summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmIonCompile.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /js/src/wasm/WasmIonCompile.cpp
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/wasm/WasmIonCompile.cpp')
-rw-r--r--js/src/wasm/WasmIonCompile.cpp5593
1 files changed, 5593 insertions, 0 deletions
diff --git a/js/src/wasm/WasmIonCompile.cpp b/js/src/wasm/WasmIonCompile.cpp
new file mode 100644
index 0000000000..d0c3298cd8
--- /dev/null
+++ b/js/src/wasm/WasmIonCompile.cpp
@@ -0,0 +1,5593 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ *
+ * Copyright 2015 Mozilla Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "wasm/WasmIonCompile.h"
+
+#include "mozilla/MathAlgorithms.h"
+
+#include <algorithm>
+
+#include "jit/CodeGenerator.h"
+#include "jit/CompileInfo.h"
+#include "jit/Ion.h"
+#include "jit/IonOptimizationLevels.h"
+#include "js/ScalarType.h" // js::Scalar::Type
+#include "wasm/WasmBaselineCompile.h"
+#include "wasm/WasmBuiltins.h"
+#include "wasm/WasmGC.h"
+#include "wasm/WasmGenerator.h"
+#include "wasm/WasmOpIter.h"
+#include "wasm/WasmSignalHandlers.h"
+#include "wasm/WasmStubs.h"
+#include "wasm/WasmValidate.h"
+
+using namespace js;
+using namespace js::jit;
+using namespace js::wasm;
+
+using mozilla::IsPowerOfTwo;
+using mozilla::Maybe;
+using mozilla::Nothing;
+using mozilla::Some;
+
+namespace {
+
+typedef Vector<MBasicBlock*, 8, SystemAllocPolicy> BlockVector;
+typedef Vector<MDefinition*, 8, SystemAllocPolicy> DefVector;
+
+struct IonCompilePolicy {
+ // We store SSA definitions in the value stack.
+ using Value = MDefinition*;
+ using ValueVector = DefVector;
+
+ // We store loop headers and then/else blocks in the control flow stack.
+ using ControlItem = MBasicBlock*;
+};
+
+using IonOpIter = OpIter<IonCompilePolicy>;
+
+class FunctionCompiler;
+
+// CallCompileState describes a call that is being compiled.
+
+class CallCompileState {
+ // A generator object that is passed each argument as it is compiled.
+ WasmABIArgGenerator abi_;
+
+ // Accumulates the register arguments while compiling arguments.
+ MWasmCall::Args regArgs_;
+
+ // Reserved argument for passing Instance* to builtin instance method calls.
+ ABIArg instanceArg_;
+
+ // The stack area in which the callee will write stack return values, or
+ // nullptr if no stack results.
+ MWasmStackResultArea* stackResultArea_ = nullptr;
+
+ // Only FunctionCompiler should be directly manipulating CallCompileState.
+ friend class FunctionCompiler;
+};
+
+// Encapsulates the compilation of a single function in an asm.js module. The
+// function compiler handles the creation and final backend compilation of the
+// MIR graph.
+class FunctionCompiler {
+ struct ControlFlowPatch {
+ MControlInstruction* ins;
+ uint32_t index;
+ ControlFlowPatch(MControlInstruction* ins, uint32_t index)
+ : ins(ins), index(index) {}
+ };
+
+ typedef Vector<ControlFlowPatch, 0, SystemAllocPolicy> ControlFlowPatchVector;
+ typedef Vector<ControlFlowPatchVector, 0, SystemAllocPolicy>
+ ControlFlowPatchsVector;
+
+ const ModuleEnvironment& moduleEnv_;
+ IonOpIter iter_;
+ const FuncCompileInput& func_;
+ const ValTypeVector& locals_;
+ size_t lastReadCallSite_;
+
+ TempAllocator& alloc_;
+ MIRGraph& graph_;
+ const CompileInfo& info_;
+ MIRGenerator& mirGen_;
+
+ MBasicBlock* curBlock_;
+ uint32_t maxStackArgBytes_;
+
+ uint32_t loopDepth_;
+ uint32_t blockDepth_;
+ ControlFlowPatchsVector blockPatches_;
+
+ // TLS pointer argument to the current function.
+ MWasmParameter* tlsPointer_;
+ MWasmParameter* stackResultPointer_;
+
+ public:
+ FunctionCompiler(const ModuleEnvironment& moduleEnv, Decoder& decoder,
+ const FuncCompileInput& func, const ValTypeVector& locals,
+ MIRGenerator& mirGen)
+ : moduleEnv_(moduleEnv),
+ iter_(moduleEnv, decoder),
+ func_(func),
+ locals_(locals),
+ lastReadCallSite_(0),
+ alloc_(mirGen.alloc()),
+ graph_(mirGen.graph()),
+ info_(mirGen.outerInfo()),
+ mirGen_(mirGen),
+ curBlock_(nullptr),
+ maxStackArgBytes_(0),
+ loopDepth_(0),
+ blockDepth_(0),
+ tlsPointer_(nullptr),
+ stackResultPointer_(nullptr) {}
+
+ const ModuleEnvironment& moduleEnv() const { return moduleEnv_; }
+
+ IonOpIter& iter() { return iter_; }
+ TempAllocator& alloc() const { return alloc_; }
+ // FIXME(1401675): Replace with BlockType.
+ uint32_t funcIndex() const { return func_.index; }
+ const FuncType& funcType() const {
+ return *moduleEnv_.funcs[func_.index].type;
+ }
+
+ BytecodeOffset bytecodeOffset() const { return iter_.bytecodeOffset(); }
+ BytecodeOffset bytecodeIfNotAsmJS() const {
+ return moduleEnv_.isAsmJS() ? BytecodeOffset() : iter_.bytecodeOffset();
+ }
+
+ bool init() {
+ // Prepare the entry block for MIR generation:
+
+ const ArgTypeVector args(funcType());
+
+ if (!mirGen_.ensureBallast()) {
+ return false;
+ }
+ if (!newBlock(/* prev */ nullptr, &curBlock_)) {
+ return false;
+ }
+
+ for (WasmABIArgIter i(args); !i.done(); i++) {
+ MWasmParameter* ins = MWasmParameter::New(alloc(), *i, i.mirType());
+ curBlock_->add(ins);
+ if (args.isSyntheticStackResultPointerArg(i.index())) {
+ MOZ_ASSERT(stackResultPointer_ == nullptr);
+ stackResultPointer_ = ins;
+ } else {
+ curBlock_->initSlot(info().localSlot(args.naturalIndex(i.index())),
+ ins);
+ }
+ if (!mirGen_.ensureBallast()) {
+ return false;
+ }
+ }
+
+ // Set up a parameter that receives the hidden TLS pointer argument.
+ tlsPointer_ =
+ MWasmParameter::New(alloc(), ABIArg(WasmTlsReg), MIRType::Pointer);
+ curBlock_->add(tlsPointer_);
+ if (!mirGen_.ensureBallast()) {
+ return false;
+ }
+
+ for (size_t i = args.lengthWithoutStackResults(); i < locals_.length();
+ i++) {
+ MInstruction* ins = nullptr;
+ switch (locals_[i].kind()) {
+ case ValType::I32:
+ ins = MConstant::New(alloc(), Int32Value(0), MIRType::Int32);
+ break;
+ case ValType::I64:
+ ins = MConstant::NewInt64(alloc(), 0);
+ break;
+ case ValType::V128:
+#ifdef ENABLE_WASM_SIMD
+ ins =
+ MWasmFloatConstant::NewSimd128(alloc(), SimdConstant::SplatX4(0));
+ break;
+#else
+ return iter().fail("Ion has no SIMD support yet");
+#endif
+ case ValType::F32:
+ ins = MConstant::New(alloc(), Float32Value(0.f), MIRType::Float32);
+ break;
+ case ValType::F64:
+ ins = MConstant::New(alloc(), DoubleValue(0.0), MIRType::Double);
+ break;
+ case ValType::Ref:
+ ins = MWasmNullConstant::New(alloc());
+ break;
+ }
+
+ curBlock_->add(ins);
+ curBlock_->initSlot(info().localSlot(i), ins);
+ if (!mirGen_.ensureBallast()) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ void finish() {
+ mirGen().initWasmMaxStackArgBytes(maxStackArgBytes_);
+
+ MOZ_ASSERT(loopDepth_ == 0);
+ MOZ_ASSERT(blockDepth_ == 0);
+#ifdef DEBUG
+ for (ControlFlowPatchVector& patches : blockPatches_) {
+ MOZ_ASSERT(patches.empty());
+ }
+#endif
+ MOZ_ASSERT(inDeadCode());
+ MOZ_ASSERT(done(), "all bytes must be consumed");
+ MOZ_ASSERT(func_.callSiteLineNums.length() == lastReadCallSite_);
+ }
+
+ /************************* Read-only interface (after local scope setup) */
+
+ MIRGenerator& mirGen() const { return mirGen_; }
+ MIRGraph& mirGraph() const { return graph_; }
+ const CompileInfo& info() const { return info_; }
+
+ MDefinition* getLocalDef(unsigned slot) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ return curBlock_->getSlot(info().localSlot(slot));
+ }
+
+ const ValTypeVector& locals() const { return locals_; }
+
+ /***************************** Code generation (after local scope setup) */
+
+ MDefinition* constant(const Value& v, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ MConstant* constant = MConstant::New(alloc(), v, type);
+ curBlock_->add(constant);
+ return constant;
+ }
+
+ MDefinition* constant(float f) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* cst = MWasmFloatConstant::NewFloat32(alloc(), f);
+ curBlock_->add(cst);
+ return cst;
+ }
+
+ MDefinition* constant(double d) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* cst = MWasmFloatConstant::NewDouble(alloc(), d);
+ curBlock_->add(cst);
+ return cst;
+ }
+
+ MDefinition* constant(int64_t i) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ MConstant* constant = MConstant::NewInt64(alloc(), i);
+ curBlock_->add(constant);
+ return constant;
+ }
+
+#ifdef ENABLE_WASM_SIMD
+ MDefinition* constant(V128 v) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ MWasmFloatConstant* constant = MWasmFloatConstant::NewSimd128(
+ alloc(), SimdConstant::CreateSimd128((int8_t*)v.bytes));
+ curBlock_->add(constant);
+ return constant;
+ }
+#endif
+
+ MDefinition* nullRefConstant() {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ // MConstant has a lot of baggage so we don't use that here.
+ MWasmNullConstant* constant = MWasmNullConstant::New(alloc());
+ curBlock_->add(constant);
+ return constant;
+ }
+
+ void fence() {
+ if (inDeadCode()) {
+ return;
+ }
+ MWasmFence* ins = MWasmFence::New(alloc());
+ curBlock_->add(ins);
+ }
+
+ template <class T>
+ MDefinition* unary(MDefinition* op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ T* ins = T::New(alloc(), op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ template <class T>
+ MDefinition* unary(MDefinition* op, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ T* ins = T::New(alloc(), op, type);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ template <class T>
+ MDefinition* binary(MDefinition* lhs, MDefinition* rhs) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ T* ins = T::New(alloc(), lhs, rhs);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ template <class T>
+ MDefinition* binary(MDefinition* lhs, MDefinition* rhs, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ T* ins = T::New(alloc(), lhs, rhs, type);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* ursh(MDefinition* lhs, MDefinition* rhs, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MUrsh::NewWasm(alloc(), lhs, rhs, type);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* add(MDefinition* lhs, MDefinition* rhs, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MAdd::NewWasm(alloc(), lhs, rhs, type);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ bool mustPreserveNaN(MIRType type) {
+ return IsFloatingPointType(type) && !moduleEnv().isAsmJS();
+ }
+
+ MDefinition* sub(MDefinition* lhs, MDefinition* rhs, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ // wasm can't fold x - 0.0 because of NaN with custom payloads.
+ MSub* ins = MSub::NewWasm(alloc(), lhs, rhs, type, mustPreserveNaN(type));
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* nearbyInt(MDefinition* input, RoundingMode roundingMode) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ auto* ins = MNearbyInt::New(alloc(), input, input->type(), roundingMode);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* minMax(MDefinition* lhs, MDefinition* rhs, MIRType type,
+ bool isMax) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ if (mustPreserveNaN(type)) {
+ // Convert signaling NaN to quiet NaNs.
+ MDefinition* zero = constant(DoubleValue(0.0), type);
+ lhs = sub(lhs, zero, type);
+ rhs = sub(rhs, zero, type);
+ }
+
+ MMinMax* ins = MMinMax::NewWasm(alloc(), lhs, rhs, type, isMax);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* mul(MDefinition* lhs, MDefinition* rhs, MIRType type,
+ MMul::Mode mode) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ // wasm can't fold x * 1.0 because of NaN with custom payloads.
+ auto* ins =
+ MMul::NewWasm(alloc(), lhs, rhs, type, mode, mustPreserveNaN(type));
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* div(MDefinition* lhs, MDefinition* rhs, MIRType type,
+ bool unsignd) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ bool trapOnError = !moduleEnv().isAsmJS();
+ if (!unsignd && type == MIRType::Int32) {
+ // Enforce the signedness of the operation by coercing the operands
+ // to signed. Otherwise, operands that "look" unsigned to Ion but
+ // are not unsigned to Baldr (eg, unsigned right shifts) may lead to
+ // the operation being executed unsigned. Applies to mod() as well.
+ //
+ // Do this for Int32 only since Int64 is not subject to the same
+ // issues.
+ //
+ // Note the offsets passed to MWasmBuiltinTruncateToInt32 are wrong here,
+ // but it doesn't matter: they're not codegen'd to calls since inputs
+ // already are int32.
+ auto* lhs2 = createTruncateToInt32(lhs);
+ curBlock_->add(lhs2);
+ lhs = lhs2;
+ auto* rhs2 = createTruncateToInt32(rhs);
+ curBlock_->add(rhs2);
+ rhs = rhs2;
+ }
+
+ // For x86 and arm we implement i64 div via c++ builtin.
+ // A call to c++ builtin requires tls pointer.
+#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
+ if (type == MIRType::Int64) {
+ auto* ins =
+ MWasmBuiltinDivI64::New(alloc(), lhs, rhs, tlsPointer_, unsignd,
+ trapOnError, bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+#endif
+
+ auto* ins = MDiv::New(alloc(), lhs, rhs, type, unsignd, trapOnError,
+ bytecodeOffset(), mustPreserveNaN(type));
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MInstruction* createTruncateToInt32(MDefinition* op) {
+ if (op->type() == MIRType::Double || op->type() == MIRType::Float32) {
+ return MWasmBuiltinTruncateToInt32::New(alloc(), op, tlsPointer_);
+ }
+
+ return MTruncateToInt32::New(alloc(), op);
+ }
+
+ MDefinition* mod(MDefinition* lhs, MDefinition* rhs, MIRType type,
+ bool unsignd) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ bool trapOnError = !moduleEnv().isAsmJS();
+ if (!unsignd && type == MIRType::Int32) {
+ // See block comment in div().
+ auto* lhs2 = createTruncateToInt32(lhs);
+ curBlock_->add(lhs2);
+ lhs = lhs2;
+ auto* rhs2 = createTruncateToInt32(rhs);
+ curBlock_->add(rhs2);
+ rhs = rhs2;
+ }
+
+ // For x86 and arm we implement i64 mod via c++ builtin.
+ // A call to c++ builtin requires tls pointer.
+#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
+ if (type == MIRType::Int64) {
+ auto* ins =
+ MWasmBuiltinModI64::New(alloc(), lhs, rhs, tlsPointer_, unsignd,
+ trapOnError, bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+#endif
+
+ // Should be handled separately because we call BuiltinThunk for this case
+ // and so, need to add the dependency from tlsPointer.
+ if (type == MIRType::Double) {
+ auto* ins = MWasmBuiltinModD::New(alloc(), lhs, rhs, tlsPointer_, type,
+ bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ auto* ins = MMod::New(alloc(), lhs, rhs, type, unsignd, trapOnError,
+ bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* bitnot(MDefinition* op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MBitNot::New(alloc(), op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* select(MDefinition* trueExpr, MDefinition* falseExpr,
+ MDefinition* condExpr) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MWasmSelect::New(alloc(), trueExpr, falseExpr, condExpr);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* extendI32(MDefinition* op, bool isUnsigned) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MExtendInt32ToInt64::New(alloc(), op, isUnsigned);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* signExtend(MDefinition* op, uint32_t srcSize,
+ uint32_t targetSize) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ MInstruction* ins;
+ switch (targetSize) {
+ case 4: {
+ MSignExtendInt32::Mode mode;
+ switch (srcSize) {
+ case 1:
+ mode = MSignExtendInt32::Byte;
+ break;
+ case 2:
+ mode = MSignExtendInt32::Half;
+ break;
+ default:
+ MOZ_CRASH("Bad sign extension");
+ }
+ ins = MSignExtendInt32::New(alloc(), op, mode);
+ break;
+ }
+ case 8: {
+ MSignExtendInt64::Mode mode;
+ switch (srcSize) {
+ case 1:
+ mode = MSignExtendInt64::Byte;
+ break;
+ case 2:
+ mode = MSignExtendInt64::Half;
+ break;
+ case 4:
+ mode = MSignExtendInt64::Word;
+ break;
+ default:
+ MOZ_CRASH("Bad sign extension");
+ }
+ ins = MSignExtendInt64::New(alloc(), op, mode);
+ break;
+ }
+ default: {
+ MOZ_CRASH("Bad sign extension");
+ }
+ }
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* convertI64ToFloatingPoint(MDefinition* op, MIRType type,
+ bool isUnsigned) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+#if defined(JS_CODEGEN_ARM)
+ auto* ins = MBuiltinInt64ToFloatingPoint::New(
+ alloc(), op, tlsPointer_, type, bytecodeOffset(), isUnsigned);
+#else
+ auto* ins = MInt64ToFloatingPoint::New(alloc(), op, type, bytecodeOffset(),
+ isUnsigned);
+#endif
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* rotate(MDefinition* input, MDefinition* count, MIRType type,
+ bool left) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MRotate::New(alloc(), input, count, type, left);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ template <class T>
+ MDefinition* truncate(MDefinition* op, TruncFlags flags) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = T::New(alloc(), op, flags, bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* truncateWithTls(MDefinition* op, TruncFlags flags) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MWasmBuiltinTruncateToInt64::New(alloc(), op, tlsPointer_,
+ flags, bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* compare(MDefinition* lhs, MDefinition* rhs, JSOp op,
+ MCompare::CompareType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MCompare::NewWasm(alloc(), lhs, rhs, op, type);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ void assign(unsigned slot, MDefinition* def) {
+ if (inDeadCode()) {
+ return;
+ }
+ curBlock_->setSlot(info().localSlot(slot), def);
+ }
+
+#ifdef ENABLE_WASM_SIMD
+ // About Wasm SIMD as supported by Ion:
+ //
+ // The expectation is that Ion will only ever support SIMD on x86 and x64,
+ // since Cranelift will be the optimizing compiler for Arm64, ARMv7 will cease
+ // to be a tier-1 platform soon, and MIPS32 and MIPS64 will never implement
+ // SIMD.
+ //
+ // The division of the operations into MIR nodes reflects that expectation,
+ // and is a good fit for x86/x64. Should the expectation change we'll
+ // possibly want to re-architect the SIMD support to be a little more general.
+ //
+ // Most SIMD operations map directly to a single MIR node that ultimately ends
+ // up being expanded in the macroassembler.
+ //
+ // Some SIMD operations that do have a complete macroassembler expansion are
+ // open-coded into multiple MIR nodes here; in some cases that's just
+ // convenience, in other cases it may also allow them to benefit from Ion
+ // optimizations. The reason for the expansions will be documented by a
+ // comment.
+
+ // (v128,v128) -> v128 effect-free binary operations
+ MDefinition* binarySimd128(MDefinition* lhs, MDefinition* rhs,
+ bool commutative, SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(lhs->type() == MIRType::Simd128 &&
+ rhs->type() == MIRType::Simd128);
+
+ auto* ins = MWasmBinarySimd128::New(alloc(), lhs, rhs, commutative, op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (v128,i32) -> v128 effect-free shift operations
+ MDefinition* shiftSimd128(MDefinition* lhs, MDefinition* rhs, SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(lhs->type() == MIRType::Simd128 &&
+ rhs->type() == MIRType::Int32);
+
+ // Do something vector-based when the platform allows it.
+ if ((rhs->isConstant() && !MacroAssembler::MustScalarizeShiftSimd128(
+ op, Imm32(rhs->toConstant()->toInt32()))) ||
+ (!rhs->isConstant() &&
+ !MacroAssembler::MustScalarizeShiftSimd128(op))) {
+ int32_t maskBits;
+ if (!rhs->isConstant() &&
+ MacroAssembler::MustMaskShiftCountSimd128(op, &maskBits)) {
+ MConstant* mask = MConstant::New(alloc(), Int32Value(maskBits));
+ curBlock_->add(mask);
+ MBitAnd* maskedShift = MBitAnd::New(alloc(), rhs, mask, MIRType::Int32);
+ curBlock_->add(maskedShift);
+ rhs = maskedShift;
+ }
+
+ auto* ins = MWasmShiftSimd128::New(alloc(), lhs, rhs, op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+# ifdef DEBUG
+ js::wasm::ReportSimdAnalysis("shift -> variable scalarized shift");
+# endif
+
+ // Otherwise just scalarize using existing primitive operations.
