = + reinterpret_cast<SimInstruction*>(current_pc + + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + set_pc(next_pc); + pc_modified_ = true; + break; + } + case ff_jalr: { + SimInstruction* branch_delay_instr = + reinterpret_cast<SimInstruction*>(current_pc + + SimInstruction::kInstrSize); + setRegister(return_addr_reg, + current_pc + 2 * SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + set_pc(next_pc); + pc_modified_ = true; + break; + } + // Instructions using HI and LO registers. + case ff_mult: + setRegister(LO, I32(i128hilo & 0xffffffff)); + setRegister(HI, I32(i128hilo >> 32)); + break; + case ff_dmult: + setRegister(LO, I64(i128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(i128hilo >> 64)); + break; + case ff_multu: + setRegister(LO, I32(u128hilo & 0xffffffff)); + setRegister(HI, I32(u128hilo >> 32)); + break; + case ff_dmultu: + setRegister(LO, I64(u128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(u128hilo >> 64)); + break; + case ff_div: + case ff_divu: + // Divide by zero and overflow was not checked in the configuration + // step - div and divu do not raise exceptions. On division by 0 + // the result will be UNPREDICTABLE. On overflow (INT_MIN/-1), + // return INT_MIN which is what the hardware does. + setRegister(LO, I32(i128hilo & 0xffffffff)); + setRegister(HI, I32(i128hilo >> 32)); + break; + case ff_ddiv: + case ff_ddivu: + // Divide by zero and overflow was not checked in the configuration + // step - div and divu do not raise exceptions. On division by 0 + // the result will be UNPREDICTABLE. On overflow (INT_MIN/-1), + // return INT_MIN which is what the hardware does. + setRegister(LO, I64(i128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(i128hilo >> 64)); + break; + case ff_sync: + break; + // Break and trap instructions. + case ff_break: + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + if (do_interrupt) { + softwareInterrupt(instr); + } + break; + // Conditional moves. + case ff_movn: + if (rt) { + setRegister(rd_reg, rs); + } + break; + case ff_movci: { + uint32_t cc = instr->fbccValue(); + uint32_t fcsr_cc = GetFCSRConditionBit(cc); + if (instr->bit(16)) { // Read Tf bit. + if (testFCSRBit(fcsr_cc)) { + setRegister(rd_reg, rs); + } + } else { + if (!testFCSRBit(fcsr_cc)) { + setRegister(rd_reg, rs); + } + } + break; + } + case ff_movz: + if (!rt) { + setRegister(rd_reg, rs); + } + break; + default: // For other special opcodes we do the default operation. + setRegister(rd_reg, alu_out); + }; + break; + case op_special2: + switch (instr->functionFieldRaw()) { + case ff_mul: + setRegister(rd_reg, alu_out); + // HI and LO are UNPREDICTABLE after the operation. + setRegister(LO, Unpredictable); + setRegister(HI, Unpredictable); + break; + default: // For other special2 opcodes we do the default operation. + setRegister(rd_reg, alu_out); + } + break; + case op_special3: + switch (instr->functionFieldRaw()) { + case ff_ins: + case ff_dins: + case ff_dinsm: + case ff_dinsu: + // Ins instr leaves result in Rt, rather than Rd. + setRegister(rt_reg, alu_out); + break; + case ff_ext: + case ff_dext: + case ff_dextm: + case ff_dextu: + // Ext instr leaves result in Rt, rather than Rd. + setRegister(rt_reg, alu_out); + break; + case ff_bshfl: + setRegister(rd_reg, alu_out); + break; + default: + MOZ_CRASH(); + }; + break; + // Unimplemented opcodes raised an error in the configuration step before, + // so we can use the default here to set the destination register in + // common cases. + default: + setRegister(rd_reg, alu_out); + }; +} + +// Type 2: instructions using a 16 bits immediate. (e.g. addi, beq). +void Simulator::decodeTypeImmediate(SimInstruction* instr) { + // Instruction fields. + OpcodeField op = instr->opcodeFieldRaw(); + int64_t rs = getRegister(instr->rsValue()); + int32_t rt_reg = instr->rtValue(); // Destination register. + int64_t rt = getRegister(rt_reg); + int16_t