+ auto* lane0 = reduceSimd128(lhs, SimdOp::I64x2ExtractLane, ValType::I64, 0);
+ auto* lane1 = reduceSimd128(lhs, SimdOp::I64x2ExtractLane, ValType::I64, 1);
+ auto* shiftCount = extendI32(rhs, /*isUnsigned=*/false);
+ auto* shifted0 = binary<MRsh>(lane0, shiftCount, MIRType::Int64);
+ auto* shifted1 = binary<MRsh>(lane1, shiftCount, MIRType::Int64);
+ V128 zero;
+ auto* res0 = constant(zero);
+ auto* res1 =
+ replaceLaneSimd128(res0, shifted0, 0, SimdOp::I64x2ReplaceLane);
+ auto* ins = replaceLaneSimd128(res1, shifted1, 1, SimdOp::I64x2ReplaceLane);
+ return ins;
+ }
+
+ // (v128,scalar,imm) -> v128
+ MDefinition* replaceLaneSimd128(MDefinition* lhs, MDefinition* rhs,
+ uint32_t laneIndex, SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(lhs->type() == MIRType::Simd128);
+
+ auto* ins = MWasmReplaceLaneSimd128::New(alloc(), lhs, rhs, laneIndex, op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (scalar) -> v128 effect-free unary operations
+ MDefinition* scalarToSimd128(MDefinition* src, SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ auto* ins = MWasmScalarToSimd128::New(alloc(), src, op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (v128) -> v128 effect-free unary operations
+ MDefinition* unarySimd128(MDefinition* src, SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(src->type() == MIRType::Simd128);
+ auto* ins = MWasmUnarySimd128::New(alloc(), src, op);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (v128, imm) -> scalar effect-free unary operations
+ MDefinition* reduceSimd128(MDefinition* src, SimdOp op, ValType outType,
+ uint32_t imm = 0) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(src->type() == MIRType::Simd128);
+ auto* ins =
+ MWasmReduceSimd128::New(alloc(), src, op, ToMIRType(outType), imm);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (v128, v128, v128) -> v128 effect-free operations
+ MDefinition* bitselectSimd128(MDefinition* v1, MDefinition* v2,
+ MDefinition* control) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(v1->type() == MIRType::Simd128);
+ MOZ_ASSERT(v2->type() == MIRType::Simd128);
+ MOZ_ASSERT(control->type() == MIRType::Simd128);
+ auto* ins = MWasmBitselectSimd128::New(alloc(), v1, v2, control);
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ // (v128, v128, imm_v128) -> v128 effect-free operations
+ MDefinition* shuffleSimd128(MDefinition* v1, MDefinition* v2, V128 control) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(v1->type() == MIRType::Simd128);
+ MOZ_ASSERT(v2->type() == MIRType::Simd128);
+ auto* ins = MWasmShuffleSimd128::New(
+ alloc(), v1, v2,
+ SimdConstant::CreateX16(reinterpret_cast<int8_t*>(control.bytes)));
+ curBlock_->add(ins);
+ return ins;
+ }
+
+ MDefinition* loadSplatSimd128(Scalar::Type viewType,
+ const LinearMemoryAddress<MDefinition*>& addr,
+ wasm::SimdOp splatOp) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ bytecodeIfNotAsmJS());
+
+ // Generate better code (on x86)
+ if (viewType == Scalar::Float64) {
+ access.setSplatSimd128Load();
+ return load(addr.base, &access, ValType::V128);
+ }
+
+ ValType resultType = ValType::I32;
+ if (viewType == Scalar::Float32) {
+ resultType = ValType::F32;
+ splatOp = wasm::SimdOp::F32x4Splat;
+ }
+ auto* scalar = load(addr.base, &access, resultType);
+ if (!inDeadCode() && !scalar) {
+ return nullptr;
+ }
+ return scalarToSimd128(scalar, splatOp);
+ }
+
+ MDefinition* loadExtendSimd128(const LinearMemoryAddress<MDefinition*>& addr,
+ wasm::SimdOp op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ // Generate better code (on x86) by loading as a double with an
+ // operation that sign extends directly.
+ MemoryAccessDesc access(Scalar::Float64, addr.align, addr.offset,
+ bytecodeIfNotAsmJS());
+ access.setWidenSimd128Load(op);
+ return load(addr.base, &access, ValType::V128);
+ }
+
+ MDefinition* loadZeroSimd128(Scalar::Type viewType, size_t numBytes,
+ const LinearMemoryAddress<MDefinition*>& addr) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ bytecodeIfNotAsmJS());
+ access.setZeroExtendSimd128Load();
+ return load(addr.base, &access, ValType::V128);
+ }
+#endif // ENABLE_WASM_SIMD
+
+ private:
+ MWasmLoadTls* maybeLoadMemoryBase() {
+ MWasmLoadTls* load = nullptr;
+#ifdef JS_CODEGEN_X86
+ AliasSet aliases = moduleEnv_.maxMemoryLength.isSome()
+ ? AliasSet::None()
+ : AliasSet::Load(AliasSet::WasmHeapMeta);
+ load = MWasmLoadTls::New(alloc(), tlsPointer_,
+ offsetof(wasm::TlsData, memoryBase),
+ MIRType::Pointer, aliases);
+ curBlock_->add(load);
+#endif
+ return load;
+ }
+
+ MWasmLoadTls* maybeLoadBoundsCheckLimit32() {
+ if (moduleEnv_.hugeMemoryEnabled()) {
+ return nullptr;
+ }
+ AliasSet aliases = moduleEnv_.maxMemoryLength.isSome()
+ ? AliasSet::None()
+ : AliasSet::Load(AliasSet::WasmHeapMeta);
+ auto load = MWasmLoadTls::New(alloc(), tlsPointer_,
+ offsetof(wasm::TlsData, boundsCheckLimit32),
+ MIRType::Int32, aliases);
+ curBlock_->add(load);
+ return load;
+ }
+
+ public:
+ MWasmHeapBase* memoryBase() {
+ MWasmHeapBase* base = nullptr;
+ AliasSet aliases = moduleEnv_.maxMemoryLength.isSome()
+ ? AliasSet::None()
+ : AliasSet::Load(AliasSet::WasmHeapMeta);
+ base = MWasmHeapBase::New(alloc(), tlsPointer_, aliases);
+ curBlock_->add(base);
+ return base;
+ }
+
+ private:
+ // Only sets *mustAdd if it also returns true.
+ bool needAlignmentCheck(MemoryAccessDesc* access, MDefinition* base,
+ bool* mustAdd) {
+ MOZ_ASSERT(!*mustAdd);
+
+ // asm.js accesses are always aligned and need no checks.
+ if (moduleEnv_.isAsmJS() || !access->isAtomic()) {
+ return false;
+ }
+
+ if (base->isConstant()) {
+ int32_t ptr = base->toConstant()->toInt32();
+ // OK to wrap around the address computation here.
+ if (((ptr + access->offset()) & (access->byteSize() - 1)) == 0) {
+ return false;
+ }
+ }
+
+ *mustAdd = (access->offset() & (access->byteSize() - 1)) != 0;
+ return true;
+ }
+
+ void checkOffsetAndAlignmentAndBounds(MemoryAccessDesc* access,
+ MDefinition** base) {
+ MOZ_ASSERT(!inDeadCode());
+
+ uint32_t offsetGuardLimit =
+ GetMaxOffsetGuardLimit(moduleEnv_.hugeMemoryEnabled());
+
+ // Fold a constant base into the offset and make the base 0, provided the
+ // offset stays below the guard limit. The reason for folding the base into
+ // the offset rather than vice versa is that a small offset can be ignored
+ // by both explicit bounds checking and bounds check elimination.
+ if ((*base)->isConstant()) {
+ uint32_t basePtr = (*base)->toConstant()->toInt32();
+ uint32_t offset = access->offset();
+
+ if (offset < offsetGuardLimit && basePtr < offsetGuardLimit - offset) {
+ auto* ins = MConstant::New(alloc(), Int32Value(0), MIRType::Int32);
+ curBlock_->add(ins);
+ *base = ins;
+ access->setOffset(access->offset() + basePtr);
+ }
+ }
+
+ bool mustAdd = false;
+ bool alignmentCheck = needAlignmentCheck(access, *base, &mustAdd);
+
+ // If the offset is bigger than the guard region, a separate instruction is
+ // necessary to add the offset to the base and check for overflow.
+ //
+ // Also add the offset if we have a Wasm atomic access that needs alignment
+ // checking and the offset affects alignment.
+ if (access->offset() >= offsetGuardLimit || mustAdd ||
+ !JitOptions.wasmFoldOffsets) {
+ *base = computeEffectiveAddress(*base, access);
+ }
+
+ if (alignmentCheck) {
+ curBlock_->add(MWasmAlignmentCheck::New(
+ alloc(), *base, access->byteSize(), bytecodeOffset()));
+ }
+
+ MWasmLoadTls* boundsCheckLimit32 = maybeLoadBoundsCheckLimit32();
+ if (boundsCheckLimit32) {
+ auto* ins = MWasmBoundsCheck::New(alloc(), *base, boundsCheckLimit32,
+ bytecodeOffset());
+ curBlock_->add(ins);
+ if (JitOptions.spectreIndexMasking) {
+ *base = ins;
+ }
+ }
+ }
+
+ bool isSmallerAccessForI64(ValType result, const MemoryAccessDesc* access) {
+ if (result == ValType::I64 && access->byteSize() <= 4) {
+ // These smaller accesses should all be zero-extending.
+ MOZ_ASSERT(!isSignedIntType(access->type()));
+ return true;
+ }
+ return false;
+ }
+
+ public:
+ MDefinition* computeEffectiveAddress(MDefinition* base,
+ MemoryAccessDesc* access) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ if (!access->offset()) {
+ return base;
+ }
+ auto* ins =
+ MWasmAddOffset::New(alloc(), base, access->offset(), bytecodeOffset());
+ curBlock_->add(ins);
+ access->clearOffset();
+ return ins;
+ }
+
+ MDefinition* load(MDefinition* base, MemoryAccessDesc* access,
+ ValType result) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MWasmLoadTls* memoryBase = maybeLoadMemoryBase();
+ MInstruction* load = nullptr;
+ if (moduleEnv_.isAsmJS()) {
+ MOZ_ASSERT(access->offset() == 0);
+ MWasmLoadTls* boundsCheckLimit32 = maybeLoadBoundsCheckLimit32();
+ load = MAsmJSLoadHeap::New(alloc(), memoryBase, base, boundsCheckLimit32,
+ access->type());
+ } else {
+ checkOffsetAndAlignmentAndBounds(access, &base);
+ load =
+ MWasmLoad::New(alloc(), memoryBase, base, *access, ToMIRType(result));
+ }
+ if (!load) {
+ return nullptr;
+ }
+ curBlock_->add(load);
+ return load;
+ }
+
+ void store(MDefinition* base, MemoryAccessDesc* access, MDefinition* v) {
+ if (inDeadCode()) {
+ return;
+ }
+
+ MWasmLoadTls* memoryBase = maybeLoadMemoryBase();
+ MInstruction* store = nullptr;
+ if (moduleEnv_.isAsmJS()) {
+ MOZ_ASSERT(access->offset() == 0);
+ MWasmLoadTls* boundsCheckLimit32 = maybeLoadBoundsCheckLimit32();
+ store = MAsmJSStoreHeap::New(alloc(), memoryBase, base,
+ boundsCheckLimit32, access->type(), v);
+ } else {
+ checkOffsetAndAlignmentAndBounds(access, &base);
+ store = MWasmStore::New(alloc(), memoryBase, base, *access, v);
+ }
+ if (!store) {
+ return;
+ }
+ curBlock_->add(store);
+ }
+
+ MDefinition* atomicCompareExchangeHeap(MDefinition* base,
+ MemoryAccessDesc* access,
+ ValType result, MDefinition* oldv,
+ MDefinition* newv) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ checkOffsetAndAlignmentAndBounds(access, &base);
+
+ if (isSmallerAccessForI64(result, access)) {
+ auto* cvtOldv =
+ MWrapInt64ToInt32::New(alloc(), oldv, /*bottomHalf=*/true);
+ curBlock_->add(cvtOldv);
+ oldv = cvtOldv;
+
+ auto* cvtNewv =
+ MWrapInt64ToInt32::New(alloc(), newv, /*bottomHalf=*/true);
+ curBlock_->add(cvtNewv);
+ newv = cvtNewv;
+ }
+
+ MWasmLoadTls* memoryBase = maybeLoadMemoryBase();
+ MInstruction* cas =
+ MWasmCompareExchangeHeap::New(alloc(), bytecodeOffset(), memoryBase,
+ base, *access, oldv, newv, tlsPointer_);
+ if (!cas) {
+ return nullptr;
+ }
+ curBlock_->add(cas);
+
+ if (isSmallerAccessForI64(result, access)) {
+ cas = MExtendInt32ToInt64::New(alloc(), cas, true);
+ curBlock_->add(cas);
+ }
+
+ return cas;
+ }
+
+ MDefinition* atomicExchangeHeap(MDefinition* base, MemoryAccessDesc* access,
+ ValType result, MDefinition* value) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ checkOffsetAndAlignmentAndBounds(access, &base);
+
+ if (isSmallerAccessForI64(result, access)) {
+ auto* cvtValue =
+ MWrapInt64ToInt32::New(alloc(), value, /*bottomHalf=*/true);
+ curBlock_->add(cvtValue);
+ value = cvtValue;
+ }
+
+ MWasmLoadTls* memoryBase = maybeLoadMemoryBase();
+ MInstruction* xchg =
+ MWasmAtomicExchangeHeap::New(alloc(), bytecodeOffset(), memoryBase,
+ base, *access, value, tlsPointer_);
+ if (!xchg) {
+ return nullptr;
+ }
+ curBlock_->add(xchg);
+
+ if (isSmallerAccessForI64(result, access)) {
+ xchg = MExtendInt32ToInt64::New(alloc(), xchg, true);
+ curBlock_->add(xchg);
+ }
+
+ return xchg;
+ }
+
+ MDefinition* atomicBinopHeap(AtomicOp op, MDefinition* base,
+ MemoryAccessDesc* access, ValType result,
+ MDefinition* value) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ checkOffsetAndAlignmentAndBounds(access, &base);
+
+ if (isSmallerAccessForI64(result, access)) {
+ auto* cvtValue =
+ MWrapInt64ToInt32::New(alloc(), value, /*bottomHalf=*/true);
+ curBlock_->add(cvtValue);
+ value = cvtValue;
+ }
+
+ MWasmLoadTls* memoryBase = maybeLoadMemoryBase();
+ MInstruction* binop =
+ MWasmAtomicBinopHeap::New(alloc(), bytecodeOffset(), op, memoryBase,
+ base, *access, value, tlsPointer_);
+ if (!binop) {
+ return nullptr;
+ }
+ curBlock_->add(binop);
+
+ if (isSmallerAccessForI64(result, access)) {
+ binop = MExtendInt32ToInt64::New(alloc(), binop, true);
+ curBlock_->add(binop);
+ }
+
+ return binop;
+ }
+
+ MDefinition* loadGlobalVar(unsigned globalDataOffset, bool isConst,
+ bool isIndirect, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MInstruction* load;
+ if (isIndirect) {
+ // Pull a pointer to the value out of TlsData::globalArea, then
+ // load from that pointer. Note that the pointer is immutable
+ // even though the value it points at may change, hence the use of
+ // |true| for the first node's |isConst| value, irrespective of
+ // the |isConst| formal parameter to this method. The latter
+ // applies to the denoted value as a whole.
+ auto* cellPtr =
+ MWasmLoadGlobalVar::New(alloc(), MIRType::Pointer, globalDataOffset,
+ /*isConst=*/true, tlsPointer_);
+ curBlock_->add(cellPtr);
+ load = MWasmLoadGlobalCell::New(alloc(), type, cellPtr);
+ } else {
+ // Pull the value directly out of TlsData::globalArea.
+ load = MWasmLoadGlobalVar::New(alloc(), type, globalDataOffset, isConst,
+ tlsPointer_);
+ }
+ curBlock_->add(load);
+ return load;
+ }
+
+ MInstruction* storeGlobalVar(uint32_t globalDataOffset, bool isIndirect,
+ MDefinition* v) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+
+ MInstruction* store;
+ MInstruction* valueAddr = nullptr;
+ if (isIndirect) {
+ // Pull a pointer to the value out of TlsData::globalArea, then
+ // store through that pointer.
+ auto* cellPtr =
+ MWasmLoadGlobalVar::New(alloc(), MIRType::Pointer, globalDataOffset,
+ /*isConst=*/true, tlsPointer_);
+ curBlock_->add(cellPtr);
+ if (v->type() == MIRType::RefOrNull) {
+ valueAddr = cellPtr;
+ store = MWasmStoreRef::New(alloc(), tlsPointer_, valueAddr, v,
+ AliasSet::WasmGlobalCell);
+ } else {
+ store = MWasmStoreGlobalCell::New(alloc(), v, cellPtr);
+ }
+ } else {
+ // Store the value directly in TlsData::globalArea.
+ if (v->type() == MIRType::RefOrNull) {
+ valueAddr = MWasmDerivedPointer::New(
+ alloc(), tlsPointer_,
+ offsetof(wasm::TlsData, globalArea) + globalDataOffset);
+ curBlock_->add(valueAddr);
+ store = MWasmStoreRef::New(alloc(), tlsPointer_, valueAddr, v,
+ AliasSet::WasmGlobalVar);
+ } else {
+ store =
+ MWasmStoreGlobalVar::New(alloc(), globalDataOffset, v, tlsPointer_);
+ }
+ }
+ curBlock_->add(store);
+
+ return valueAddr;
+ }
+
+ void addInterruptCheck() {
+ if (inDeadCode()) {
+ return;
+ }
+ curBlock_->add(
+ MWasmInterruptCheck::New(alloc(), tlsPointer_, bytecodeOffset()));
+ }
+
+ /***************************************************************** Calls */
+
+ // The IonMonkey backend maintains a single stack offset (from the stack
+ // pointer to the base of the frame) by adding the total amount of spill
+ // space required plus the maximum stack required for argument passing.
+ // Since we do not use IonMonkey's MPrepareCall/MPassArg/MCall, we must
+ // manually accumulate, for the entire function, the maximum required stack
+ // space for argument passing. (This is passed to the CodeGenerator via
+ // MIRGenerator::maxWasmStackArgBytes.) This is just be the maximum of the
+ // stack space required for each individual call (as determined by the call
+ // ABI).
+
+ // Operations that modify a CallCompileState.
+
+ bool passInstance(MIRType instanceType, CallCompileState* args) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ // Should only pass an instance once. And it must be a non-GC pointer.
+ MOZ_ASSERT(args->instanceArg_ == ABIArg());
+ MOZ_ASSERT(instanceType == MIRType::Pointer);
+ args->instanceArg_ = args->abi_.next(MIRType::Pointer);
+ return true;
+ }
+
+ // Do not call this directly. Call one of the passArg() variants instead.
+ bool passArgWorker(MDefinition* argDef, MIRType type,
+ CallCompileState* call) {
+ ABIArg arg = call->abi_.next(type);
+ switch (arg.kind()) {
+#ifdef JS_CODEGEN_REGISTER_PAIR
+ case ABIArg::GPR_PAIR: {
+ auto mirLow =
+ MWrapInt64ToInt32::New(alloc(), argDef, /* bottomHalf = */ true);
+ curBlock_->add(mirLow);
+ auto mirHigh =
+ MWrapInt64ToInt32::New(alloc(), argDef, /* bottomHalf = */ false);
+ curBlock_->add(mirHigh);
+ return call->regArgs_.append(
+ MWasmCall::Arg(AnyRegister(arg.gpr64().low), mirLow)) &&
+ call->regArgs_.append(
+ MWasmCall::Arg(AnyRegister(arg.gpr64().high), mirHigh));
+ }
+#endif
+ case ABIArg::GPR:
+ case ABIArg::FPU:
+ return call->regArgs_.append(MWasmCall::Arg(arg.reg(), argDef));
+ case ABIArg::Stack: {
+ auto* mir =
+ MWasmStackArg::New(alloc(), arg.offsetFromArgBase(), argDef);
+ curBlock_->add(mir);
+ return true;
+ }
+ case ABIArg::Uninitialized:
+ MOZ_ASSERT_UNREACHABLE("Uninitialized ABIArg kind");
+ }
+ MOZ_CRASH("Unknown ABIArg kind.");
+ }
+
+ bool passArg(MDefinition* argDef, MIRType type, CallCompileState* call) {
+ if (inDeadCode()) {
+ return true;
+ }
+ return passArgWorker(argDef, type, call);
+ }
+
+ bool passArg(MDefinition* argDef, ValType type, CallCompileState* call) {
+ if (inDeadCode()) {
+ return true;
+ }
+ return passArgWorker(argDef, ToMIRType(type), call);
+ }
+
+ // If the call returns results on the stack, prepare a stack area to receive
+ // them, and pass the address of the stack area to the callee as an additional
+ // argument.
+ bool passStackResultAreaCallArg(const ResultType& resultType,
+ CallCompileState* call) {
+ if (inDeadCode()) {
+ return true;
+ }
+ ABIResultIter iter(resultType);
+ while (!iter.done() && iter.cur().inRegister()) {
+ iter.next();
+ }
+ if (iter.done()) {
+ // No stack results.
+ return true;
+ }
+
+ auto* stackResultArea = MWasmStackResultArea::New(alloc());
+ if (!stackResultArea) {
+ return false;
+ }
+ if (!stackResultArea->init(alloc(), iter.remaining())) {
+ return false;
+ }
+ for (uint32_t base = iter.index(); !iter.done(); iter.next()) {
+ MWasmStackResultArea::StackResult loc(iter.cur().stackOffset(),
+ ToMIRType(iter.cur().type()));
+ stackResultArea->initResult(iter.index() - base, loc);
+ }
+ curBlock_->add(stackResultArea);
+ if (!passArg(stackResultArea, MIRType::Pointer, call)) {
+ return false;
+ }
+ call->stackResultArea_ = stackResultArea;
+ return true;
+ }
+
+ bool finishCall(CallCompileState* call) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ if (!call->regArgs_.append(
+ MWasmCall::Arg(AnyRegister(WasmTlsReg), tlsPointer_))) {
+ return false;
+ }
+
+ uint32_t stackBytes = call->abi_.stackBytesConsumedSoFar();
+
+ maxStackArgBytes_ = std::max(maxStackArgBytes_, stackBytes);
+ return true;
+ }
+
+ // Wrappers for creating various kinds of calls.
+
+ bool collectUnaryCallResult(MIRType type, MDefinition** result) {
+ MInstruction* def;
+ switch (type) {
+ case MIRType::Int32:
+ def = MWasmRegisterResult::New(alloc(), MIRType::Int32, ReturnReg);
+ break;
+ case MIRType::Int64:
+ def = MWasmRegister64Result::New(alloc(), ReturnReg64);
+ break;
+ case MIRType::Float32:
+ def = MWasmFloatRegisterResult::New(alloc(), type, ReturnFloat32Reg);
+ break;
+ case MIRType::Double:
+ def = MWasmFloatRegisterResult::New(alloc(), type, ReturnDoubleReg);
+ break;
+#ifdef ENABLE_WASM_SIMD
+ case MIRType::Simd128:
+ def = MWasmFloatRegisterResult::New(alloc(), type, ReturnSimd128Reg);
+ break;
+#endif
+ case MIRType::RefOrNull:
+ def = MWasmRegisterResult::New(alloc(), MIRType::RefOrNull, ReturnReg);
+ break;
+ default:
+ MOZ_CRASH("unexpected MIRType result for builtin call");
+ }
+
+ if (!def) {
+ return false;
+ }
+
+ curBlock_->add(def);
+ *result = def;
+
+ return true;
+ }
+
+ bool collectCallResults(const ResultType& type,
+ MWasmStackResultArea* stackResultArea,
+ DefVector* results) {
+ if (!results->reserve(type.length())) {
+ return false;
+ }
+
+ // The result iterator goes in the order in which results would be popped
+ // off; we want the order in which they would be pushed.
+ ABIResultIter iter(type);
+ uint32_t stackResultCount = 0;
+ while (!iter.done()) {
+ if (iter.cur().onStack()) {
+ stackResultCount++;
+ }
+ iter.next();
+ }
+
+ for (iter.switchToPrev(); !iter.done(); iter.prev()) {
+ if (!mirGen().ensureBallast()) {
+ return false;
+ }
+ const ABIResult& result = iter.cur();
+ MInstruction* def;
+ if (result.inRegister()) {
+ switch (result.type().kind()) {
+ case wasm::ValType::I32:
+ def =
+ MWasmRegisterResult::New(alloc(), MIRType::Int32, result.gpr());
+ break;
+ case wasm::ValType::I64:
+ def = MWasmRegister64Result::New(alloc(), result.gpr64());
+ break;
+ case wasm::ValType::F32:
+ def = MWasmFloatRegisterResult::New(alloc(), MIRType::Float32,
+ result.fpr());
+ break;
+ case wasm::ValType::F64:
+ def = MWasmFloatRegisterResult::New(alloc(), MIRType::Double,
+ result.fpr());
+ break;
+ case wasm::ValType::Ref:
+ def = MWasmRegisterResult::New(alloc(), MIRType::RefOrNull,
+ result.gpr());
+ break;
+ case wasm::ValType::V128:
+#ifdef ENABLE_WASM_SIMD
+ def = MWasmFloatRegisterResult::New(alloc(), MIRType::Simd128,
+ result.fpr());
+#else
+ return this->iter().fail("Ion has no SIMD support yet");
+#endif
+ }
+ } else {
+ MOZ_ASSERT(stackResultArea);
+ MOZ_ASSERT(stackResultCount);
+ uint32_t idx = --stackResultCount;
+ def = MWasmStackResult::New(alloc(), stackResultArea, idx);
+ }
+
+ if (!def) {
+ return false;
+ }
+ curBlock_->add(def);
+ results->infallibleAppend(def);
+ }
+
+ MOZ_ASSERT(results->length() == type.length());
+
+ return true;
+ }
+
+ bool callDirect(const FuncType& funcType, uint32_t funcIndex,
+ uint32_t lineOrBytecode, const CallCompileState& call,
+ DefVector* results) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ CallSiteDesc desc(lineOrBytecode, CallSiteDesc::Func);
+ ResultType resultType = ResultType::Vector(funcType.results());
+ auto callee = CalleeDesc::function(funcIndex);
+ ArgTypeVector args(funcType);
+ auto* ins = MWasmCall::New(alloc(), desc, callee, call.regArgs_,
+ StackArgAreaSizeUnaligned(args));
+ if (!ins) {
+ return false;
+ }
+
+ curBlock_->add(ins);
+
+ return collectCallResults(resultType, call.stackResultArea_, results);
+ }
+
+ bool callIndirect(uint32_t funcTypeIndex, uint32_t tableIndex,
+ MDefinition* index, uint32_t lineOrBytecode,
+ const CallCompileState& call, DefVector* results) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ const FuncType& funcType = moduleEnv_.types[funcTypeIndex].funcType();
+ const TypeIdDesc& funcTypeId = moduleEnv_.typeIds[funcTypeIndex];
+
+ CalleeDesc callee;
+ if (moduleEnv_.isAsmJS()) {
+ MOZ_ASSERT(tableIndex == 0);
+ MOZ_ASSERT(funcTypeId.kind() == TypeIdDescKind::None);
+ const TableDesc& table =
+ moduleEnv_.tables[moduleEnv_.asmJSSigToTableIndex[funcTypeIndex]];
+ MOZ_ASSERT(IsPowerOfTwo(table.initialLength));
+
+ MConstant* mask =
+ MConstant::New(alloc(), Int32Value(table.initialLength - 1));
+ curBlock_->add(mask);
+ MBitAnd* maskedIndex = MBitAnd::New(alloc(), index, mask, MIRType::Int32);
+ curBlock_->add(maskedIndex);
+
+ index = maskedIndex;
+ callee = CalleeDesc::asmJSTable(table);
+ } else {
+ MOZ_ASSERT(funcTypeId.kind() != TypeIdDescKind::None);
+ const TableDesc& table = moduleEnv_.tables[tableIndex];
+ callee = CalleeDesc::wasmTable(table, funcTypeId);
+ }
+
+ CallSiteDesc desc(lineOrBytecode, CallSiteDesc::Dynamic);
+ ArgTypeVector args(funcType);
+ ResultType resultType = ResultType::Vector(funcType.results());
+ auto* ins = MWasmCall::New(alloc(), desc, callee, call.regArgs_,
+ StackArgAreaSizeUnaligned(args), index);
+ if (!ins) {
+ return false;
+ }
+
+ curBlock_->add(ins);
+
+ return collectCallResults(resultType, call.stackResultArea_, results);
+ }
+
+ bool callImport(unsigned globalDataOffset, uint32_t lineOrBytecode,
+ const CallCompileState& call, const FuncType& funcType,
+ DefVector* results) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ CallSiteDesc desc(lineOrBytecode, CallSiteDesc::Dynamic);
+ auto callee = CalleeDesc::import(globalDataOffset);
+ ArgTypeVector args(funcType);
+ ResultType resultType = ResultType::Vector(funcType.results());
+ auto* ins = MWasmCall::New(alloc(), desc, callee, call.regArgs_,
+ StackArgAreaSizeUnaligned(args));
+ if (!ins) {
+ return false;
+ }
+
+ curBlock_->add(ins);
+
+ return collectCallResults(resultType, call.stackResultArea_, results);
+ }
+
+ bool builtinCall(const SymbolicAddressSignature& builtin,
+ uint32_t lineOrBytecode, const CallCompileState& call,
+ MDefinition** def) {
+ if (inDeadCode()) {
+ *def = nullptr;
+ return true;
+ }
+
+ MOZ_ASSERT(builtin.failureMode == FailureMode::Infallible);
+
+ CallSiteDesc desc(lineOrBytecode, CallSiteDesc::Symbolic);
+ auto callee = CalleeDesc::builtin(builtin.identity);
+ auto* ins = MWasmCall::New(alloc(), desc, callee, call.regArgs_,
+ StackArgAreaSizeUnaligned(builtin));
+ if (!ins) {
+ return false;
+ }
+
+ curBlock_->add(ins);
+
+ return collectUnaryCallResult(builtin.retType, def);
+ }
+
+ bool builtinInstanceMethodCall(const SymbolicAddressSignature& builtin,
+ uint32_t lineOrBytecode,
+ const CallCompileState& call,
+ MDefinition** def = nullptr) {
+ MOZ_ASSERT_IF(!def, builtin.retType == MIRType::None);
+ if (inDeadCode()) {
+ if (def) {
+ *def = nullptr;
+ }
+ return true;
+ }
+
+ CallSiteDesc desc(lineOrBytecode, CallSiteDesc::Symbolic);
+ auto* ins = MWasmCall::NewBuiltinInstanceMethodCall(
+ alloc(), desc, builtin.identity, builtin.failureMode, call.instanceArg_,
+ call.regArgs_, StackArgAreaSizeUnaligned(builtin));
+ if (!ins) {
+ return false;
+ }
+
+ curBlock_->add(ins);
+
+ return def ? collectUnaryCallResult(builtin.retType, def) : true;
+ }
+
+ /*********************************************** Control flow generation */
+
+ inline bool inDeadCode() const { return curBlock_ == nullptr; }
+
+ bool returnValues(const DefVector& values) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ if (values.empty()) {
+ curBlock_->end(MWasmReturnVoid::New(alloc(), tlsPointer_));
+ } else {
+ ResultType resultType = ResultType::Vector(funcType().results());
+ ABIResultIter iter(resultType);
+ // Switch to iterate in FIFO order instead of the default LIFO.
+ while (!iter.done()) {
+ iter.next();
+ }
+ iter.switchToPrev();
+ for (uint32_t i = 0; !iter.done(); iter.prev(), i++) {
+ if (!mirGen().ensureBallast()) {
+ return false;
+ }
+ const ABIResult& result = iter.cur();
+ if (result.onStack()) {
+ MOZ_ASSERT(iter.remaining() > 1);
+ if (result.type().isReference()) {
+ auto* loc = MWasmDerivedPointer::New(alloc(), stackResultPointer_,
+ result.stackOffset());
+ curBlock_->add(loc);
+ auto* store =
+ MWasmStoreRef::New(alloc(), tlsPointer_, loc, values[i],
+ AliasSet::WasmStackResult);
+ curBlock_->add(store);
+ } else {
+ auto* store = MWasmStoreStackResult::New(
+ alloc(), stackResultPointer_, result.stackOffset(), values[i]);
+ curBlock_->add(store);
+ }
+ } else {
+ MOZ_ASSERT(iter.remaining() == 1);
+ MOZ_ASSERT(i + 1 == values.length());
+ curBlock_->end(MWasmReturn::New(alloc(), values[i], tlsPointer_));
+ }
+ }
+ }
+ curBlock_ = nullptr;
+ return true;
+ }
+
+ void unreachableTrap() {
+ if (inDeadCode()) {
+ return;
+ }
+
+ auto* ins =
+ MWasmTrap::New(alloc(), wasm::Trap::Unreachable, bytecodeOffset());
+ curBlock_->end(ins);
+ curBlock_ = nullptr;
+ }
+
+ private:
+ static uint32_t numPushed(MBasicBlock* block) {
+ return block->stackDepth() - block->info().firstStackSlot();
+ }
+
+ public:
+ [[nodiscard]] bool pushDefs(const DefVector& defs) {
+ if (inDeadCode()) {
+ return true;
+ }
+ MOZ_ASSERT(numPushed(curBlock_) == 0);
+ if (!curBlock_->ensureHasSlots(defs.length())) {
+ return false;
+ }
+ for (MDefinition* def : defs) {
+ MOZ_ASSERT(def->type() != MIRType::None);
+ curBlock_->push(def);
+ }
+ return true;
+ }
+
+ bool popPushedDefs(DefVector* defs) {
+ size_t n = numPushed(curBlock_);
+ if (!defs->resizeUninitialized(n)) {
+ return false;
+ }
+ for (; n > 0; n--) {
+ MDefinition* def = curBlock_->pop();
+ MOZ_ASSERT(def->type() != MIRType::Value);
+ (*defs)[n - 1] = def;
+ }
+ return true;
+ }
+
+ private:
+ bool addJoinPredecessor(const DefVector& defs, MBasicBlock** joinPred) {
+ *joinPred = curBlock_;
+ if (inDeadCode()) {
+ return true;
+ }
+ return pushDefs(defs);
+ }
+
+ public:
+ bool branchAndStartThen(MDefinition* cond, MBasicBlock** elseBlock) {
+ if (inDeadCode()) {
+ *elseBlock = nullptr;
+ } else {
+ MBasicBlock* thenBlock;
+ if (!newBlock(curBlock_, &thenBlock)) {
+ return false;
+ }
+ if (!newBlock(curBlock_, elseBlock)) {
+ return false;
+ }
+
+ curBlock_->end(MTest::New(alloc(), cond, thenBlock, *elseBlock));
+
+ curBlock_ = thenBlock;
+ mirGraph().moveBlockToEnd(curBlock_);
+ }
+
+ return startBlock();
+ }
+
+ bool switchToElse(MBasicBlock* elseBlock, MBasicBlock** thenJoinPred) {
+ DefVector values;
+ if (!finishBlock(&values)) {
+ return false;
+ }
+
+ if (!elseBlock) {
+ *thenJoinPred = nullptr;
+ } else {
+ if (!addJoinPredecessor(values, thenJoinPred)) {
+ return false;
+ }
+
+ curBlock_ = elseBlock;
+ mirGraph().moveBlockToEnd(curBlock_);
+ }
+
+ return startBlock();
+ }
+
+ bool joinIfElse(MBasicBlock* thenJoinPred, DefVector* defs) {
+ DefVector values;
+ if (!finishBlock(&values)) {
+ return false;
+ }
+
+ if (!thenJoinPred && inDeadCode()) {
+ return true;
+ }
+
+ MBasicBlock* elseJoinPred;
+ if (!addJoinPredecessor(values, &elseJoinPred)) {
+ return false;
+ }
+
+ mozilla::Array<MBasicBlock*, 2> blocks;
+ size_t numJoinPreds = 0;
+ if (thenJoinPred) {
+ blocks[numJoinPreds++] = thenJoinPred;
+ }
+ if (elseJoinPred) {
+ blocks[numJoinPreds++] = elseJoinPred;
+ }
+
+ if (numJoinPreds == 0) {
+ return true;
+ }
+
+ MBasicBlock* join;
+ if (!goToNewBlock(blocks[0], &join)) {
+ return false;
+ }
+ for (size_t i = 1; i < numJoinPreds; ++i) {
+ if (!goToExistingBlock(blocks[i], join)) {
+ return false;
+ }
+ }
+
+ curBlock_ = join;
+ return popPushedDefs(defs);
+ }
+
+ bool startBlock() {
+ MOZ_ASSERT_IF(blockDepth_ < blockPatches_.length(),
+ blockPatches_[blockDepth_].empty());
+ blockDepth_++;
+ return true;
+ }
+
+ bool finishBlock(DefVector* defs) {
+ MOZ_ASSERT(blockDepth_);
+ uint32_t topLabel = --blockDepth_;
+ return bindBranches(topLabel, defs);
+ }
+
+ bool startLoop(MBasicBlock** loopHeader, size_t paramCount) {
+ *loopHeader = nullptr;
+
+ blockDepth_++;
+ loopDepth_++;
+
+ if (inDeadCode()) {
+ return true;
+ }
+
+ // Create the loop header.
+ MOZ_ASSERT(curBlock_->loopDepth() == loopDepth_ - 1);
+ *loopHeader = MBasicBlock::New(mirGraph(), info(), curBlock_,
+ MBasicBlock::PENDING_LOOP_HEADER);
+ if (!*loopHeader) {
+ return false;
+ }
+
+ (*loopHeader)->setLoopDepth(loopDepth_);
+ mirGraph().addBlock(*loopHeader);
+ curBlock_->end(MGoto::New(alloc(), *loopHeader));
+
+ DefVector loopParams;
+ if (!iter().getResults(paramCount, &loopParams)) {
+ return false;
+ }
+ for (size_t i = 0; i < paramCount; i++) {
+ MPhi* phi = MPhi::New(alloc(), loopParams[i]->type());
+ if (!phi) {
+ return false;
+ }
+ if (!phi->reserveLength(2)) {
+ return false;
+ }
+ (*loopHeader)->addPhi(phi);
+ phi->addInput(loopParams[i]);
+ loopParams[i] = phi;
+ }
+ iter().setResults(paramCount, loopParams);
+
+ MBasicBlock* body;
+ if (!goToNewBlock(*loopHeader, &body)) {
+ return false;
+ }
+ curBlock_ = body;
+ return true;
+ }
+
+ private:
+ void fixupRedundantPhis(MBasicBlock* b) {
+ for (size_t i = 0, depth = b->stackDepth(); i < depth; i++) {
+ MDefinition* def = b->getSlot(i);
+ if (def->isUnused()) {
+ b->setSlot(i, def->toPhi()->getOperand(0));
+ }
+ }
+ }
+
+ bool setLoopBackedge(MBasicBlock* loopEntry, MBasicBlock* loopBody,
+ MBasicBlock* backedge, size_t paramCount) {
+ if (!loopEntry->setBackedgeWasm(backedge, paramCount)) {
+ return false;
+ }
+
+ // Flag all redundant phis as unused.
+ for (MPhiIterator phi = loopEntry->phisBegin(); phi != loopEntry->phisEnd();
+ phi++) {
+ MOZ_ASSERT(phi->numOperands() == 2);
+ if (phi->getOperand(0) == phi->getOperand(1)) {
+ phi->setUnused();
+ }
+ }
+
+ // Fix up phis stored in the slots Vector of pending blocks.
+ for (ControlFlowPatchVector& patches : blockPatches_) {
+ for (ControlFlowPatch& p : patches) {
+ MBasicBlock* block = p.ins->block();
+ if (block->loopDepth() >= loopEntry->loopDepth()) {
+ fixupRedundantPhis(block);
+ }
+ }
+ }
+
+ // The loop body, if any, might be referencing recycled phis too.
+ if (loopBody) {
+ fixupRedundantPhis(loopBody);
+ }
+
+ // Discard redundant phis and add to the free list.
+ for (MPhiIterator phi = loopEntry->phisBegin();
+ phi != loopEntry->phisEnd();) {
+ MPhi* entryDef = *phi++;
+ if (!entryDef->isUnused()) {
+ continue;
+ }
+
+ entryDef->justReplaceAllUsesWith(entryDef->getOperand(0));
+ loopEntry->discardPhi(entryDef);
+ mirGraph().addPhiToFreeList(entryDef);
+ }
+
+ return true;
+ }
+
+ public:
+ bool closeLoop(MBasicBlock* loopHeader, DefVector* loopResults) {
+ MOZ_ASSERT(blockDepth_ >= 1);
+ MOZ_ASSERT(loopDepth_);
+
+ uint32_t headerLabel = blockDepth_ - 1;
+
+ if (!loopHeader) {
+ MOZ_ASSERT(inDeadCode());
+ MOZ_ASSERT(headerLabel >= blockPatches_.length() ||
+ blockPatches_[headerLabel].empty());
+ blockDepth_--;
+ loopDepth_--;
+ return true;
+ }
+
+ // Op::Loop doesn't have an implicit backedge so temporarily set
+ // aside the end of the loop body to bind backedges.
+ MBasicBlock* loopBody = curBlock_;
+ curBlock_ = nullptr;
+
+ // As explained in bug 1253544, Ion apparently has an invariant that
+ // there is only one backedge to loop headers. To handle wasm's ability
+ // to have multiple backedges to the same loop header, we bind all those
+ // branches as forward jumps to a single backward jump. This is
+ // unfortunate but the optimizer is able to fold these into single jumps
+ // to backedges.
+ DefVector backedgeValues;
+ if (!bindBranches(headerLabel, &backedgeValues)) {
+ return false;
+ }
+
+ MOZ_ASSERT(loopHeader->loopDepth() == loopDepth_);
+
+ if (curBlock_) {
+ // We're on the loop backedge block, created by bindBranches.
+ for (size_t i = 0, n = numPushed(curBlock_); i != n; i++) {
+ curBlock_->pop();
+ }
+
+ if (!pushDefs(backedgeValues)) {
+ return false;
+ }
+
+ MOZ_ASSERT(curBlock_->loopDepth() == loopDepth_);
+ curBlock_->end(MGoto::New(alloc(), loopHeader));
+ if (!setLoopBackedge(loopHeader, loopBody, curBlock_,
+ backedgeValues.length())) {
+ return false;
+ }
+ }
+
+ curBlock_ = loopBody;
+
+ loopDepth_--;
+
+ // If the loop depth still at the inner loop body, correct it.