imm16 = instr->imm16Value(); + + int32_t ft_reg = instr->ftValue(); // Destination register. + + // Zero extended immediate. + uint32_t oe_imm16 = 0xffff & imm16; + // Sign extended immediate. + int32_t se_imm16 = imm16; + + // Get current pc. + int64_t current_pc = get_pc(); + // Next pc. + int64_t next_pc = bad_ra; + + // Used for conditional branch instructions. + bool do_branch = false; + bool execute_branch_delay_instruction = false; + + // Used for arithmetic instructions. + int64_t alu_out = 0; + // Floating point. + double fp_out = 0.0; + uint32_t cc, cc_value, fcsr_cc; + + // Used for memory instructions. + uint64_t addr = 0x0; + // Value to be written in memory. + uint64_t mem_value = 0x0; + __int128 temp; + + // ---------- Configuration (and execution for op_regimm). + switch (op) { + // ------------- op_cop1. Coprocessor instructions. + case op_cop1: + switch (instr->rsFieldRaw()) { + case rs_bc1: // Branch on coprocessor condition. + cc = instr->fbccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + cc_value = testFCSRBit(fcsr_cc); + do_branch = (instr->fbtrueValue()) ? cc_value : !cc_value; + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + } else { + next_pc = current_pc + kBranchReturnOffset; + } + break; + default: + MOZ_CRASH(); + }; + break; + // ------------- op_regimm class. + case op_regimm: + switch (instr->rtFieldRaw()) { + case rt_bltz: + do_branch = (rs < 0); + break; + case rt_bltzal: + do_branch = rs < 0; + break; + case rt_bgez: + do_branch = rs >= 0; + break; + case rt_bgezal: + do_branch = rs >= 0; + break; + default: + MOZ_CRASH(); + }; + switch (instr->rtFieldRaw()) { + case rt_bltz: + case rt_bltzal: + case rt_bgez: + case rt_bgezal: + // Branch instructions common part. + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + kBranchReturnOffset); + } + } else { + next_pc = current_pc + kBranchReturnOffset; + } + break; + default: + break; + }; + break; // case op_regimm. + // ------------- Branch instructions. + // When comparing to zero, the encoding of rt field is always 0, so we + // don't need to replace rt with zero. + case op_beq: + do_branch = (rs == rt); + break; + case op_bne: + do_branch = rs != rt; + break; + case op_blez: + do_branch = rs <= 0; + break; + case op_bgtz: + do_branch = rs > 0; + break; + // ------------- Arithmetic instructions. + case op_addi: + alu_out = I32_CHECK(rs) + se_imm16; + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I32_CHECK(alu_out); + break; + case op_daddi: + temp = alu_out = rs + se_imm16; + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I64(temp); + break; + case op_addiu: + alu_out = I32(I32_CHECK(rs) + se_imm16); + break; + case op_daddiu: + alu_out = rs + se_imm16; + break; + case op_slti: + alu_out = (rs < se_imm16) ? 1 : 0; + break; + case op_sltiu: + alu_out = (U64(rs) < U64(se_imm16)) ? 1 : 0; + break; + case op_andi: + alu_out = rs & oe_imm16; + break; + case op_ori: + alu_out = rs | oe_imm16; + break; + case op_xori: + alu_out = rs ^ oe_imm16; + break; + case op_lui: + alu_out = (se_imm16 << 16); + break; + // ------------- Memory instructions. + case op_lbu: + addr = rs + se_imm16; + alu_out = readBU(addr, instr); + break; + case op_lb: + addr = rs + se_imm16; + alu_out = readB(addr, instr); + break; + case op_lhu: + addr = rs + se_imm16; + alu_out = readHU(addr, instr); + break; + case op_lh: + addr = rs + se_imm16; + alu_out = readH(addr, instr); + break; + case op_lwu: + addr = rs + se_imm16; + alu_out = readWU(addr, instr); + break; + case op_lw: + addr = rs + se_imm16; + alu_out = readW(addr, instr); + break; + case op_lwl: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = (1 << byte_shift * 8) - 1; + addr = rs + se_imm16 - al_offset; + alu_out = readW(addr, instr); + alu_out <<= byte_shift * 8; + alu_out |= rt & mask; + break; + } + case op_lwr: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + alu_out = readW(addr, instr); + alu_out = U32(alu_out) >> al_offset * 8; + alu_out |= rt & mask; + break; + } + case op_ll: + addr = rs + se_imm16; + alu_out = loadLinkedW(addr, instr); + break; + case op_lld: + addr = rs + se_imm16; + alu_out = loadLinkedD(addr, instr); + break; + case op_ld: + addr = rs + se_imm16; + alu_out = readDW(addr, instr); + break; + case op_ldl: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = (1ul << byte_shift * 8) - 1; + addr = rs + se_imm16 - al_offset; + alu_out = readDW(addr, instr); + alu_out <<= byte_shift * 8; + alu_out |= rt & mask; + break; + } + case op_ldr: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = al_offset ? (~0ul << (byte_shift + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + alu_out = readDW(addr, instr); + alu_out = U64(alu_out) >> al_offset * 8; + alu_out |= rt & mask; + break; + } + case op_sb: + addr = rs + se_imm16; + break; + case op_sh: + addr = rs + se_imm16; + break; + case op_sw: + addr = rs + se_imm16; + break; + case op_swl: { + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr) & mask; + mem_value |= U32(rt) >> byte_shift * 8; + break; + } + case op_swr: { + uint8_t al_offset = (rs + se_imm16) & 3; + uint32_t mask = (1 << al_offset * 8) - 1; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr); + mem_value = (rt << al_offset * 8) | (mem_value & mask); + break; + } + case op_sc: + addr = rs + se_imm16; + break; + case op_scd: + addr = rs + se_imm16; + break; + case op_sd: + addr = rs + se_imm16; + break; + case op_sdl: { + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = byte_shift ? (~0ul << (al_offset + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr) & mask; + mem_value |= U64(rt) >> byte_shift * 8; + break; + } + case op_sdr: { + uint8_t al_offset = (rs + se_imm16) & 7; + uint64_t mask = (1ul << al_offset * 8) - 1; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr); + mem_value = (rt << al_offset * 8) | (mem_value & mask); + break; + } + case op_lwc1: + addr = rs + se_imm16; + alu_out = readW(addr, instr); + break; + case op_ldc1: + addr = rs + se_imm16; + fp_out = readD(addr, instr); + break; + case op_swc1: + case op_sdc1: + addr = rs + se_imm16; + break; + default: + MOZ_CRASH(); + }; + + // ---------- Raise exceptions triggered. + signalExceptions(); + + // ---------- Execution. + switch (op) { + // ------------- Branch instructions. + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + // Branch instructions common part. + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + 2 * SimInstruction::kInstrSize); + } + } else { + next_pc = current_pc + 2 * SimInstruction::kInstrSize; + } + break; + // ------------- Arithmetic instructions. + case op_addi: + case op_daddi: + case op_addiu: + case op_daddiu: + case op_slti: + case op_sltiu: + case op_andi: + case op_ori: + case op_xori: + case op_lui: + setRegister(rt_reg, alu_out); + break; + // ------------- Memory instructions. + case op_lbu: + case op_lb: + case op_lhu: + case op_lh: + case op_lwu: + case op_lw: + case op_lwl: + case op_lwr: + case op_ll: + case op_lld: + case op_ld: + case op_ldl: + case op_ldr: + setRegister(rt_reg, alu_out); + break; + case op_sb: + writeB(addr, I8(rt), instr); + break; + case op_sh: + writeH(addr, U16(rt), instr); + break; + case op_sw: + writeW(addr, I32(rt), instr); + break; + case op_swl: + writeW(addr, I32(mem_value), instr); + break; + case op_swr: + writeW(addr, I32(mem_value), instr); + break; + case op_sc: + setRegister(rt_reg, storeConditionalW(addr, I32(rt), instr)); + break; + case op_scd: + setRegister(rt_reg, storeConditionalD(addr, rt, instr)); + break; + case op_sd: + writeDW(addr, rt, instr); + break; + case op_sdl: + writeDW(addr, mem_value, instr); + break; + case op_sdr: + writeDW(addr, mem_value, instr); + break; + case op_lwc1: + setFpuRegisterLo(ft_reg, alu_out); + break; + case op_ldc1: + setFpuRegisterDouble(ft_reg, fp_out); + break; + case