+ if (curBlock_ && curBlock_->loopDepth() != loopDepth_) {
+ MBasicBlock* out;
+ if (!goToNewBlock(curBlock_, &out)) {
+ return false;
+ }
+ curBlock_ = out;
+ }
+
+ blockDepth_ -= 1;
+ return inDeadCode() || popPushedDefs(loopResults);
+ }
+
+ bool addControlFlowPatch(MControlInstruction* ins, uint32_t relative,
+ uint32_t index) {
+ MOZ_ASSERT(relative < blockDepth_);
+ uint32_t absolute = blockDepth_ - 1 - relative;
+
+ if (absolute >= blockPatches_.length() &&
+ !blockPatches_.resize(absolute + 1)) {
+ return false;
+ }
+
+ return blockPatches_[absolute].append(ControlFlowPatch(ins, index));
+ }
+
+ bool br(uint32_t relativeDepth, const DefVector& values) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ MGoto* jump = MGoto::New(alloc());
+ if (!addControlFlowPatch(jump, relativeDepth, MGoto::TargetIndex)) {
+ return false;
+ }
+
+ if (!pushDefs(values)) {
+ return false;
+ }
+
+ curBlock_->end(jump);
+ curBlock_ = nullptr;
+ return true;
+ }
+
+ bool brIf(uint32_t relativeDepth, const DefVector& values,
+ MDefinition* condition) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ MBasicBlock* joinBlock = nullptr;
+ if (!newBlock(curBlock_, &joinBlock)) {
+ return false;
+ }
+
+ MTest* test = MTest::New(alloc(), condition, joinBlock);
+ if (!addControlFlowPatch(test, relativeDepth, MTest::TrueBranchIndex)) {
+ return false;
+ }
+
+ if (!pushDefs(values)) {
+ return false;
+ }
+
+ curBlock_->end(test);
+ curBlock_ = joinBlock;
+ return true;
+ }
+
+ bool brTable(MDefinition* operand, uint32_t defaultDepth,
+ const Uint32Vector& depths, const DefVector& values) {
+ if (inDeadCode()) {
+ return true;
+ }
+
+ size_t numCases = depths.length();
+ MOZ_ASSERT(numCases <= INT32_MAX);
+ MOZ_ASSERT(numCases);
+
+ MTableSwitch* table =
+ MTableSwitch::New(alloc(), operand, 0, int32_t(numCases - 1));
+
+ size_t defaultIndex;
+ if (!table->addDefault(nullptr, &defaultIndex)) {
+ return false;
+ }
+ if (!addControlFlowPatch(table, defaultDepth, defaultIndex)) {
+ return false;
+ }
+
+ typedef HashMap<uint32_t, uint32_t, DefaultHasher<uint32_t>,
+ SystemAllocPolicy>
+ IndexToCaseMap;
+
+ IndexToCaseMap indexToCase;
+ if (!indexToCase.put(defaultDepth, defaultIndex)) {
+ return false;
+ }
+
+ for (size_t i = 0; i < numCases; i++) {
+ uint32_t depth = depths[i];
+
+ size_t caseIndex;
+ IndexToCaseMap::AddPtr p = indexToCase.lookupForAdd(depth);
+ if (!p) {
+ if (!table->addSuccessor(nullptr, &caseIndex)) {
+ return false;
+ }
+ if (!addControlFlowPatch(table, depth, caseIndex)) {
+ return false;
+ }
+ if (!indexToCase.add(p, depth, caseIndex)) {
+ return false;
+ }
+ } else {
+ caseIndex = p->value();
+ }
+
+ if (!table->addCase(caseIndex)) {
+ return false;
+ }
+ }
+
+ if (!pushDefs(values)) {
+ return false;
+ }
+
+ curBlock_->end(table);
+ curBlock_ = nullptr;
+
+ return true;
+ }
+
+ /************************************************************ DECODING ***/
+
+ uint32_t readCallSiteLineOrBytecode() {
+ if (!func_.callSiteLineNums.empty()) {
+ return func_.callSiteLineNums[lastReadCallSite_++];
+ }
+ return iter_.lastOpcodeOffset();
+ }
+
+#if DEBUG
+ bool done() const { return iter_.done(); }
+#endif
+
+ /*************************************************************************/
+ private:
+ bool newBlock(MBasicBlock* pred, MBasicBlock** block) {
+ *block = MBasicBlock::New(mirGraph(), info(), pred, MBasicBlock::NORMAL);
+ if (!*block) {
+ return false;
+ }
+ mirGraph().addBlock(*block);
+ (*block)->setLoopDepth(loopDepth_);
+ return true;
+ }
+
+ bool goToNewBlock(MBasicBlock* pred, MBasicBlock** block) {
+ if (!newBlock(pred, block)) {
+ return false;
+ }
+ pred->end(MGoto::New(alloc(), *block));
+ return true;
+ }
+
+ bool goToExistingBlock(MBasicBlock* prev, MBasicBlock* next) {
+ MOZ_ASSERT(prev);
+ MOZ_ASSERT(next);
+ prev->end(MGoto::New(alloc(), next));
+ return next->addPredecessor(alloc(), prev);
+ }
+
+ bool bindBranches(uint32_t absolute, DefVector* defs) {
+ if (absolute >= blockPatches_.length() || blockPatches_[absolute].empty()) {
+ return inDeadCode() || popPushedDefs(defs);
+ }
+
+ ControlFlowPatchVector& patches = blockPatches_[absolute];
+ MControlInstruction* ins = patches[0].ins;
+ MBasicBlock* pred = ins->block();
+
+ MBasicBlock* join = nullptr;
+ if (!newBlock(pred, &join)) {
+ return false;
+ }
+
+ pred->mark();
+ ins->replaceSuccessor(patches[0].index, join);
+
+ for (size_t i = 1; i < patches.length(); i++) {
+ ins = patches[i].ins;
+
+ pred = ins->block();
+ if (!pred->isMarked()) {
+ if (!join->addPredecessor(alloc(), pred)) {
+ return false;
+ }
+ pred->mark();
+ }
+
+ ins->replaceSuccessor(patches[i].index, join);
+ }
+
+ MOZ_ASSERT_IF(curBlock_, !curBlock_->isMarked());
+ for (uint32_t i = 0; i < join->numPredecessors(); i++) {
+ join->getPredecessor(i)->unmark();
+ }
+
+ if (curBlock_ && !goToExistingBlock(curBlock_, join)) {
+ return false;
+ }
+
+ curBlock_ = join;
+
+ if (!popPushedDefs(defs)) {
+ return false;
+ }
+
+ patches.clear();
+ return true;
+ }
+};
+
+template <>
+MDefinition* FunctionCompiler::unary<MToFloat32>(MDefinition* op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MToFloat32::New(alloc(), op, mustPreserveNaN(op->type()));
+ curBlock_->add(ins);
+ return ins;
+}
+
+template <>
+MDefinition* FunctionCompiler::unary<MWasmBuiltinTruncateToInt32>(
+ MDefinition* op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MWasmBuiltinTruncateToInt32::New(alloc(), op, tlsPointer_,
+ bytecodeOffset());
+ curBlock_->add(ins);
+ return ins;
+}
+
+template <>
+MDefinition* FunctionCompiler::unary<MNot>(MDefinition* op) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MNot::NewInt32(alloc(), op);
+ curBlock_->add(ins);
+ return ins;
+}
+
+template <>
+MDefinition* FunctionCompiler::unary<MAbs>(MDefinition* op, MIRType type) {
+ if (inDeadCode()) {
+ return nullptr;
+ }
+ auto* ins = MAbs::NewWasm(alloc(), op, type);
+ curBlock_->add(ins);
+ return ins;
+}
+
+} // end anonymous namespace
+
+static bool EmitI32Const(FunctionCompiler& f) {
+ int32_t i32;
+ if (!f.iter().readI32Const(&i32)) {
+ return false;
+ }
+
+ f.iter().setResult(f.constant(Int32Value(i32), MIRType::Int32));
+ return true;
+}
+
+static bool EmitI64Const(FunctionCompiler& f) {
+ int64_t i64;
+ if (!f.iter().readI64Const(&i64)) {
+ return false;
+ }
+
+ f.iter().setResult(f.constant(i64));
+ return true;
+}
+
+static bool EmitF32Const(FunctionCompiler& f) {
+ float f32;
+ if (!f.iter().readF32Const(&f32)) {
+ return false;
+ }
+
+ f.iter().setResult(f.constant(f32));
+ return true;
+}
+
+static bool EmitF64Const(FunctionCompiler& f) {
+ double f64;
+ if (!f.iter().readF64Const(&f64)) {
+ return false;
+ }
+
+ f.iter().setResult(f.constant(f64));
+ return true;
+}
+
+static bool EmitBlock(FunctionCompiler& f) {
+ ResultType params;
+ return f.iter().readBlock(&params) && f.startBlock();
+}
+
+static bool EmitLoop(FunctionCompiler& f) {
+ ResultType params;
+ if (!f.iter().readLoop(&params)) {
+ return false;
+ }
+
+ MBasicBlock* loopHeader;
+ if (!f.startLoop(&loopHeader, params.length())) {
+ return false;
+ }
+
+ f.addInterruptCheck();
+
+ f.iter().controlItem() = loopHeader;
+ return true;
+}
+
+static bool EmitIf(FunctionCompiler& f) {
+ ResultType params;
+ MDefinition* condition = nullptr;
+ if (!f.iter().readIf(&params, &condition)) {
+ return false;
+ }
+
+ MBasicBlock* elseBlock;
+ if (!f.branchAndStartThen(condition, &elseBlock)) {
+ return false;
+ }
+
+ f.iter().controlItem() = elseBlock;
+ return true;
+}
+
+static bool EmitElse(FunctionCompiler& f) {
+ ResultType paramType;
+ ResultType resultType;
+ DefVector thenValues;
+ if (!f.iter().readElse(&paramType, &resultType, &thenValues)) {
+ return false;
+ }
+
+ if (!f.pushDefs(thenValues)) {
+ return false;
+ }
+
+ if (!f.switchToElse(f.iter().controlItem(), &f.iter().controlItem())) {
+ return false;
+ }
+
+ return true;
+}
+
+static bool EmitEnd(FunctionCompiler& f) {
+ LabelKind kind;
+ ResultType type;
+ DefVector preJoinDefs;
+ DefVector resultsForEmptyElse;
+ if (!f.iter().readEnd(&kind, &type, &preJoinDefs, &resultsForEmptyElse)) {
+ return false;
+ }
+
+ MBasicBlock* block = f.iter().controlItem();
+ f.iter().popEnd();
+
+ if (!f.pushDefs(preJoinDefs)) {
+ return false;
+ }
+
+ DefVector postJoinDefs;
+ switch (kind) {
+ case LabelKind::Body:
+ MOZ_ASSERT(f.iter().controlStackEmpty());
+ if (!f.finishBlock(&postJoinDefs)) {
+ return false;
+ }
+ if (!f.returnValues(postJoinDefs)) {
+ return false;
+ }
+ return f.iter().readFunctionEnd(f.iter().end());
+ case LabelKind::Block:
+ if (!f.finishBlock(&postJoinDefs)) {
+ return false;
+ }
+ break;
+ case LabelKind::Loop:
+ if (!f.closeLoop(block, &postJoinDefs)) {
+ return false;
+ }
+ break;
+ case LabelKind::Then: {
+ // If we didn't see an Else, create a trivial else block so that we create
+ // a diamond anyway, to preserve Ion invariants.
+ if (!f.switchToElse(block, &block)) {
+ return false;
+ }
+
+ if (!f.pushDefs(resultsForEmptyElse)) {
+ return false;
+ }
+
+ if (!f.joinIfElse(block, &postJoinDefs)) {
+ return false;
+ }
+ break;
+ }
+ case LabelKind::Else:
+ if (!f.joinIfElse(block, &postJoinDefs)) {
+ return false;
+ }
+ break;
+#ifdef ENABLE_WASM_EXCEPTIONS
+ case LabelKind::Try:
+ MOZ_CRASH("NYI");
+ break;
+ case LabelKind::Catch:
+ MOZ_CRASH("NYI");
+ break;
+#endif
+ }
+
+ MOZ_ASSERT_IF(!f.inDeadCode(), postJoinDefs.length() == type.length());
+ f.iter().setResults(postJoinDefs.length(), postJoinDefs);
+
+ return true;
+}
+
+static bool EmitBr(FunctionCompiler& f) {
+ uint32_t relativeDepth;
+ ResultType type;
+ DefVector values;
+ if (!f.iter().readBr(&relativeDepth, &type, &values)) {
+ return false;
+ }
+
+ return f.br(relativeDepth, values);
+}
+
+static bool EmitBrIf(FunctionCompiler& f) {
+ uint32_t relativeDepth;
+ ResultType type;
+ DefVector values;
+ MDefinition* condition;
+ if (!f.iter().readBrIf(&relativeDepth, &type, &values, &condition)) {
+ return false;
+ }
+
+ return f.brIf(relativeDepth, values, condition);
+}
+
+static bool EmitBrTable(FunctionCompiler& f) {
+ Uint32Vector depths;
+ uint32_t defaultDepth;
+ ResultType branchValueType;
+ DefVector branchValues;
+ MDefinition* index;
+ if (!f.iter().readBrTable(&depths, &defaultDepth, &branchValueType,
+ &branchValues, &index)) {
+ return false;
+ }
+
+ // If all the targets are the same, or there are no targets, we can just
+ // use a goto. This is not just an optimization: MaybeFoldConditionBlock
+ // assumes that tables have more than one successor.
+ bool allSameDepth = true;
+ for (uint32_t depth : depths) {
+ if (depth != defaultDepth) {
+ allSameDepth = false;
+ break;
+ }
+ }
+
+ if (allSameDepth) {
+ return f.br(defaultDepth, branchValues);
+ }
+
+ return f.brTable(index, defaultDepth, depths, branchValues);
+}
+
+static bool EmitReturn(FunctionCompiler& f) {
+ DefVector values;
+ if (!f.iter().readReturn(&values)) {
+ return false;
+ }
+
+ return f.returnValues(values);
+}
+
+static bool EmitUnreachable(FunctionCompiler& f) {
+ if (!f.iter().readUnreachable()) {
+ return false;
+ }
+
+ f.unreachableTrap();
+ return true;
+}
+
+#ifdef ENABLE_WASM_EXCEPTIONS
+static bool EmitTry(FunctionCompiler& f) {
+ ResultType params;
+ if (!f.iter().readTry(&params)) {
+ return false;
+ }
+
+ MOZ_CRASH("NYI");
+}
+
+static bool EmitCatch(FunctionCompiler& f) {
+ LabelKind kind;
+ uint32_t eventIndex;
+ ResultType paramType, resultType;
+ DefVector tryValues;
+ if (!f.iter().readCatch(&kind, &eventIndex, &paramType, &resultType,
+ &tryValues)) {
+ return false;
+ }
+
+ MOZ_CRASH("NYI");
+}
+
+static bool EmitThrow(FunctionCompiler& f) {
+ uint32_t exnIndex;
+ DefVector argValues;
+ if (!f.iter().readThrow(&exnIndex, &argValues)) {
+ return false;
+ }
+
+ MOZ_CRASH("NYI");
+}
+#endif
+
+static bool EmitCallArgs(FunctionCompiler& f, const FuncType& funcType,
+ const DefVector& args, CallCompileState* call) {
+ for (size_t i = 0, n = funcType.args().length(); i < n; ++i) {
+ if (!f.mirGen().ensureBallast()) {
+ return false;
+ }
+ if (!f.passArg(args[i], funcType.args()[i], call)) {
+ return false;
+ }
+ }
+
+ ResultType resultType = ResultType::Vector(funcType.results());
+ if (!f.passStackResultAreaCallArg(resultType, call)) {
+ return false;
+ }
+
+ return f.finishCall(call);
+}
+
+static bool EmitCall(FunctionCompiler& f, bool asmJSFuncDef) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ uint32_t funcIndex;
+ DefVector args;
+ if (asmJSFuncDef) {
+ if (!f.iter().readOldCallDirect(f.moduleEnv().numFuncImports(), &funcIndex,
+ &args)) {
+ return false;
+ }
+ } else {
+ if (!f.iter().readCall(&funcIndex, &args)) {
+ return false;
+ }
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ const FuncType& funcType = *f.moduleEnv().funcs[funcIndex].type;
+
+ CallCompileState call;
+ if (!EmitCallArgs(f, funcType, args, &call)) {
+ return false;
+ }
+
+ DefVector results;
+ if (f.moduleEnv().funcIsImport(funcIndex)) {
+ uint32_t globalDataOffset =
+ f.moduleEnv().funcImportGlobalDataOffsets[funcIndex];
+ if (!f.callImport(globalDataOffset, lineOrBytecode, call, funcType,
+ &results)) {
+ return false;
+ }
+ } else {
+ if (!f.callDirect(funcType, funcIndex, lineOrBytecode, call, &results)) {
+ return false;
+ }
+ }
+
+ f.iter().setResults(results.length(), results);
+ return true;
+}
+
+static bool EmitCallIndirect(FunctionCompiler& f, bool oldStyle) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ uint32_t funcTypeIndex;
+ uint32_t tableIndex;
+ MDefinition* callee;
+ DefVector args;
+ if (oldStyle) {
+ tableIndex = 0;
+ if (!f.iter().readOldCallIndirect(&funcTypeIndex, &callee, &args)) {
+ return false;
+ }
+ } else {
+ if (!f.iter().readCallIndirect(&funcTypeIndex, &tableIndex, &callee,
+ &args)) {
+ return false;
+ }
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ const FuncType& funcType = f.moduleEnv().types[funcTypeIndex].funcType();
+
+ CallCompileState call;
+ if (!EmitCallArgs(f, funcType, args, &call)) {
+ return false;
+ }
+
+ DefVector results;
+ if (!f.callIndirect(funcTypeIndex, tableIndex, callee, lineOrBytecode, call,
+ &results)) {
+ return false;
+ }
+
+ f.iter().setResults(results.length(), results);
+ return true;
+}
+
+static bool EmitGetLocal(FunctionCompiler& f) {
+ uint32_t id;
+ if (!f.iter().readGetLocal(f.locals(), &id)) {
+ return false;
+ }
+
+ f.iter().setResult(f.getLocalDef(id));
+ return true;
+}
+
+static bool EmitSetLocal(FunctionCompiler& f) {
+ uint32_t id;
+ MDefinition* value;
+ if (!f.iter().readSetLocal(f.locals(), &id, &value)) {
+ return false;
+ }
+
+ f.assign(id, value);
+ return true;
+}
+
+static bool EmitTeeLocal(FunctionCompiler& f) {
+ uint32_t id;
+ MDefinition* value;
+ if (!f.iter().readTeeLocal(f.locals(), &id, &value)) {
+ return false;
+ }
+
+ f.assign(id, value);
+ return true;
+}
+
+static bool EmitGetGlobal(FunctionCompiler& f) {
+ uint32_t id;
+ if (!f.iter().readGetGlobal(&id)) {
+ return false;
+ }
+
+ const GlobalDesc& global = f.moduleEnv().globals[id];
+ if (!global.isConstant()) {
+ f.iter().setResult(f.loadGlobalVar(global.offset(), !global.isMutable(),
+ global.isIndirect(),
+ ToMIRType(global.type())));
+ return true;
+ }
+
+ LitVal value = global.constantValue();
+ MIRType mirType = ToMIRType(value.type());
+
+ MDefinition* result;
+ switch (value.type().kind()) {
+ case ValType::I32:
+ result = f.constant(Int32Value(value.i32()), mirType);
+ break;
+ case ValType::I64:
+ result = f.constant(int64_t(value.i64()));
+ break;
+ case ValType::F32:
+ result = f.constant(value.f32());
+ break;
+ case ValType::F64:
+ result = f.constant(value.f64());
+ break;
+ case ValType::V128:
+#ifdef ENABLE_WASM_SIMD
+ result = f.constant(value.v128());
+ break;
+#else
+ return f.iter().fail("Ion has no SIMD support yet");
+#endif
+ case ValType::Ref:
+ switch (value.type().refTypeKind()) {
+ case RefType::Func:
+ case RefType::Extern:
+ case RefType::Eq:
+ MOZ_ASSERT(value.ref().isNull());
+ result = f.nullRefConstant();
+ break;
+ case RefType::TypeIndex:
+ MOZ_CRASH("unexpected reference type in EmitGetGlobal");
+ }
+ break;
+ default:
+ MOZ_CRASH("unexpected type in EmitGetGlobal");
+ }
+
+ f.iter().setResult(result);
+ return true;
+}
+
+static bool EmitSetGlobal(FunctionCompiler& f) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ uint32_t id;
+ MDefinition* value;
+ if (!f.iter().readSetGlobal(&id, &value)) {
+ return false;
+ }
+
+ const GlobalDesc& global = f.moduleEnv().globals[id];
+ MOZ_ASSERT(global.isMutable());
+ MInstruction* barrierAddr =
+ f.storeGlobalVar(global.offset(), global.isIndirect(), value);
+
+ // We always call the C++ postbarrier because the location will never be in
+ // the nursery, and the value stored will very frequently be in the nursery.
+ // The C++ postbarrier performs any necessary filtering.
+
+ if (barrierAddr) {
+ const SymbolicAddressSignature& callee = SASigPostBarrierFiltering;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+ if (!f.passArg(barrierAddr, callee.argTypes[1], &args)) {
+ return false;
+ }
+ f.finishCall(&args);
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args)) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool EmitTeeGlobal(FunctionCompiler& f) {
+ uint32_t id;
+ MDefinition* value;
+ if (!f.iter().readTeeGlobal(&id, &value)) {
+ return false;
+ }
+
+ const GlobalDesc& global = f.moduleEnv().globals[id];
+ MOZ_ASSERT(global.isMutable());
+
+ f.storeGlobalVar(global.offset(), global.isIndirect(), value);
+ return true;
+}
+
+template <typename MIRClass>
+static bool EmitUnary(FunctionCompiler& f, ValType operandType) {
+ MDefinition* input;
+ if (!f.iter().readUnary(operandType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unary<MIRClass>(input));
+ return true;
+}
+
+template <typename MIRClass>
+static bool EmitConversion(FunctionCompiler& f, ValType operandType,
+ ValType resultType) {
+ MDefinition* input;
+ if (!f.iter().readConversion(operandType, resultType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unary<MIRClass>(input));
+ return true;
+}
+
+template <typename MIRClass>
+static bool EmitUnaryWithType(FunctionCompiler& f, ValType operandType,
+ MIRType mirType) {
+ MDefinition* input;
+ if (!f.iter().readUnary(operandType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unary<MIRClass>(input, mirType));
+ return true;
+}
+
+template <typename MIRClass>
+static bool EmitConversionWithType(FunctionCompiler& f, ValType operandType,
+ ValType resultType, MIRType mirType) {
+ MDefinition* input;
+ if (!f.iter().readConversion(operandType, resultType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unary<MIRClass>(input, mirType));
+ return true;
+}
+
+static bool EmitTruncate(FunctionCompiler& f, ValType operandType,
+ ValType resultType, bool isUnsigned,
+ bool isSaturating) {
+ MDefinition* input = nullptr;
+ if (!f.iter().readConversion(operandType, resultType, &input)) {
+ return false;
+ }
+
+ TruncFlags flags = 0;
+ if (isUnsigned) {
+ flags |= TRUNC_UNSIGNED;
+ }
+ if (isSaturating) {
+ flags |= TRUNC_SATURATING;
+ }
+ if (resultType == ValType::I32) {
+ if (f.moduleEnv().isAsmJS()) {
+ if (input && (input->type() == MIRType::Double ||
+ input->type() == MIRType::Float32)) {
+ f.iter().setResult(f.unary<MWasmBuiltinTruncateToInt32>(input));
+ } else {
+ f.iter().setResult(f.unary<MTruncateToInt32>(input));
+ }
+ } else {
+ f.iter().setResult(f.truncate<MWasmTruncateToInt32>(input, flags));
+ }
+ } else {
+ MOZ_ASSERT(resultType == ValType::I64);
+ MOZ_ASSERT(!f.moduleEnv().isAsmJS());
+#if defined(JS_CODEGEN_ARM)
+ f.iter().setResult(f.truncateWithTls(input, flags));
+#else
+ f.iter().setResult(f.truncate<MWasmTruncateToInt64>(input, flags));
+#endif
+ }
+ return true;
+}
+
+static bool EmitSignExtend(FunctionCompiler& f, uint32_t srcSize,
+ uint32_t targetSize) {
+ MDefinition* input;
+ ValType type = targetSize == 4 ? ValType::I32 : ValType::I64;
+ if (!f.iter().readConversion(type, type, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.signExtend(input, srcSize, targetSize));
+ return true;
+}
+
+static bool EmitExtendI32(FunctionCompiler& f, bool isUnsigned) {
+ MDefinition* input;
+ if (!f.iter().readConversion(ValType::I32, ValType::I64, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.extendI32(input, isUnsigned));
+ return true;
+}
+
+static bool EmitConvertI64ToFloatingPoint(FunctionCompiler& f,
+ ValType resultType, MIRType mirType,
+ bool isUnsigned) {
+ MDefinition* input;
+ if (!f.iter().readConversion(ValType::I64, resultType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.convertI64ToFloatingPoint(input, mirType, isUnsigned));
+ return true;
+}
+
+static bool EmitReinterpret(FunctionCompiler& f, ValType resultType,
+ ValType operandType, MIRType mirType) {
+ MDefinition* input;
+ if (!f.iter().readConversion(operandType, resultType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unary<MWasmReinterpret>(input, mirType));
+ return true;
+}
+
+static bool EmitAdd(FunctionCompiler& f, ValType type, MIRType mirType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(type, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.add(lhs, rhs, mirType));
+ return true;
+}
+
+static bool EmitSub(FunctionCompiler& f, ValType type, MIRType mirType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(type, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.sub(lhs, rhs, mirType));
+ return true;
+}
+
+static bool EmitRotate(FunctionCompiler& f, ValType type, bool isLeftRotation) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(type, &lhs, &rhs)) {
+ return false;
+ }
+
+ MDefinition* result = f.rotate(lhs, rhs, ToMIRType(type), isLeftRotation);
+ f.iter().setResult(result);
+ return true;
+}
+
+static bool EmitBitNot(FunctionCompiler& f, ValType operandType) {
+ MDefinition* input;
+ if (!f.iter().readUnary(operandType, &input)) {
+ return false;
+ }
+
+ f.iter().setResult(f.bitnot(input));
+ return true;
+}
+
+template <typename MIRClass>
+static bool EmitBitwise(FunctionCompiler& f, ValType operandType,
+ MIRType mirType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.binary<MIRClass>(lhs, rhs, mirType));
+ return true;
+}
+
+static bool EmitUrsh(FunctionCompiler& f, ValType operandType,
+ MIRType mirType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.ursh(lhs, rhs, mirType));
+ return true;
+}
+
+static bool EmitMul(FunctionCompiler& f, ValType operandType, MIRType mirType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(
+ f.mul(lhs, rhs, mirType,
+ mirType == MIRType::Int32 ? MMul::Integer : MMul::Normal));
+ return true;
+}
+
+static bool EmitDiv(FunctionCompiler& f, ValType operandType, MIRType mirType,
+ bool isUnsigned) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.div(lhs, rhs, mirType, isUnsigned));
+ return true;
+}
+
+static bool EmitRem(FunctionCompiler& f, ValType operandType, MIRType mirType,
+ bool isUnsigned) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.mod(lhs, rhs, mirType, isUnsigned));
+ return true;
+}
+
+static bool EmitMinMax(FunctionCompiler& f, ValType operandType,
+ MIRType mirType, bool isMax) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.minMax(lhs, rhs, mirType, isMax));
+ return true;
+}
+
+static bool EmitCopySign(FunctionCompiler& f, ValType operandType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.binary<MCopySign>(lhs, rhs, ToMIRType(operandType)));
+ return true;
+}
+
+static bool EmitComparison(FunctionCompiler& f, ValType operandType,
+ JSOp compareOp, MCompare::CompareType compareType) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readComparison(operandType, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.compare(lhs, rhs, compareOp, compareType));
+ return true;
+}
+
+static bool EmitSelect(FunctionCompiler& f, bool typed) {
+ StackType type;
+ MDefinition* trueValue;
+ MDefinition* falseValue;
+ MDefinition* condition;
+ if (!f.iter().readSelect(typed, &type, &trueValue, &falseValue, &condition)) {
+ return false;
+ }
+
+ f.iter().setResult(f.select(trueValue, falseValue, condition));
+ return true;
+}
+
+static bool EmitLoad(FunctionCompiler& f, ValType type, Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ if (!f.iter().readLoad(type, Scalar::byteSize(viewType), &addr)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ f.bytecodeIfNotAsmJS());
+ auto* ins = f.load(addr.base, &access, type);
+ if (!f.inDeadCode() && !ins) {
+ return false;
+ }
+
+ f.iter().setResult(ins);
+ return true;
+}
+
+static bool EmitStore(FunctionCompiler& f, ValType resultType,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readStore(resultType, Scalar::byteSize(viewType), &addr,
+ &value)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ f.bytecodeIfNotAsmJS());
+
+ f.store(addr.base, &access, value);
+ return true;
+}
+
+static bool EmitTeeStore(FunctionCompiler& f, ValType resultType,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readTeeStore(resultType, Scalar::byteSize(viewType), &addr,
+ &value)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ f.bytecodeIfNotAsmJS());
+
+ f.store(addr.base, &access, value);
+ return true;
+}
+
+static bool EmitTeeStoreWithCoercion(FunctionCompiler& f, ValType resultType,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readTeeStore(resultType, Scalar::byteSize(viewType), &addr,
+ &value)) {
+ return false;
+ }
+
+ if (resultType == ValType::F32 && viewType == Scalar::Float64) {
+ value = f.unary<MToDouble>(value);
+ } else if (resultType == ValType::F64 && viewType == Scalar::Float32) {
+ value = f.unary<MToFloat32>(value);
+ } else {
+ MOZ_CRASH("unexpected coerced store");
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset,
+ f.bytecodeIfNotAsmJS());
+
+ f.store(addr.base, &access, value);
+ return true;
+}
+
+static bool TryInlineUnaryBuiltin(FunctionCompiler& f, SymbolicAddress callee,
+ MDefinition* input) {
+ if (!input) {
+ return false;
+ }
+
+ MOZ_ASSERT(IsFloatingPointType(input->type()));
+
+ RoundingMode mode;
+ if (!IsRoundingFunction(callee, &mode)) {
+ return false;
+ }
+
+ if (!MNearbyInt::HasAssemblerSupport(mode)) {
+ return false;
+ }
+
+ f.iter().setResult(f.nearbyInt(input, mode));
+ return true;
+}
+
+static bool EmitUnaryMathBuiltinCall(FunctionCompiler& f,
+ const SymbolicAddressSignature& callee) {
+ MOZ_ASSERT(callee.numArgs == 1);
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ MDefinition* input;
+ if (!f.iter().readUnary(ValType(callee.argTypes[0]), &input)) {
+ return false;
+ }
+
+ if (TryInlineUnaryBuiltin(f, callee.identity, input)) {
+ return true;
+ }
+
+ CallCompileState call;
+ if (!f.passArg(input, callee.argTypes[0], &call)) {
+ return false;
+ }
+
+ if (!f.finishCall(&call)) {
+ return false;
+ }
+
+ MDefinition* def;
+ if (!f.builtinCall(callee, lineOrBytecode, call, &def)) {
+ return false;
+ }
+
+ f.iter().setResult(def);
+ return true;
+}
+
+static bool EmitBinaryMathBuiltinCall(FunctionCompiler& f,
+ const SymbolicAddressSignature& callee) {
+ MOZ_ASSERT(callee.numArgs == 2);
+ MOZ_ASSERT(callee.argTypes[0] == callee.argTypes[1]);
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ CallCompileState call;
+ MDefinition* lhs;
+ MDefinition* rhs;
+ // This call to readBinary assumes both operands have the same type.
+ if (!f.iter().readBinary(ValType(callee.argTypes[0]), &lhs, &rhs)) {
+ return false;
+ }
+
+ if (!f.passArg(lhs, callee.argTypes[0], &call)) {
+ return false;
+ }
+
+ if (!f.passArg(rhs, callee.argTypes[1], &call)) {
+ return false;
+ }
+
+ if (!f.finishCall(&call)) {
+ return false;
+ }
+
+ MDefinition* def;
+ if (!f.builtinCall(callee, lineOrBytecode, call, &def)) {
+ return false;
+ }
+
+ f.iter().setResult(def);
+ return true;
+}
+
+static bool EmitMemoryGrow(FunctionCompiler& f) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigMemoryGrow;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ MDefinition* delta;
+ if (!f.iter().readMemoryGrow(&delta)) {
+ return false;
+ }
+
+ if (!f.passArg(delta, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ f.finishCall(&args);
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitMemorySize(FunctionCompiler& f) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigMemorySize;
+ CallCompileState args;
+
+ if (!f.iter().readMemorySize()) {
+ return false;
+ }
+
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ f.finishCall(&args);
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitAtomicCmpXchg(FunctionCompiler& f, ValType type,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* oldValue;
+ MDefinition* newValue;
+ if (!f.iter().readAtomicCmpXchg(&addr, type, byteSize(viewType), &oldValue,
+ &newValue)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset, f.bytecodeOffset(),
+ Synchronization::Full());
+ auto* ins =
+ f.atomicCompareExchangeHeap(addr.base, &access, type, oldValue, newValue);
+ if (!f.inDeadCode() && !ins) {
+ return false;
+ }
+
+ f.iter().setResult(ins);
+ return true;
+}
+
+static bool EmitAtomicLoad(FunctionCompiler& f, ValType type,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ if (!f.iter().readAtomicLoad(&addr, type, byteSize(viewType))) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset, f.bytecodeOffset(),
+ Synchronization::Load());
+ auto* ins = f.load(addr.base, &access, type);
+ if (!f.inDeadCode() && !ins) {
+ return false;
+ }
+
+ f.iter().setResult(ins);
+ return true;
+}
+
+static bool EmitAtomicRMW(FunctionCompiler& f, ValType type,
+ Scalar::Type viewType, jit::AtomicOp op) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readAtomicRMW(&addr, type, byteSize(viewType), &value)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset, f.bytecodeOffset(),
+ Synchronization::Full());
+ auto* ins = f.atomicBinopHeap(op, addr.base, &access, type, value);
+ if (!f.inDeadCode() && !ins) {
+ return false;
+ }
+
+ f.iter().setResult(ins);
+ return true;
+}
+
+static bool EmitAtomicStore(FunctionCompiler& f, ValType type,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readAtomicStore(&addr, type, byteSize(viewType), &value)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset, f.bytecodeOffset(),
+ Synchronization::Store());
+ f.store(addr.base, &access, value);
+ return true;
+}
+
+static bool EmitWait(FunctionCompiler& f, ValType type, uint32_t byteSize) {
+ MOZ_ASSERT(type == ValType::I32 || type == ValType::I64);
+ MOZ_ASSERT(SizeOf(type) == byteSize);
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee =
+ type == ValType::I32 ? SASigWaitI32 : SASigWaitI64;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* expected;
+ MDefinition* timeout;
+ if (!f.iter().readWait(&addr, type, byteSize, &expected, &timeout)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(type == ValType::I32 ? Scalar::Int32 : Scalar::Int64,
+ addr.align, addr.offset, f.bytecodeOffset());
+ MDefinition* ptr = f.computeEffectiveAddress(addr.base, &access);
+ if (!f.inDeadCode() && !ptr) {
+ return false;
+ }
+
+ if (!f.passArg(ptr, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ MOZ_ASSERT(ToMIRType(type) == callee.argTypes[2]);
+ if (!f.passArg(expected, callee.argTypes[2], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(timeout, callee.argTypes[3], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitFence(FunctionCompiler& f) {
+ if (!f.iter().readFence()) {
+ return false;
+ }
+
+ f.fence();
+ return true;
+}
+
+static bool EmitWake(FunctionCompiler& f) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigWake;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* count;
+ if (!f.iter().readWake(&addr, &count)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(Scalar::Int32, addr.align, addr.offset,
+ f.bytecodeOffset());
+ MDefinition* ptr = f.computeEffectiveAddress(addr.base, &access);
+ if (!f.inDeadCode() && !ptr) {
+ return false;
+ }
+
+ if (!f.passArg(ptr, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(count, callee.argTypes[2], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitAtomicXchg(FunctionCompiler& f, ValType type,
+ Scalar::Type viewType) {
+ LinearMemoryAddress<MDefinition*> addr;
+ MDefinition* value;
+ if (!f.iter().readAtomicRMW(&addr, type, byteSize(viewType), &value)) {
+ return false;
+ }
+
+ MemoryAccessDesc access(viewType, addr.align, addr.offset, f.bytecodeOffset(),
+ Synchronization::Full());
+ MDefinition* ins = f.atomicExchangeHeap(addr.base, &access, type, value);
+ if (!f.inDeadCode() && !ins) {
+ return false;
+ }
+
+ f.iter().setResult(ins);
+ return true;
+}
+
+static bool EmitMemCopyCall(FunctionCompiler& f, MDefinition* dst,
+ MDefinition* src, MDefinition* len) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee =
+ (f.moduleEnv().usesSharedMemory() ? SASigMemCopyShared : SASigMemCopy);
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(dst, callee.argTypes[1], &args)) {
+ return false;
+ }
+ if (!f.passArg(src, callee.argTypes[2], &args)) {
+ return false;
+ }
+ if (!f.passArg(len, callee.argTypes[3], &args)) {
+ return false;
+ }
+ MDefinition* memoryBase = f.memoryBase();
+ if (!f.passArg(memoryBase, callee.argTypes[4], &args)) {
+ return false;
+ }
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitMemCopyInline(FunctionCompiler& f, MDefinition* dst,
+ MDefinition* src, MDefinition* len) {
+ MOZ_ASSERT(MaxInlineMemoryCopyLength != 0);
+
+ MOZ_ASSERT(len->isConstant() && len->type() == MIRType::Int32);
+ uint32_t length = len->toConstant()->toInt32();
+ MOZ_ASSERT(length != 0 && length <= MaxInlineMemoryCopyLength);
+
+ // Compute the number of copies of each width we will need to do
+ size_t remainder = length;
+#ifdef JS_64BIT
+ size_t numCopies8 = remainder / sizeof(uint64_t);
+ remainder %= sizeof(uint64_t);
+#endif
+ size_t numCopies4 = remainder / sizeof(uint32_t);
+ remainder %= sizeof(uint32_t);
+ size_t numCopies2 = remainder / sizeof(uint16_t);
+ remainder %= sizeof(uint16_t);
+ size_t numCopies1 = remainder;
+
+ // Load all source bytes from low to high using the widest transfer width we
+ // can for the system. We will trap without writing anything if any source
+ // byte is out-of-bounds.
+ size_t offset = 0;
+ DefVector loadedValues;
+
+#ifdef JS_64BIT
+ for (uint32_t i = 0; i < numCopies8; i++) {
+ MemoryAccessDesc access(Scalar::Int64, 1, offset, f.bytecodeOffset());
+ auto* load = f.load(src, &access, ValType::I64);
+ if (!load || !loadedValues.append(load)) {
+ return false;
+ }
+
+ offset += sizeof(uint64_t);
+ }
+#endif
+
+ for (uint32_t i = 0; i < numCopies4; i++) {
+ MemoryAccessDesc access(Scalar::Uint32, 1, offset, f.bytecodeOffset());
+ auto* load = f.load(src, &access, ValType::I32);
+ if (!load || !loadedValues.append(load)) {
+ return false;
+ }
+
+ offset += sizeof(uint32_t);
+ }
+
+ if (numCopies2) {
+ MemoryAccessDesc access(Scalar::Uint16, 1, offset, f.bytecodeOffset());
+ auto* load = f.load(src, &access, ValType::I32);
+ if (!load || !loadedValues.append(load)) {
+ return false;
+ }
+
+ offset += sizeof(uint16_t);
+ }
+
+ if (numCopies1) {
+ MemoryAccessDesc access(Scalar::Uint8, 1, offset, f.bytecodeOffset());
+ auto* load = f.load(src, &access, ValType::I32);
+ if (!load || !loadedValues.append(load)) {
+ return false;
+ }
+ }
+
+ // Store all source bytes to the destination from high to low. We will trap
+ // without writing anything on the first store if any dest byte is
+ // out-of-bounds.