op_swc1: + writeW(addr, getFpuRegisterLo(ft_reg), instr); + break; + case op_sdc1: + writeD(addr, getFpuRegisterDouble(ft_reg), instr); + break; + default: + break; + }; + + if (execute_branch_delay_instruction) { + // Execute branch delay slot + // We don't check for end_sim_pc. First it should not be met as the current + // pc is valid. Secondly a jump should always execute its branch delay slot. + SimInstruction* branch_delay_instr = reinterpret_cast<SimInstruction*>( + current_pc + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + } + + // If needed update pc after the branch delay execution. + if (next_pc != bad_ra) { + set_pc(next_pc); + } +} + +// Type 3: instructions using a 26 bits immediate. (e.g. j, jal). +void Simulator::decodeTypeJump(SimInstruction* instr) { + // Get current pc. + int64_t current_pc = get_pc(); + // Get unchanged bits of pc. + int64_t pc_high_bits = current_pc & 0xfffffffff0000000ul; + // Next pc. + int64_t next_pc = pc_high_bits | (instr->imm26Value() << 2); + + // Execute branch delay slot. + // We don't check for end_sim_pc. First it should not be met as the current pc + // is valid. Secondly a jump should always execute its branch delay slot. + SimInstruction* branch_delay_instr = reinterpret_cast<SimInstruction*>( + current_pc + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + + // Update pc and ra if necessary. + // Do this after the branch delay execution. + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + 2 * SimInstruction::kInstrSize); + } + set_pc(next_pc); + pc_modified_ = true; +} + +// Executes the current instruction. +void Simulator::instructionDecode(SimInstruction* instr) { + if (!SimulatorProcess::ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + SimulatorProcess::checkICacheLocked(instr); + } + pc_modified_ = false; + + switch (instr->instructionType()) { + case SimInstruction::kRegisterType: + decodeTypeRegister(instr); + break; + case SimInstruction::kImmediateType: + decodeTypeImmediate(instr); + break; + case SimInstruction::kJumpType: + decodeTypeJump(instr); + break; + default: + UNSUPPORTED(); + } + if (!pc_modified_) { + setRegister(pc, + reinterpret_cast<int64_t>(instr) + SimInstruction::kInstrSize); + } +} + +void Simulator::branchDelayInstructionDecode(SimInstruction* instr) { + if (instr->instructionBits() == NopInst) { + // Short-cut generic nop instructions. They are always valid and they + // never change the simulator state. + return; + } + + if (instr->isForbiddenInBranchDelay()) { + MOZ_CRASH("Eror:Unexpected opcode in a branch delay slot."); + } + instructionDecode(instr); +} + +void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) { + single_stepping_ = true; + single_step_callback_ = cb; + single_step_callback_arg_ = arg; + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); +} + +void Simulator::disable_single_stepping() { + if (!single_stepping_) { + return; + } + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; +} + +template <bool enableStopSimAt> +void Simulator::execute() { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + // Get the PC to simulate. Cannot use the accessor here as we need the + // raw PC value and not the one used as input to arithmetic instructions. + int64_t program_counter = get_pc(); + + while (program_counter != end_sim_pc) { + if (enableStopSimAt && (icount_ == Simulator::StopSimAt)) { + MipsDebugger dbg(this); + dbg.debug(); + } else { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, + (void*)program_counter); + } + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(program_counter); + instructionDecode(instr); + icount_++; + } + program_counter = get_pc(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } +} + +void Simulator::callInternal(uint8_t* entry) { + // Prepare to execute the code at entry. + setRegister(pc, reinterpret_cast<int64_t>(entry)); + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + setRegister(ra, end_sim_pc); + + // Remember the values of callee-saved registers. + // The code below assumes that r9 is not used as sb (static base) in + // simulator code and therefore is regarded as a callee-saved register. + int64_t s0_val = getRegister(s0); + int64_t s1_val = getRegister(s1); + int64_t s2_val = getRegister(s2); + int64_t s3_val = getRegister(s3); + int64_t s4_val = getRegister(s4); + int64_t s5_val = getRegister(s5); + int64_t s6_val = getRegister(s6); + int64_t s7_val = getRegister(s7); + int64_t gp_val = getRegister(gp); + int64_t sp_val = getRegister(sp); + int64_t fp_val = getRegister(fp); + + // Set up the callee-saved registers with a known value. To be able to check + // that they are preserved properly across JS execution. + int64_t callee_saved_value = icount_; + setRegister(s0, callee_saved_value); + setRegister(s1, callee_saved_value); + setRegister(s2, callee_saved_value); + setRegister(s3, callee_saved_value); + setRegister(s4, callee_saved_value); + setRegister(s5, callee_saved_value); + setRegister(s6, callee_saved_value); + setRegister(s7, callee_saved_value); + setRegister(gp, callee_saved_value); + setRegister(fp, callee_saved_value); + + // Start the simulation. + if (Simulator::StopSimAt != -1) { + execute<true>(); + } else { + execute<false>(); + } + + // Check that the callee-saved registers have been preserved. + MOZ_ASSERT(callee_saved_value == getRegister(s0)); + MOZ_ASSERT(callee_saved_value == getRegister(s1)); + MOZ_ASSERT(callee_saved_value == getRegister(s2)); + MOZ_ASSERT(callee_saved_value == getRegister(s3)); + MOZ_ASSERT(callee_saved_value == getRegister(s4)); + MOZ_ASSERT(callee_saved_value == getRegister(s5)); + MOZ_ASSERT(callee_saved_value == getRegister(s6)); + MOZ_ASSERT(callee_saved_value == getRegister(s7)); + MOZ_ASSERT(callee_saved_value == getRegister(gp)); + MOZ_ASSERT(callee_saved_value == getRegister(fp)); + + // Restore callee-saved registers with the original value. + setRegister(s0, s0_val); + setRegister(s1, s1_val); + setRegister(s2, s2_val); + setRegister(s3, s3_val); + setRegister(s4, s4_val); + setRegister(s5, s5_val); + setRegister(s6, s6_val); + setRegister(s7, s7_val); + setRegister(gp, gp_val); + setRegister(sp, sp_val); + setRegister(fp, fp_val); +} + +int64_t Simulator::call(uint8_t* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + + int64_t original_stack = getRegister(sp); + // Compute position of stack on entry to generated code. + int64_t entry_stack = original_stack; + if (argument_count > kCArgSlotCount) { + entry_stack = entry_stack - argument_count * sizeof(int64_t); + } else { + entry_stack = entry_stack - kCArgsSlotsSize; + } + + entry_stack &= ~U64(ABIStackAlignment - 1); + + intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); + + // Setup the arguments. + for (int i = 0; i < argument_count; i++) { + js::jit::Register argReg; + if (GetIntArgReg(i, &argReg)) { + setRegister(argReg.code(), va_arg(parameters, int64_t)); + } else { + stack_argument[i] = va_arg(parameters, int64_t); + } + } + + va_end(parameters); + setRegister(sp, entry_stack); + + callInternal(entry); + + // Pop stack passed arguments. + MOZ_ASSERT(entry_stack == getRegister(sp)); + setRegister(sp, original_stack); + + int64_t result = getRegister(v0); + return result; +} + +uintptr_t Simulator::pushAddress(uintptr_t address) { + int new_sp = getRegister(sp) - sizeof(uintptr_t); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); + *stack_slot = address; + setRegister(sp, new_sp); + return new_sp; +} + +uintptr_t Simulator::popAddress() { + int current_sp = getRegister(sp); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); + uintptr_t address = *stack_slot; + setRegister(sp, current_sp + sizeof(uintptr_t)); + return address; +} + +} // namespace jit +} // namespace js + +js::jit::Simulator* JSContext::simulator() const { return simulator_; } |