+ offset = length;
+
+ if (numCopies1) {
+ offset -= sizeof(uint8_t);
+
+ MemoryAccessDesc access(Scalar::Uint8, 1, offset, f.bytecodeOffset());
+ auto* value = loadedValues.popCopy();
+ f.store(dst, &access, value);
+ }
+
+ if (numCopies2) {
+ offset -= sizeof(uint16_t);
+
+ MemoryAccessDesc access(Scalar::Uint16, 1, offset, f.bytecodeOffset());
+ auto* value = loadedValues.popCopy();
+ f.store(dst, &access, value);
+ }
+
+ for (uint32_t i = 0; i < numCopies4; i++) {
+ offset -= sizeof(uint32_t);
+
+ MemoryAccessDesc access(Scalar::Uint32, 1, offset, f.bytecodeOffset());
+ auto* value = loadedValues.popCopy();
+ f.store(dst, &access, value);
+ }
+
+#ifdef JS_64BIT
+ for (uint32_t i = 0; i < numCopies8; i++) {
+ offset -= sizeof(uint64_t);
+
+ MemoryAccessDesc access(Scalar::Int64, 1, offset, f.bytecodeOffset());
+ auto* value = loadedValues.popCopy();
+ f.store(dst, &access, value);
+ }
+#endif
+
+ return true;
+}
+
+static bool EmitMemCopy(FunctionCompiler& f) {
+ MDefinition *dst, *src, *len;
+ uint32_t dstMemIndex;
+ uint32_t srcMemIndex;
+ if (!f.iter().readMemOrTableCopy(true, &dstMemIndex, &dst, &srcMemIndex, &src,
+ &len)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ if (MacroAssembler::SupportsFastUnalignedAccesses() && len->isConstant() &&
+ len->type() == MIRType::Int32 && len->toConstant()->toInt32() != 0 &&
+ uint32_t(len->toConstant()->toInt32()) <= MaxInlineMemoryCopyLength) {
+ return EmitMemCopyInline(f, dst, src, len);
+ }
+ return EmitMemCopyCall(f, dst, src, len);
+}
+
+static bool EmitTableCopy(FunctionCompiler& f) {
+ MDefinition *dst, *src, *len;
+ uint32_t dstTableIndex;
+ uint32_t srcTableIndex;
+ if (!f.iter().readMemOrTableCopy(false, &dstTableIndex, &dst, &srcTableIndex,
+ &src, &len)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableCopy;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(dst, callee.argTypes[1], &args)) {
+ return false;
+ }
+ if (!f.passArg(src, callee.argTypes[2], &args)) {
+ return false;
+ }
+ if (!f.passArg(len, callee.argTypes[3], &args)) {
+ return false;
+ }
+ MDefinition* dti = f.constant(Int32Value(dstTableIndex), MIRType::Int32);
+ if (!dti) {
+ return false;
+ }
+ if (!f.passArg(dti, callee.argTypes[4], &args)) {
+ return false;
+ }
+ MDefinition* sti = f.constant(Int32Value(srcTableIndex), MIRType::Int32);
+ if (!sti) {
+ return false;
+ }
+ if (!f.passArg(sti, callee.argTypes[5], &args)) {
+ return false;
+ }
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitDataOrElemDrop(FunctionCompiler& f, bool isData) {
+ uint32_t segIndexVal = 0;
+ if (!f.iter().readDataOrElemDrop(isData, &segIndexVal)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee =
+ isData ? SASigDataDrop : SASigElemDrop;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ MDefinition* segIndex =
+ f.constant(Int32Value(int32_t(segIndexVal)), MIRType::Int32);
+ if (!f.passArg(segIndex, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitMemFillCall(FunctionCompiler& f, MDefinition* start,
+ MDefinition* val, MDefinition* len) {
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee =
+ f.moduleEnv().usesSharedMemory() ? SASigMemFillShared : SASigMemFill;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(start, callee.argTypes[1], &args)) {
+ return false;
+ }
+ if (!f.passArg(val, callee.argTypes[2], &args)) {
+ return false;
+ }
+ if (!f.passArg(len, callee.argTypes[3], &args)) {
+ return false;
+ }
+ MDefinition* memoryBase = f.memoryBase();
+ if (!f.passArg(memoryBase, callee.argTypes[4], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitMemFillInline(FunctionCompiler& f, MDefinition* start,
+ MDefinition* val, MDefinition* len) {
+ MOZ_ASSERT(MaxInlineMemoryFillLength != 0);
+
+ MOZ_ASSERT(len->isConstant() && len->type() == MIRType::Int32 &&
+ val->isConstant() && val->type() == MIRType::Int32);
+
+ uint32_t length = len->toConstant()->toInt32();
+ uint32_t value = val->toConstant()->toInt32();
+ MOZ_ASSERT(length != 0 && length <= MaxInlineMemoryFillLength);
+
+ // Compute the number of copies of each width we will need to do
+ size_t remainder = length;
+#ifdef JS_64BIT
+ size_t numCopies8 = remainder / sizeof(uint64_t);
+ remainder %= sizeof(uint64_t);
+#endif
+ size_t numCopies4 = remainder / sizeof(uint32_t);
+ remainder %= sizeof(uint32_t);
+ size_t numCopies2 = remainder / sizeof(uint16_t);
+ remainder %= sizeof(uint16_t);
+ size_t numCopies1 = remainder;
+
+ // Generate splatted definitions for wider fills as needed
+#ifdef JS_64BIT
+ MDefinition* val8 =
+ numCopies8 ? f.constant(int64_t(SplatByteToUInt<uint64_t>(value, 8)))
+ : nullptr;
+#endif
+ MDefinition* val4 =
+ numCopies4 ? f.constant(Int32Value(SplatByteToUInt<uint32_t>(value, 4)),
+ MIRType::Int32)
+ : nullptr;
+ MDefinition* val2 =
+ numCopies2 ? f.constant(Int32Value(SplatByteToUInt<uint32_t>(value, 2)),
+ MIRType::Int32)
+ : nullptr;
+
+ // Store the fill value to the destination from high to low. We will trap
+ // without writing anything on the first store if any dest byte is
+ // out-of-bounds.
+ size_t offset = length;
+
+ if (numCopies1) {
+ offset -= sizeof(uint8_t);
+
+ MemoryAccessDesc access(Scalar::Uint8, 1, offset, f.bytecodeOffset());
+ f.store(start, &access, val);
+ }
+
+ if (numCopies2) {
+ offset -= sizeof(uint16_t);
+
+ MemoryAccessDesc access(Scalar::Uint16, 1, offset, f.bytecodeOffset());
+ f.store(start, &access, val2);
+ }
+
+ for (uint32_t i = 0; i < numCopies4; i++) {
+ offset -= sizeof(uint32_t);
+
+ MemoryAccessDesc access(Scalar::Uint32, 1, offset, f.bytecodeOffset());
+ f.store(start, &access, val4);
+ }
+
+#ifdef JS_64BIT
+ for (uint32_t i = 0; i < numCopies8; i++) {
+ offset -= sizeof(uint64_t);
+
+ MemoryAccessDesc access(Scalar::Int64, 1, offset, f.bytecodeOffset());
+ f.store(start, &access, val8);
+ }
+#endif
+
+ return true;
+}
+
+static bool EmitMemFill(FunctionCompiler& f) {
+ MDefinition *start, *val, *len;
+ if (!f.iter().readMemFill(&start, &val, &len)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ if (MacroAssembler::SupportsFastUnalignedAccesses() && len->isConstant() &&
+ len->type() == MIRType::Int32 && len->toConstant()->toInt32() != 0 &&
+ uint32_t(len->toConstant()->toInt32()) <= MaxInlineMemoryFillLength &&
+ val->isConstant() && val->type() == MIRType::Int32) {
+ return EmitMemFillInline(f, start, val, len);
+ }
+ return EmitMemFillCall(f, start, val, len);
+}
+
+static bool EmitMemOrTableInit(FunctionCompiler& f, bool isMem) {
+ uint32_t segIndexVal = 0, dstTableIndex = 0;
+ MDefinition *dstOff, *srcOff, *len;
+ if (!f.iter().readMemOrTableInit(isMem, &segIndexVal, &dstTableIndex, &dstOff,
+ &srcOff, &len)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee =
+ isMem ? SASigMemInit : SASigTableInit;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(dstOff, callee.argTypes[1], &args)) {
+ return false;
+ }
+ if (!f.passArg(srcOff, callee.argTypes[2], &args)) {
+ return false;
+ }
+ if (!f.passArg(len, callee.argTypes[3], &args)) {
+ return false;
+ }
+
+ MDefinition* segIndex =
+ f.constant(Int32Value(int32_t(segIndexVal)), MIRType::Int32);
+ if (!f.passArg(segIndex, callee.argTypes[4], &args)) {
+ return false;
+ }
+ if (!isMem) {
+ MDefinition* dti = f.constant(Int32Value(dstTableIndex), MIRType::Int32);
+ if (!dti) {
+ return false;
+ }
+ if (!f.passArg(dti, callee.argTypes[5], &args)) {
+ return false;
+ }
+ }
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+#ifdef ENABLE_WASM_REFTYPES
+// Note, table.{get,grow,set} on table(funcref) are currently rejected by the
+// verifier.
+
+static bool EmitTableFill(FunctionCompiler& f) {
+ uint32_t tableIndex;
+ MDefinition *start, *val, *len;
+ if (!f.iter().readTableFill(&tableIndex, &start, &val, &len)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableFill;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(start, callee.argTypes[1], &args)) {
+ return false;
+ }
+ if (!f.passArg(val, callee.argTypes[2], &args)) {
+ return false;
+ }
+ if (!f.passArg(len, callee.argTypes[3], &args)) {
+ return false;
+ }
+
+ MDefinition* tableIndexArg =
+ f.constant(Int32Value(tableIndex), MIRType::Int32);
+ if (!tableIndexArg) {
+ return false;
+ }
+ if (!f.passArg(tableIndexArg, callee.argTypes[4], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitTableGet(FunctionCompiler& f) {
+ uint32_t tableIndex;
+ MDefinition* index;
+ if (!f.iter().readTableGet(&tableIndex, &index)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableGet;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(index, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ MDefinition* tableIndexArg =
+ f.constant(Int32Value(tableIndex), MIRType::Int32);
+ if (!tableIndexArg) {
+ return false;
+ }
+ if (!f.passArg(tableIndexArg, callee.argTypes[2], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ // The return value here is either null, denoting an error, or a short-lived
+ // pointer to a location containing a possibly-null ref.
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitTableGrow(FunctionCompiler& f) {
+ uint32_t tableIndex;
+ MDefinition* initValue;
+ MDefinition* delta;
+ if (!f.iter().readTableGrow(&tableIndex, &initValue, &delta)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableGrow;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(initValue, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(delta, callee.argTypes[2], &args)) {
+ return false;
+ }
+
+ MDefinition* tableIndexArg =
+ f.constant(Int32Value(tableIndex), MIRType::Int32);
+ if (!tableIndexArg) {
+ return false;
+ }
+ if (!f.passArg(tableIndexArg, callee.argTypes[3], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitTableSet(FunctionCompiler& f) {
+ uint32_t tableIndex;
+ MDefinition* index;
+ MDefinition* value;
+ if (!f.iter().readTableSet(&tableIndex, &index, &value)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableSet;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(index, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.passArg(value, callee.argTypes[2], &args)) {
+ return false;
+ }
+
+ MDefinition* tableIndexArg =
+ f.constant(Int32Value(tableIndex), MIRType::Int32);
+ if (!tableIndexArg) {
+ return false;
+ }
+ if (!f.passArg(tableIndexArg, callee.argTypes[3], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ return f.builtinInstanceMethodCall(callee, lineOrBytecode, args);
+}
+
+static bool EmitTableSize(FunctionCompiler& f) {
+ uint32_t tableIndex;
+ if (!f.iter().readTableSize(&tableIndex)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigTableSize;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ MDefinition* tableIndexArg =
+ f.constant(Int32Value(tableIndex), MIRType::Int32);
+ if (!tableIndexArg) {
+ return false;
+ }
+ if (!f.passArg(tableIndexArg, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitRefFunc(FunctionCompiler& f) {
+ uint32_t funcIndex;
+ if (!f.iter().readRefFunc(&funcIndex)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ uint32_t lineOrBytecode = f.readCallSiteLineOrBytecode();
+
+ const SymbolicAddressSignature& callee = SASigRefFunc;
+ CallCompileState args;
+ if (!f.passInstance(callee.argTypes[0], &args)) {
+ return false;
+ }
+
+ MDefinition* funcIndexArg = f.constant(Int32Value(funcIndex), MIRType::Int32);
+ if (!funcIndexArg) {
+ return false;
+ }
+ if (!f.passArg(funcIndexArg, callee.argTypes[1], &args)) {
+ return false;
+ }
+
+ if (!f.finishCall(&args)) {
+ return false;
+ }
+
+ // The return value here is either null, denoting an error, or a short-lived
+ // pointer to a location containing a possibly-null ref.
+ MDefinition* ret;
+ if (!f.builtinInstanceMethodCall(callee, lineOrBytecode, args, &ret)) {
+ return false;
+ }
+
+ f.iter().setResult(ret);
+ return true;
+}
+
+static bool EmitRefNull(FunctionCompiler& f) {
+ if (!f.iter().readRefNull()) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ MDefinition* nullVal = f.nullRefConstant();
+ if (!nullVal) {
+ return false;
+ }
+ f.iter().setResult(nullVal);
+ return true;
+}
+
+static bool EmitRefIsNull(FunctionCompiler& f) {
+ MDefinition* input;
+ if (!f.iter().readRefIsNull(&input)) {
+ return false;
+ }
+
+ if (f.inDeadCode()) {
+ return true;
+ }
+
+ MDefinition* nullVal = f.nullRefConstant();
+ if (!nullVal) {
+ return false;
+ }
+ f.iter().setResult(
+ f.compare(input, nullVal, JSOp::Eq, MCompare::Compare_RefOrNull));
+ return true;
+}
+#endif // ENABLE_WASM_REFTYPES
+
+#ifdef ENABLE_WASM_SIMD
+static bool EmitConstSimd128(FunctionCompiler& f) {
+ V128 v128;
+ if (!f.iter().readV128Const(&v128)) {
+ return false;
+ }
+
+ f.iter().setResult(f.constant(v128));
+ return true;
+}
+
+static bool EmitBinarySimd128(FunctionCompiler& f, bool commutative,
+ SimdOp op) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readBinary(ValType::V128, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.binarySimd128(lhs, rhs, commutative, op));
+ return true;
+}
+
+static bool EmitShiftSimd128(FunctionCompiler& f, SimdOp op) {
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readVectorShift(&lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.shiftSimd128(lhs, rhs, op));
+ return true;
+}
+
+static bool EmitSplatSimd128(FunctionCompiler& f, ValType inType, SimdOp op) {
+ MDefinition* src;
+ if (!f.iter().readConversion(inType, ValType::V128, &src)) {
+ return false;
+ }
+
+ f.iter().setResult(f.scalarToSimd128(src, op));
+ return true;
+}
+
+static bool EmitUnarySimd128(FunctionCompiler& f, SimdOp op) {
+ MDefinition* src;
+ if (!f.iter().readUnary(ValType::V128, &src)) {
+ return false;
+ }
+
+ f.iter().setResult(f.unarySimd128(src, op));
+ return true;
+}
+
+static bool EmitReduceSimd128(FunctionCompiler& f, SimdOp op) {
+ MDefinition* src;
+ if (!f.iter().readConversion(ValType::V128, ValType::I32, &src)) {
+ return false;
+ }
+
+ f.iter().setResult(f.reduceSimd128(src, op, ValType::I32));
+ return true;
+}
+
+static bool EmitExtractLaneSimd128(FunctionCompiler& f, ValType outType,
+ uint32_t laneLimit, SimdOp op) {
+ uint32_t laneIndex;
+ MDefinition* src;
+ if (!f.iter().readExtractLane(outType, laneLimit, &laneIndex, &src)) {
+ return false;
+ }
+
+ f.iter().setResult(f.reduceSimd128(src, op, outType, laneIndex));
+ return true;
+}
+
+static bool EmitReplaceLaneSimd128(FunctionCompiler& f, ValType laneType,
+ uint32_t laneLimit, SimdOp op) {
+ uint32_t laneIndex;
+ MDefinition* lhs;
+ MDefinition* rhs;
+ if (!f.iter().readReplaceLane(laneType, laneLimit, &laneIndex, &lhs, &rhs)) {
+ return false;
+ }
+
+ f.iter().setResult(f.replaceLaneSimd128(lhs, rhs, laneIndex, op));
+ return true;
+}
+
+static bool EmitBitselectSimd128(FunctionCompiler& f) {
+ MDefinition* v1;
+ MDefinition* v2;
+ MDefinition* control;
+ if (!f.iter().readVectorSelect(&v1, &v2, &control)) {
+ return false;
+ }
+
+ f.iter().setResult(f.bitselectSimd128(v1, v2, control));
+ return true;
+}
+
+static bool EmitShuffleSimd128(FunctionCompiler& f) {
+ MDefinition* v1;
+ MDefinition* v2;
+ V128 control;
+ if (!f.iter().readVectorShuffle(&v1, &v2, &control)) {
+ return false;
+ }
+
+# ifdef ENABLE_WASM_SIMD_WORMHOLE
+ static const uint8_t trigger[] = {31, 0, 30, 2, 29, 4, 28, 6,
+ 27, 8, 26, 10, 25, 12, 24};
+ static_assert(sizeof(trigger) == 15);
+
+ if (f.moduleEnv().features.simdWormhole &&
+ memcmp(control.bytes, trigger, sizeof(trigger)) == 0) {
+ switch (control.bytes[15]) {
+ case 0:
+ f.iter().setResult(
+ f.binarySimd128(v1, v2, false, wasm::SimdOp::MozWHSELFTEST));
+ return true;
+# if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
+ case 1:
+ f.iter().setResult(
+ f.binarySimd128(v1, v2, false, wasm::SimdOp::MozWHPMADDUBSW));
+ return true;
+ case 2:
+ f.iter().setResult(
+ f.binarySimd128(v1, v2, false, wasm::SimdOp::MozWHPMADDWD));
+ return true;
+# endif
+ default:
+ return f.iter().fail("Unrecognized wormhole opcode");
+ }
+ }
+# endif
+
+ f.iter().setResult(f.shuffleSimd128(v1, v2, control));
+ return true;
+}
+
+static bool EmitLoadSplatSimd128(FunctionCompiler& f, Scalar::Type viewType,
+ wasm::SimdOp splatOp) {
+ LinearMemoryAddress<MDefinition*> addr;
+ if (!f.iter().readLoadSplat(Scalar::byteSize(viewType), &addr)) {
+ return false;
+ }
+
+ f.iter().setResult(f.loadSplatSimd128(viewType, addr, splatOp));
+ return true;
+}
+
+static bool EmitLoadExtendSimd128(FunctionCompiler& f, wasm::SimdOp op) {
+ LinearMemoryAddress<MDefinition*> addr;
+ if (!f.iter().readLoadExtend(&addr)) {
+ return false;
+ }
+
+ f.iter().setResult(f.loadExtendSimd128(addr, op));
+ return true;
+}
+
+static bool EmitLoadZeroSimd128(FunctionCompiler& f, Scalar::Type viewType,
+ size_t numBytes) {
+ LinearMemoryAddress<MDefinition*> addr;
+ if (!f.iter().readLoadSplat(numBytes, &addr)) {
+ return false;
+ }
+
+ f.iter().setResult(f.loadZeroSimd128(viewType, numBytes, addr));
+ return true;
+}
+#endif
+
+static bool EmitBodyExprs(FunctionCompiler& f) {
+ if (!f.iter().readFunctionStart(f.funcIndex())) {
+ return false;
+ }
+
+#define CHECK(c) \
+ if (!(c)) return false; \
+ break
+
+#ifdef ENABLE_WASM_SIMD_EXPERIMENTAL
+# define CHECK_SIMD_EXPERIMENTAL() (void)(0)
+#else
+# define CHECK_SIMD_EXPERIMENTAL() return f.iter().unrecognizedOpcode(&op)
+#endif
+
+ while (true) {
+ if (!f.mirGen().ensureBallast()) {
+ return false;
+ }
+
+ OpBytes op;
+ if (!f.iter().readOp(&op)) {
+ return false;
+ }
+
+ switch (op.b0) {
+ case uint16_t(Op::End):
+ if (!EmitEnd(f)) {
+ return false;
+ }
+ if (f.iter().controlStackEmpty()) {
+ return true;
+ }
+ break;
+
+ // Control opcodes
+ case uint16_t(Op::Unreachable):
+ CHECK(EmitUnreachable(f));
+ case uint16_t(Op::Nop):
+ CHECK(f.iter().readNop());
+ case uint16_t(Op::Block):
+ CHECK(EmitBlock(f));
+ case uint16_t(Op::Loop):
+ CHECK(EmitLoop(f));
+ case uint16_t(Op::If):
+ CHECK(EmitIf(f));
+ case uint16_t(Op::Else):
+ CHECK(EmitElse(f));
+#ifdef ENABLE_WASM_EXCEPTIONS
+ case uint16_t(Op::Try):
+ if (!f.moduleEnv().exceptionsEnabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ CHECK(EmitTry(f));
+ case uint16_t(Op::Catch):
+ if (!f.moduleEnv().exceptionsEnabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ CHECK(EmitCatch(f));
+ case uint16_t(Op::Throw):
+ if (!f.moduleEnv().exceptionsEnabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ CHECK(EmitThrow(f));
+#endif
+ case uint16_t(Op::Br):
+ CHECK(EmitBr(f));
+ case uint16_t(Op::BrIf):
+ CHECK(EmitBrIf(f));
+ case uint16_t(Op::BrTable):
+ CHECK(EmitBrTable(f));
+ case uint16_t(Op::Return):
+ CHECK(EmitReturn(f));
+
+ // Calls
+ case uint16_t(Op::Call):
+ CHECK(EmitCall(f, /* asmJSFuncDef = */ false));
+ case uint16_t(Op::CallIndirect):
+ CHECK(EmitCallIndirect(f, /* oldStyle = */ false));
+
+ // Parametric operators
+ case uint16_t(Op::Drop):
+ CHECK(f.iter().readDrop());
+ case uint16_t(Op::SelectNumeric):
+ CHECK(EmitSelect(f, /*typed*/ false));
+ case uint16_t(Op::SelectTyped):
+ if (!f.moduleEnv().refTypesEnabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ CHECK(EmitSelect(f, /*typed*/ true));
+
+ // Locals and globals
+ case uint16_t(Op::GetLocal):
+ CHECK(EmitGetLocal(f));
+ case uint16_t(Op::SetLocal):
+ CHECK(EmitSetLocal(f));
+ case uint16_t(Op::TeeLocal):
+ CHECK(EmitTeeLocal(f));
+ case uint16_t(Op::GetGlobal):
+ CHECK(EmitGetGlobal(f));
+ case uint16_t(Op::SetGlobal):
+ CHECK(EmitSetGlobal(f));
+#ifdef ENABLE_WASM_REFTYPES
+ case uint16_t(Op::TableGet):
+ CHECK(EmitTableGet(f));
+ case uint16_t(Op::TableSet):
+ CHECK(EmitTableSet(f));
+#endif
+
+ // Memory-related operators
+ case uint16_t(Op::I32Load):
+ CHECK(EmitLoad(f, ValType::I32, Scalar::Int32));
+ case uint16_t(Op::I64Load):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Int64));
+ case uint16_t(Op::F32Load):
+ CHECK(EmitLoad(f, ValType::F32, Scalar::Float32));
+ case uint16_t(Op::F64Load):
+ CHECK(EmitLoad(f, ValType::F64, Scalar::Float64));
+ case uint16_t(Op::I32Load8S):
+ CHECK(EmitLoad(f, ValType::I32, Scalar::Int8));
+ case uint16_t(Op::I32Load8U):
+ CHECK(EmitLoad(f, ValType::I32, Scalar::Uint8));
+ case uint16_t(Op::I32Load16S):
+ CHECK(EmitLoad(f, ValType::I32, Scalar::Int16));
+ case uint16_t(Op::I32Load16U):
+ CHECK(EmitLoad(f, ValType::I32, Scalar::Uint16));
+ case uint16_t(Op::I64Load8S):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Int8));
+ case uint16_t(Op::I64Load8U):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Uint8));
+ case uint16_t(Op::I64Load16S):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Int16));
+ case uint16_t(Op::I64Load16U):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Uint16));
+ case uint16_t(Op::I64Load32S):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Int32));
+ case uint16_t(Op::I64Load32U):
+ CHECK(EmitLoad(f, ValType::I64, Scalar::Uint32));
+ case uint16_t(Op::I32Store):
+ CHECK(EmitStore(f, ValType::I32, Scalar::Int32));
+ case uint16_t(Op::I64Store):
+ CHECK(EmitStore(f, ValType::I64, Scalar::Int64));
+ case uint16_t(Op::F32Store):
+ CHECK(EmitStore(f, ValType::F32, Scalar::Float32));
+ case uint16_t(Op::F64Store):
+ CHECK(EmitStore(f, ValType::F64, Scalar::Float64));
+ case uint16_t(Op::I32Store8):
+ CHECK(EmitStore(f, ValType::I32, Scalar::Int8));
+ case uint16_t(Op::I32Store16):
+ CHECK(EmitStore(f, ValType::I32, Scalar::Int16));
+ case uint16_t(Op::I64Store8):
+ CHECK(EmitStore(f, ValType::I64, Scalar::Int8));
+ case uint16_t(Op::I64Store16):
+ CHECK(EmitStore(f, ValType::I64, Scalar::Int16));
+ case uint16_t(Op::I64Store32):
+ CHECK(EmitStore(f, ValType::I64, Scalar::Int32));
+ case uint16_t(Op::MemorySize):
+ CHECK(EmitMemorySize(f));
+ case uint16_t(Op::MemoryGrow):
+ CHECK(EmitMemoryGrow(f));
+
+ // Constants
+ case uint16_t(Op::I32Const):
+ CHECK(EmitI32Const(f));
+ case uint16_t(Op::I64Const):
+ CHECK(EmitI64Const(f));
+ case uint16_t(Op::F32Const):
+ CHECK(EmitF32Const(f));
+ case uint16_t(Op::F64Const):
+ CHECK(EmitF64Const(f));
+
+ // Comparison operators
+ case uint16_t(Op::I32Eqz):
+ CHECK(EmitConversion<MNot>(f, ValType::I32, ValType::I32));
+ case uint16_t(Op::I32Eq):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Eq, MCompare::Compare_Int32));
+ case uint16_t(Op::I32Ne):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Ne, MCompare::Compare_Int32));
+ case uint16_t(Op::I32LtS):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Lt, MCompare::Compare_Int32));
+ case uint16_t(Op::I32LtU):
+ CHECK(EmitComparison(f, ValType::I32, JSOp::Lt,
+ MCompare::Compare_UInt32));
+ case uint16_t(Op::I32GtS):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Gt, MCompare::Compare_Int32));
+ case uint16_t(Op::I32GtU):
+ CHECK(EmitComparison(f, ValType::I32, JSOp::Gt,
+ MCompare::Compare_UInt32));
+ case uint16_t(Op::I32LeS):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Le, MCompare::Compare_Int32));
+ case uint16_t(Op::I32LeU):
+ CHECK(EmitComparison(f, ValType::I32, JSOp::Le,
+ MCompare::Compare_UInt32));
+ case uint16_t(Op::I32GeS):
+ CHECK(
+ EmitComparison(f, ValType::I32, JSOp::Ge, MCompare::Compare_Int32));
+ case uint16_t(Op::I32GeU):
+ CHECK(EmitComparison(f, ValType::I32, JSOp::Ge,
+ MCompare::Compare_UInt32));
+ case uint16_t(Op::I64Eqz):
+ CHECK(EmitConversion<MNot>(f, ValType::I64, ValType::I32));
+ case uint16_t(Op::I64Eq):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Eq, MCompare::Compare_Int64));
+ case uint16_t(Op::I64Ne):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Ne, MCompare::Compare_Int64));
+ case uint16_t(Op::I64LtS):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Lt, MCompare::Compare_Int64));
+ case uint16_t(Op::I64LtU):
+ CHECK(EmitComparison(f, ValType::I64, JSOp::Lt,
+ MCompare::Compare_UInt64));
+ case uint16_t(Op::I64GtS):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Gt, MCompare::Compare_Int64));
+ case uint16_t(Op::I64GtU):
+ CHECK(EmitComparison(f, ValType::I64, JSOp::Gt,
+ MCompare::Compare_UInt64));
+ case uint16_t(Op::I64LeS):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Le, MCompare::Compare_Int64));
+ case uint16_t(Op::I64LeU):
+ CHECK(EmitComparison(f, ValType::I64, JSOp::Le,
+ MCompare::Compare_UInt64));
+ case uint16_t(Op::I64GeS):
+ CHECK(
+ EmitComparison(f, ValType::I64, JSOp::Ge, MCompare::Compare_Int64));
+ case uint16_t(Op::I64GeU):
+ CHECK(EmitComparison(f, ValType::I64, JSOp::Ge,
+ MCompare::Compare_UInt64));
+ case uint16_t(Op::F32Eq):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Eq,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F32Ne):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Ne,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F32Lt):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Lt,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F32Gt):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Gt,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F32Le):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Le,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F32Ge):
+ CHECK(EmitComparison(f, ValType::F32, JSOp::Ge,
+ MCompare::Compare_Float32));
+ case uint16_t(Op::F64Eq):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Eq,
+ MCompare::Compare_Double));
+ case uint16_t(Op::F64Ne):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Ne,
+ MCompare::Compare_Double));
+ case uint16_t(Op::F64Lt):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Lt,
+ MCompare::Compare_Double));
+ case uint16_t(Op::F64Gt):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Gt,
+ MCompare::Compare_Double));
+ case uint16_t(Op::F64Le):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Le,
+ MCompare::Compare_Double));
+ case uint16_t(Op::F64Ge):
+ CHECK(EmitComparison(f, ValType::F64, JSOp::Ge,
+ MCompare::Compare_Double));
+
+ // Numeric operators
+ case uint16_t(Op::I32Clz):
+ CHECK(EmitUnaryWithType<MClz>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Ctz):
+ CHECK(EmitUnaryWithType<MCtz>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Popcnt):
+ CHECK(EmitUnaryWithType<MPopcnt>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Add):
+ CHECK(EmitAdd(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Sub):
+ CHECK(EmitSub(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Mul):
+ CHECK(EmitMul(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32DivS):
+ case uint16_t(Op::I32DivU):
+ CHECK(
+ EmitDiv(f, ValType::I32, MIRType::Int32, Op(op.b0) == Op::I32DivU));
+ case uint16_t(Op::I32RemS):
+ case uint16_t(Op::I32RemU):
+ CHECK(
+ EmitRem(f, ValType::I32, MIRType::Int32, Op(op.b0) == Op::I32RemU));
+ case uint16_t(Op::I32And):
+ CHECK(EmitBitwise<MBitAnd>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Or):
+ CHECK(EmitBitwise<MBitOr>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Xor):
+ CHECK(EmitBitwise<MBitXor>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Shl):
+ CHECK(EmitBitwise<MLsh>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32ShrS):
+ CHECK(EmitBitwise<MRsh>(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32ShrU):
+ CHECK(EmitUrsh(f, ValType::I32, MIRType::Int32));
+ case uint16_t(Op::I32Rotl):
+ case uint16_t(Op::I32Rotr):
+ CHECK(EmitRotate(f, ValType::I32, Op(op.b0) == Op::I32Rotl));
+ case uint16_t(Op::I64Clz):
+ CHECK(EmitUnaryWithType<MClz>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Ctz):
+ CHECK(EmitUnaryWithType<MCtz>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Popcnt):
+ CHECK(EmitUnaryWithType<MPopcnt>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Add):
+ CHECK(EmitAdd(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Sub):
+ CHECK(EmitSub(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Mul):
+ CHECK(EmitMul(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64DivS):
+ case uint16_t(Op::I64DivU):
+ CHECK(
+ EmitDiv(f, ValType::I64, MIRType::Int64, Op(op.b0) == Op::I64DivU));
+ case uint16_t(Op::I64RemS):
+ case uint16_t(Op::I64RemU):
+ CHECK(
+ EmitRem(f, ValType::I64, MIRType::Int64, Op(op.b0) == Op::I64RemU));
+ case uint16_t(Op::I64And):
+ CHECK(EmitBitwise<MBitAnd>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Or):
+ CHECK(EmitBitwise<MBitOr>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Xor):
+ CHECK(EmitBitwise<MBitXor>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Shl):
+ CHECK(EmitBitwise<MLsh>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64ShrS):
+ CHECK(EmitBitwise<MRsh>(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64ShrU):
+ CHECK(EmitUrsh(f, ValType::I64, MIRType::Int64));
+ case uint16_t(Op::I64Rotl):
+ case uint16_t(Op::I64Rotr):
+ CHECK(EmitRotate(f, ValType::I64, Op(op.b0) == Op::I64Rotl));
+ case uint16_t(Op::F32Abs):
+ CHECK(EmitUnaryWithType<MAbs>(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Neg):
+ CHECK(EmitUnaryWithType<MWasmNeg>(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Ceil):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigCeilF));
+ case uint16_t(Op::F32Floor):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigFloorF));
+ case uint16_t(Op::F32Trunc):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigTruncF));
+ case uint16_t(Op::F32Nearest):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigNearbyIntF));
+ case uint16_t(Op::F32Sqrt):
+ CHECK(EmitUnaryWithType<MSqrt>(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Add):
+ CHECK(EmitAdd(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Sub):
+ CHECK(EmitSub(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Mul):
+ CHECK(EmitMul(f, ValType::F32, MIRType::Float32));
+ case uint16_t(Op::F32Div):
+ CHECK(EmitDiv(f, ValType::F32, MIRType::Float32,
+ /* isUnsigned = */ false));
+ case uint16_t(Op::F32Min):
+ case uint16_t(Op::F32Max):
+ CHECK(EmitMinMax(f, ValType::F32, MIRType::Float32,
+ Op(op.b0) == Op::F32Max));
+ case uint16_t(Op::F32CopySign):
+ CHECK(EmitCopySign(f, ValType::F32));
+ case uint16_t(Op::F64Abs):
+ CHECK(EmitUnaryWithType<MAbs>(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Neg):
+ CHECK(EmitUnaryWithType<MWasmNeg>(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Ceil):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigCeilD));
+ case uint16_t(Op::F64Floor):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigFloorD));
+ case uint16_t(Op::F64Trunc):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigTruncD));
+ case uint16_t(Op::F64Nearest):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigNearbyIntD));
+ case uint16_t(Op::F64Sqrt):
+ CHECK(EmitUnaryWithType<MSqrt>(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Add):
+ CHECK(EmitAdd(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Sub):
+ CHECK(EmitSub(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Mul):
+ CHECK(EmitMul(f, ValType::F64, MIRType::Double));
+ case uint16_t(Op::F64Div):
+ CHECK(EmitDiv(f, ValType::F64, MIRType::Double,
+ /* isUnsigned = */ false));
+ case uint16_t(Op::F64Min):
+ case uint16_t(Op::F64Max):
+ CHECK(EmitMinMax(f, ValType::F64, MIRType::Double,
+ Op(op.b0) == Op::F64Max));
+ case uint16_t(Op::F64CopySign):
+ CHECK(EmitCopySign(f, ValType::F64));
+
+ // Conversions
+ case uint16_t(Op::I32WrapI64):
+ CHECK(EmitConversion<MWrapInt64ToInt32>(f, ValType::I64, ValType::I32));
+ case uint16_t(Op::I32TruncSF32):
+ case uint16_t(Op::I32TruncUF32):
+ CHECK(EmitTruncate(f, ValType::F32, ValType::I32,
+ Op(op.b0) == Op::I32TruncUF32, false));
+ case uint16_t(Op::I32TruncSF64):
+ case uint16_t(Op::I32TruncUF64):
+ CHECK(EmitTruncate(f, ValType::F64, ValType::I32,
+ Op(op.b0) == Op::I32TruncUF64, false));
+ case uint16_t(Op::I64ExtendSI32):
+ case uint16_t(Op::I64ExtendUI32):
+ CHECK(EmitExtendI32(f, Op(op.b0) == Op::I64ExtendUI32));
+ case uint16_t(Op::I64TruncSF32):
+ case uint16_t(Op::I64TruncUF32):
+ CHECK(EmitTruncate(f, ValType::F32, ValType::I64,
+ Op(op.b0) == Op::I64TruncUF32, false));
+ case uint16_t(Op::I64TruncSF64):
+ case uint16_t(Op::I64TruncUF64):
+ CHECK(EmitTruncate(f, ValType::F64, ValType::I64,
+ Op(op.b0) == Op::I64TruncUF64, false));
+ case uint16_t(Op::F32ConvertSI32):
+ CHECK(EmitConversion<MToFloat32>(f, ValType::I32, ValType::F32));
+ case uint16_t(Op::F32ConvertUI32):
+ CHECK(EmitConversion<MWasmUnsignedToFloat32>(f, ValType::I32,
+ ValType::F32));
+ case uint16_t(Op::F32ConvertSI64):
+ case uint16_t(Op::F32ConvertUI64):
+ CHECK(EmitConvertI64ToFloatingPoint(f, ValType::F32, MIRType::Float32,
+ Op(op.b0) == Op::F32ConvertUI64));
+ case uint16_t(Op::F32DemoteF64):
+ CHECK(EmitConversion<MToFloat32>(f, ValType::F64, ValType::F32));
+ case uint16_t(Op::F64ConvertSI32):
+ CHECK(EmitConversion<MToDouble>(f, ValType::I32, ValType::F64));
+ case uint16_t(Op::F64ConvertUI32):
+ CHECK(EmitConversion<MWasmUnsignedToDouble>(f, ValType::I32,
+ ValType::F64));
+ case uint16_t(Op::F64ConvertSI64):
+ case uint16_t(Op::F64ConvertUI64):
+ CHECK(EmitConvertI64ToFloatingPoint(f, ValType::F64, MIRType::Double,
+ Op(op.b0) == Op::F64ConvertUI64));
+ case uint16_t(Op::F64PromoteF32):
+ CHECK(EmitConversion<MToDouble>(f, ValType::F32, ValType::F64));
+
+ // Reinterpretations
+ case uint16_t(Op::I32ReinterpretF32):
+ CHECK(EmitReinterpret(f, ValType::I32, ValType::F32, MIRType::Int32));
+ case uint16_t(Op::I64ReinterpretF64):
+ CHECK(EmitReinterpret(f, ValType::I64, ValType::F64, MIRType::Int64));
+ case uint16_t(Op::F32ReinterpretI32):
+ CHECK(EmitReinterpret(f, ValType::F32, ValType::I32, MIRType::Float32));
+ case uint16_t(Op::F64ReinterpretI64):
+ CHECK(EmitReinterpret(f, ValType::F64, ValType::I64, MIRType::Double));
+
+#ifdef ENABLE_WASM_GC
+ case uint16_t(Op::RefEq):
+ if (!f.moduleEnv().gcTypesEnabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ CHECK(EmitComparison(f, RefType::extern_(), JSOp::Eq,
+ MCompare::Compare_RefOrNull));
+#endif
+#ifdef ENABLE_WASM_REFTYPES
+ case uint16_t(Op::RefFunc):
+ CHECK(EmitRefFunc(f));
+ case uint16_t(Op::RefNull):
+ CHECK(EmitRefNull(f));
+ case uint16_t(Op::RefIsNull):
+ CHECK(EmitRefIsNull(f));
+#endif
+
+ // Sign extensions
+ case uint16_t(Op::I32Extend8S):
+ CHECK(EmitSignExtend(f, 1, 4));
+ case uint16_t(Op::I32Extend16S):
+ CHECK(EmitSignExtend(f, 2, 4));
+ case uint16_t(Op::I64Extend8S):
+ CHECK(EmitSignExtend(f, 1, 8));
+ case uint16_t(Op::I64Extend16S):
+ CHECK(EmitSignExtend(f, 2, 8));
+ case uint16_t(Op::I64Extend32S):
+ CHECK(EmitSignExtend(f, 4, 8));
+
+ // Gc operations
+#ifdef ENABLE_WASM_GC
+ case uint16_t(Op::GcPrefix): {
+ switch (op.b1) {
+ case uint32_t(GcOp::StructNew):
+ case uint32_t(GcOp::StructGet):
+ case uint32_t(GcOp::StructSet):
+ case uint32_t(GcOp::StructNarrow):
+ // Not yet supported
+ return f.iter().unrecognizedOpcode(&op);
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ }
+#endif
+
+ // SIMD operations
+#ifdef ENABLE_WASM_SIMD
+ case uint16_t(Op::SimdPrefix): {
+ if (!f.moduleEnv().v128Enabled()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ switch (op.b1) {
+ case uint32_t(SimdOp::V128Const):
+ CHECK(EmitConstSimd128(f));
+ case uint32_t(SimdOp::V128Load):
+ CHECK(EmitLoad(f, ValType::V128, Scalar::Simd128));
+ case uint32_t(SimdOp::V128Store):
+ CHECK(EmitStore(f, ValType::V128, Scalar::Simd128));
+ case uint32_t(SimdOp::V128And):
+ case uint32_t(SimdOp::V128Or):
+ case uint32_t(SimdOp::V128Xor):
+ case uint32_t(SimdOp::I8x16AvgrU):
+ case uint32_t(SimdOp::I16x8AvgrU):
+ case uint32_t(SimdOp::I8x16Add):
+ case uint32_t(SimdOp::I8x16AddSaturateS):
+ case uint32_t(SimdOp::I8x16AddSaturateU):
+ case uint32_t(SimdOp::I8x16MinS):
+ case uint32_t(SimdOp::I8x16MinU):
+ case uint32_t(SimdOp::I8x16MaxS):
+ case uint32_t(SimdOp::I8x16MaxU):
+ case uint32_t(SimdOp::I16x8Add):
+ case uint32_t(SimdOp::I16x8AddSaturateS):
+ case uint32_t(SimdOp::I16x8AddSaturateU):
+ case uint32_t(SimdOp::I16x8Mul):
+ case uint32_t(SimdOp::I16x8MinS):
+ case uint32_t(SimdOp::I16x8MinU):
+ case uint32_t(SimdOp::I16x8MaxS):
+ case uint32_t(SimdOp::I16x8MaxU):
+ case uint32_t(SimdOp::I32x4Add):
+ case uint32_t(SimdOp::I32x4Mul):
+ case uint32_t(SimdOp::I32x4MinS):
+ case uint32_t(SimdOp::I32x4MinU):
+ case uint32_t(SimdOp::I32x4MaxS):
+ case uint32_t(SimdOp::I32x4MaxU):
+ case uint32_t(SimdOp::I64x2Add):
+ case uint32_t(SimdOp::I64x2Mul):
+ case uint32_t(SimdOp::F32x4Add):
+ case uint32_t(SimdOp::F32x4Mul):
+ case uint32_t(SimdOp::F32x4Min):
+ case uint32_t(SimdOp::F32x4Max):
+ case uint32_t(SimdOp::F64x2Add):
+ case uint32_t(SimdOp::F64x2Mul):
+ case uint32_t(SimdOp::F64x2Min):
+ case uint32_t(SimdOp::F64x2Max):
+ case uint32_t(SimdOp::I8x16Eq):
+ case uint32_t(SimdOp::I8x16Ne):
+ case uint32_t(SimdOp::I16x8Eq):
+ case uint32_t(SimdOp::I16x8Ne):
+ case uint32_t(SimdOp::I32x4Eq):
+ case uint32_t(SimdOp::I32x4Ne):
+ case uint32_t(SimdOp::F32x4Eq):
+ case uint32_t(SimdOp::F32x4Ne):
+ case uint32_t(SimdOp::F64x2Eq):
+ case uint32_t(SimdOp::F64x2Ne):
+ case uint32_t(SimdOp::I32x4DotSI16x8):
+ CHECK(EmitBinarySimd128(f, /* commutative= */ true, SimdOp(op.b1)));
+ case uint32_t(SimdOp::V128AndNot):
+ case uint32_t(SimdOp::I8x16Sub):
+ case uint32_t(SimdOp::I8x16SubSaturateS):
+ case uint32_t(SimdOp::I8x16SubSaturateU):
+ case uint32_t(SimdOp::I16x8Sub):
+ case uint32_t(SimdOp::I16x8SubSaturateS):
+ case uint32_t(SimdOp::I16x8SubSaturateU):
+ case uint32_t(SimdOp::I32x4Sub):
+ case uint32_t(SimdOp::I64x2Sub):
+ case uint32_t(SimdOp::F32x4Sub):
+ case uint32_t(SimdOp::F32x4Div):
+ case uint32_t(SimdOp::F64x2Sub):
+ case uint32_t(SimdOp::F64x2Div):
+ case uint32_t(SimdOp::I8x16NarrowSI16x8):
+ case uint32_t(SimdOp::I8x16NarrowUI16x8):
+ case uint32_t(SimdOp::I16x8NarrowSI32x4):
+ case uint32_t(SimdOp::I16x8NarrowUI32x4):
+ case uint32_t(SimdOp::I8x16LtS):
+ case uint32_t(SimdOp::I8x16LtU):
+ case uint32_t(SimdOp::I8x16GtS):
+ case uint32_t(SimdOp::I8x16GtU):
+ case uint32_t(SimdOp::I8x16LeS):
+ case uint32_t(SimdOp::I8x16LeU):
+ case uint32_t(SimdOp::I8x16GeS):
+ case uint32_t(SimdOp::I8x16GeU):
+ case uint32_t(SimdOp::I16x8LtS):
+ case uint32_t(SimdOp::I16x8LtU):
+ case uint32_t(SimdOp::I16x8GtS):
+ case uint32_t(SimdOp::I16x8GtU):
+ case uint32_t(SimdOp::I16x8LeS):
+ case uint32_t(SimdOp::I16x8LeU):
+ case uint32_t(SimdOp::I16x8GeS):
+ case uint32_t(SimdOp::I16x8GeU):
+ case uint32_t(SimdOp::I32x4LtS):
+ case uint32_t(SimdOp::I32x4LtU):
+ case uint32_t(SimdOp::I32x4GtS):
+ case uint32_t(SimdOp::I32x4GtU):
+ case uint32_t(SimdOp::I32x4LeS):
+ case uint32_t(SimdOp::I32x4LeU):
+ case uint32_t(SimdOp::I32x4GeS):
+ case uint32_t(SimdOp::I32x4GeU):
+ case uint32_t(SimdOp::F32x4Lt):
+ case uint32_t(SimdOp::F32x4Gt):
+ case uint32_t(SimdOp::F32x4Le):
+ case uint32_t(SimdOp::F32x4Ge):
+ case uint32_t(SimdOp::F64x2Lt):
+ case uint32_t(SimdOp::F64x2Gt):
+ case uint32_t(SimdOp::F64x2Le):
+ case uint32_t(SimdOp::F64x2Ge):
+ case uint32_t(SimdOp::V8x16Swizzle):
+ case uint32_t(SimdOp::F32x4PMax):
+ case uint32_t(SimdOp::F32x4PMin):
+ case uint32_t(SimdOp::F64x2PMax):
+ case uint32_t(SimdOp::F64x2PMin):
+ CHECK(
+ EmitBinarySimd128(f, /* commutative= */ false, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16Splat):
+ case uint32_t(SimdOp::I16x8Splat):
+ case uint32_t(SimdOp::I32x4Splat):
+ CHECK(EmitSplatSimd128(f, ValType::I32, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I64x2Splat):
+ CHECK(EmitSplatSimd128(f, ValType::I64, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F32x4Splat):
+ CHECK(EmitSplatSimd128(f, ValType::F32, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F64x2Splat):
+ CHECK(EmitSplatSimd128(f, ValType::F64, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16Neg):
+ case uint32_t(SimdOp::I16x8Neg):
+ case uint32_t(SimdOp::I16x8WidenLowSI8x16):
+ case uint32_t(SimdOp::I16x8WidenHighSI8x16):
+ case uint32_t(SimdOp::I16x8WidenLowUI8x16):
+ case uint32_t(SimdOp::I16x8WidenHighUI8x16):
+ case uint32_t(SimdOp::I32x4Neg):
+ case uint32_t(SimdOp::I32x4WidenLowSI16x8):
+ case uint32_t(SimdOp::I32x4WidenHighSI16x8):
+ case uint32_t(SimdOp::I32x4WidenLowUI16x8):
+ case uint32_t(SimdOp::I32x4WidenHighUI16x8):
+ case uint32_t(SimdOp::I32x4TruncSSatF32x4):
+ case uint32_t(SimdOp::I32x4TruncUSatF32x4):
+ case uint32_t(SimdOp::I64x2Neg):
+ case uint32_t(SimdOp::F32x4Abs):
+ case uint32_t(SimdOp::F32x4Neg):
+ case uint32_t(SimdOp::F32x4Sqrt):
+ case uint32_t(SimdOp::F32x4ConvertSI32x4):
+ case uint32_t(SimdOp::F32x4ConvertUI32x4):
+ case uint32_t(SimdOp::F64x2Abs):
+ case uint32_t(SimdOp::F64x2Neg):
+ case uint32_t(SimdOp::F64x2Sqrt):
+ case uint32_t(SimdOp::V128Not):
+ case uint32_t(SimdOp::I8x16Abs):
+ case uint32_t(SimdOp::I16x8Abs):
+ case uint32_t(SimdOp::I32x4Abs):
+ case uint32_t(SimdOp::F32x4Ceil):
+ case uint32_t(SimdOp::F32x4Floor):
+ case uint32_t(SimdOp::F32x4Trunc):
+ case uint32_t(SimdOp::F32x4Nearest):
+ case uint32_t(SimdOp::F64x2Ceil):
+ case uint32_t(SimdOp::F64x2Floor):
+ case uint32_t(SimdOp::F64x2Trunc):
+ case uint32_t(SimdOp::F64x2Nearest):
+ CHECK(EmitUnarySimd128(f, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16AnyTrue):
+ case uint32_t(SimdOp::I16x8AnyTrue):
+ case uint32_t(SimdOp::I32x4AnyTrue):
+ case uint32_t(SimdOp::I8x16AllTrue):
+ case uint32_t(SimdOp::I16x8AllTrue):
+ case uint32_t(SimdOp::I32x4AllTrue):
+ case uint32_t(SimdOp::I8x16Bitmask):
+ case uint32_t(SimdOp::I16x8Bitmask):
+ case uint32_t(SimdOp::I32x4Bitmask):
+ CHECK(EmitReduceSimd128(f, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16Shl):
+ case uint32_t(SimdOp::I8x16ShrS):
+ case uint32_t(SimdOp::I8x16ShrU):
+ case uint32_t(SimdOp::I16x8Shl):
+ case uint32_t(SimdOp::I16x8ShrS):
+ case uint32_t(SimdOp::I16x8ShrU):
+ case uint32_t(SimdOp::I32x4Shl):
+ case uint32_t(SimdOp::I32x4ShrS):
+ case uint32_t(SimdOp::I32x4ShrU):
+ case uint32_t(SimdOp::I64x2Shl):
+ case uint32_t(SimdOp::I64x2ShrS):
+ case uint32_t(SimdOp::I64x2ShrU):
+ CHECK(EmitShiftSimd128(f, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16ExtractLaneS):
+ case uint32_t(SimdOp::I8x16ExtractLaneU):
+ CHECK(EmitExtractLaneSimd128(f, ValType::I32, 16, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I16x8ExtractLaneS):
+ case uint32_t(SimdOp::I16x8ExtractLaneU):
+ CHECK(EmitExtractLaneSimd128(f, ValType::I32, 8, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I32x4ExtractLane):
+ CHECK(EmitExtractLaneSimd128(f, ValType::I32, 4, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I64x2ExtractLane):
+ CHECK(EmitExtractLaneSimd128(f, ValType::I64, 2, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F32x4ExtractLane):
+ CHECK(EmitExtractLaneSimd128(f, ValType::F32, 4, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F64x2ExtractLane):
+ CHECK(EmitExtractLaneSimd128(f, ValType::F64, 2, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I8x16ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::I32, 16, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I16x8ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::I32, 8, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I32x4ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::I32, 4, SimdOp(op.b1)));
+ case uint32_t(SimdOp::I64x2ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::I64, 2, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F32x4ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::F32, 4, SimdOp(op.b1)));
+ case uint32_t(SimdOp::F64x2ReplaceLane):
+ CHECK(EmitReplaceLaneSimd128(f, ValType::F64, 2, SimdOp(op.b1)));
+ case uint32_t(SimdOp::V128Bitselect):
+ CHECK(EmitBitselectSimd128(f));
+ case uint32_t(SimdOp::V8x16Shuffle):
+ CHECK(EmitShuffleSimd128(f));
+ case uint32_t(SimdOp::V8x16LoadSplat):
+ CHECK(EmitLoadSplatSimd128(f, Scalar::Uint8, SimdOp::I8x16Splat));
+ case uint32_t(SimdOp::V16x8LoadSplat):
+ CHECK(EmitLoadSplatSimd128(f, Scalar::Uint16, SimdOp::I16x8Splat));
+ case uint32_t(SimdOp::V32x4LoadSplat):
+ CHECK(EmitLoadSplatSimd128(f, Scalar::Float32, SimdOp::I32x4Splat));
+ case uint32_t(SimdOp::V64x2LoadSplat):
+ CHECK(EmitLoadSplatSimd128(f, Scalar::Float64, SimdOp::I64x2Splat));
+ case uint32_t(SimdOp::I16x8LoadS8x8):
+ case uint32_t(SimdOp::I16x8LoadU8x8):
+ case uint32_t(SimdOp::I32x4LoadS16x4):
+ case uint32_t(SimdOp::I32x4LoadU16x4):
+ case uint32_t(SimdOp::I64x2LoadS32x2):
+ case uint32_t(SimdOp::I64x2LoadU32x2):
+ CHECK(EmitLoadExtendSimd128(f, SimdOp(op.b1)));
+ case uint32_t(SimdOp::V128Load32Zero):
+ CHECK(EmitLoadZeroSimd128(f, Scalar::Float32, 4));
+ case uint32_t(SimdOp::V128Load64Zero):
+ CHECK(EmitLoadZeroSimd128(f, Scalar::Float64, 8));
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ } // switch (op.b1)
+ break;
+ }
+#endif
+
+ // Miscellaneous operations
+ case uint16_t(Op::MiscPrefix): {
+ switch (op.b1) {
+ case uint32_t(MiscOp::I32TruncSSatF32):
+ case uint32_t(MiscOp::I32TruncUSatF32):
+ CHECK(EmitTruncate(f, ValType::F32, ValType::I32,
+ MiscOp(op.b1) == MiscOp::I32TruncUSatF32, true));
+ case uint32_t(MiscOp::I32TruncSSatF64):
+ case uint32_t(MiscOp::I32TruncUSatF64):
+ CHECK(EmitTruncate(f, ValType::F64, ValType::I32,
+ MiscOp(op.b1) == MiscOp::I32TruncUSatF64, true));
+ case uint32_t(MiscOp::I64TruncSSatF32):
+ case uint32_t(MiscOp::I64TruncUSatF32):
+ CHECK(EmitTruncate(f, ValType::F32, ValType::I64,
+ MiscOp(op.b1) == MiscOp::I64TruncUSatF32, true));
+ case uint32_t(MiscOp::I64TruncSSatF64):
+ case uint32_t(MiscOp::I64TruncUSatF64):
+ CHECK(EmitTruncate(f, ValType::F64, ValType::I64,
+ MiscOp(op.b1) == MiscOp::I64TruncUSatF64, true));
+ case uint32_t(MiscOp::MemCopy):
+ CHECK(EmitMemCopy(f));
+ case uint32_t(MiscOp::DataDrop):
+ CHECK(EmitDataOrElemDrop(f, /*isData=*/true));
+ case uint32_t(MiscOp::MemFill):
+ CHECK(EmitMemFill(f));
+ case uint32_t(MiscOp::MemInit):
+ CHECK(EmitMemOrTableInit(f, /*isMem=*/true));
+ case uint32_t(MiscOp::TableCopy):
+ CHECK(EmitTableCopy(f));
+ case uint32_t(MiscOp::ElemDrop):
+ CHECK(EmitDataOrElemDrop(f, /*isData=*/false));
+ case uint32_t(MiscOp::TableInit):
+ CHECK(EmitMemOrTableInit(f, /*isMem=*/false));
+#ifdef ENABLE_WASM_REFTYPES
+ case uint32_t(MiscOp::TableFill):
+ CHECK(EmitTableFill(f));
+ case uint32_t(MiscOp::TableGrow):
+ CHECK(EmitTableGrow(f));
+ case uint32_t(MiscOp::TableSize):
+ CHECK(EmitTableSize(f));
+#endif
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ break;
+ }
+
+ // Thread operations
+ case uint16_t(Op::ThreadPrefix): {
+ if (f.moduleEnv().sharedMemoryEnabled() == Shareable::False) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ switch (op.b1) {
+ case uint32_t(ThreadOp::Wake):
+ CHECK(EmitWake(f));
+
+ case uint32_t(ThreadOp::I32Wait):
+ CHECK(EmitWait(f, ValType::I32, 4));
+ case uint32_t(ThreadOp::I64Wait):
+ CHECK(EmitWait(f, ValType::I64, 8));
+ case uint32_t(ThreadOp::Fence):
+ CHECK(EmitFence(f));
+
+ case uint32_t(ThreadOp::I32AtomicLoad):
+ CHECK(EmitAtomicLoad(f, ValType::I32, Scalar::Int32));
+ case uint32_t(ThreadOp::I64AtomicLoad):
+ CHECK(EmitAtomicLoad(f, ValType::I64, Scalar::Int64));
+ case uint32_t(ThreadOp::I32AtomicLoad8U):
+ CHECK(EmitAtomicLoad(f, ValType::I32, Scalar::Uint8));
+ case uint32_t(ThreadOp::I32AtomicLoad16U):
+ CHECK(EmitAtomicLoad(f, ValType::I32, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicLoad8U):
+ CHECK(EmitAtomicLoad(f, ValType::I64, Scalar::Uint8));
+ case uint32_t(ThreadOp::I64AtomicLoad16U):
+ CHECK(EmitAtomicLoad(f, ValType::I64, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicLoad32U):
+ CHECK(EmitAtomicLoad(f, ValType::I64, Scalar::Uint32));
+
+ case uint32_t(ThreadOp::I32AtomicStore):
+ CHECK(EmitAtomicStore(f, ValType::I32, Scalar::Int32));
+ case uint32_t(ThreadOp::I64AtomicStore):
+ CHECK(EmitAtomicStore(f, ValType::I64, Scalar::Int64));
+ case uint32_t(ThreadOp::I32AtomicStore8U):
+ CHECK(EmitAtomicStore(f, ValType::I32, Scalar::Uint8));
+ case uint32_t(ThreadOp::I32AtomicStore16U):
+ CHECK(EmitAtomicStore(f, ValType::I32, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicStore8U):
+ CHECK(EmitAtomicStore(f, ValType::I64, Scalar::Uint8));
+ case uint32_t(ThreadOp::I64AtomicStore16U):
+ CHECK(EmitAtomicStore(f, ValType::I64, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicStore32U):
+ CHECK(EmitAtomicStore(f, ValType::I64, Scalar::Uint32));
+
+ case uint32_t(ThreadOp::I32AtomicAdd):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Int32,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I64AtomicAdd):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Int64,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I32AtomicAdd8U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint8,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I32AtomicAdd16U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint16,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I64AtomicAdd8U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint8,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I64AtomicAdd16U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint16,
+ AtomicFetchAddOp));
+ case uint32_t(ThreadOp::I64AtomicAdd32U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint32,
+ AtomicFetchAddOp));
+
+ case uint32_t(ThreadOp::I32AtomicSub):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Int32,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I64AtomicSub):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Int64,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I32AtomicSub8U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint8,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I32AtomicSub16U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint16,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I64AtomicSub8U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint8,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I64AtomicSub16U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint16,
+ AtomicFetchSubOp));
+ case uint32_t(ThreadOp::I64AtomicSub32U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint32,
+ AtomicFetchSubOp));
+
+ case uint32_t(ThreadOp::I32AtomicAnd):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Int32,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I64AtomicAnd):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Int64,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I32AtomicAnd8U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint8,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I32AtomicAnd16U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint16,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I64AtomicAnd8U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint8,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I64AtomicAnd16U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint16,
+ AtomicFetchAndOp));
+ case uint32_t(ThreadOp::I64AtomicAnd32U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint32,
+ AtomicFetchAndOp));
+
+ case uint32_t(ThreadOp::I32AtomicOr):
+ CHECK(
+ EmitAtomicRMW(f, ValType::I32, Scalar::Int32, AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I64AtomicOr):
+ CHECK(
+ EmitAtomicRMW(f, ValType::I64, Scalar::Int64, AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I32AtomicOr8U):
+ CHECK(
+ EmitAtomicRMW(f, ValType::I32, Scalar::Uint8, AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I32AtomicOr16U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint16,
+ AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I64AtomicOr8U):
+ CHECK(
+ EmitAtomicRMW(f, ValType::I64, Scalar::Uint8, AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I64AtomicOr16U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint16,
+ AtomicFetchOrOp));
+ case uint32_t(ThreadOp::I64AtomicOr32U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint32,
+ AtomicFetchOrOp));
+
+ case uint32_t(ThreadOp::I32AtomicXor):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Int32,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I64AtomicXor):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Int64,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I32AtomicXor8U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint8,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I32AtomicXor16U):
+ CHECK(EmitAtomicRMW(f, ValType::I32, Scalar::Uint16,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I64AtomicXor8U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint8,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I64AtomicXor16U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint16,
+ AtomicFetchXorOp));
+ case uint32_t(ThreadOp::I64AtomicXor32U):
+ CHECK(EmitAtomicRMW(f, ValType::I64, Scalar::Uint32,
+ AtomicFetchXorOp));
+
+ case uint32_t(ThreadOp::I32AtomicXchg):
+ CHECK(EmitAtomicXchg(f, ValType::I32, Scalar::Int32));
+ case uint32_t(ThreadOp::I64AtomicXchg):
+ CHECK(EmitAtomicXchg(f, ValType::I64, Scalar::Int64));
+ case uint32_t(ThreadOp::I32AtomicXchg8U):
+ CHECK(EmitAtomicXchg(f, ValType::I32, Scalar::Uint8));
+ case uint32_t(ThreadOp::I32AtomicXchg16U):
+ CHECK(EmitAtomicXchg(f, ValType::I32, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicXchg8U):
+ CHECK(EmitAtomicXchg(f, ValType::I64, Scalar::Uint8));
+ case uint32_t(ThreadOp::I64AtomicXchg16U):
+ CHECK(EmitAtomicXchg(f, ValType::I64, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicXchg32U):
+ CHECK(EmitAtomicXchg(f, ValType::I64, Scalar::Uint32));
+
+ case uint32_t(ThreadOp::I32AtomicCmpXchg):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I32, Scalar::Int32));
+ case uint32_t(ThreadOp::I64AtomicCmpXchg):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I64, Scalar::Int64));
+ case uint32_t(ThreadOp::I32AtomicCmpXchg8U):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I32, Scalar::Uint8));
+ case uint32_t(ThreadOp::I32AtomicCmpXchg16U):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I32, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicCmpXchg8U):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I64, Scalar::Uint8));
+ case uint32_t(ThreadOp::I64AtomicCmpXchg16U):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I64, Scalar::Uint16));
+ case uint32_t(ThreadOp::I64AtomicCmpXchg32U):
+ CHECK(EmitAtomicCmpXchg(f, ValType::I64, Scalar::Uint32));
+
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ break;
+ }
+
+ // asm.js-specific operators
+ case uint16_t(Op::MozPrefix): {
+ if (!f.moduleEnv().isAsmJS()) {
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ switch (op.b1) {
+ case uint32_t(MozOp::TeeGlobal):
+ CHECK(EmitTeeGlobal(f));
+ case uint32_t(MozOp::I32Min):
+ case uint32_t(MozOp::I32Max):
+ CHECK(EmitMinMax(f, ValType::I32, MIRType::Int32,
+ MozOp(op.b1) == MozOp::I32Max));
+ case uint32_t(MozOp::I32Neg):
+ CHECK(EmitUnaryWithType<MWasmNeg>(f, ValType::I32, MIRType::Int32));
+ case uint32_t(MozOp::I32BitNot):
+ CHECK(EmitBitNot(f, ValType::I32));
+ case uint32_t(MozOp::I32Abs):
+ CHECK(EmitUnaryWithType<MAbs>(f, ValType::I32, MIRType::Int32));
+ case uint32_t(MozOp::F32TeeStoreF64):
+ CHECK(EmitTeeStoreWithCoercion(f, ValType::F32, Scalar::Float64));
+ case uint32_t(MozOp::F64TeeStoreF32):
+ CHECK(EmitTeeStoreWithCoercion(f, ValType::F64, Scalar::Float32));
+ case uint32_t(MozOp::I32TeeStore8):
+ CHECK(EmitTeeStore(f, ValType::I32, Scalar::Int8));
+ case uint32_t(MozOp::I32TeeStore16):
+ CHECK(EmitTeeStore(f, ValType::I32, Scalar::Int16));
+ case uint32_t(MozOp::I64TeeStore8):
+ CHECK(EmitTeeStore(f, ValType::I64, Scalar::Int8));
+ case uint32_t(MozOp::I64TeeStore16):
+ CHECK(EmitTeeStore(f, ValType::I64, Scalar::Int16));
+ case uint32_t(MozOp::I64TeeStore32):
+ CHECK(EmitTeeStore(f, ValType::I64, Scalar::Int32));
+ case uint32_t(MozOp::I32TeeStore):
+ CHECK(EmitTeeStore(f, ValType::I32, Scalar::Int32));
+ case uint32_t(MozOp::I64TeeStore):
+ CHECK(EmitTeeStore(f, ValType::I64, Scalar::Int64));
+ case uint32_t(MozOp::F32TeeStore):
+ CHECK(EmitTeeStore(f, ValType::F32, Scalar::Float32));
+ case uint32_t(MozOp::F64TeeStore):
+ CHECK(EmitTeeStore(f, ValType::F64, Scalar::Float64));
+ case uint32_t(MozOp::F64Mod):
+ CHECK(EmitRem(f, ValType::F64, MIRType::Double,
+ /* isUnsigned = */ false));
+ case uint32_t(MozOp::F64Sin):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigSinD));
+ case uint32_t(MozOp::F64Cos):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigCosD));
+ case uint32_t(MozOp::F64Tan):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigTanD));
+ case uint32_t(MozOp::F64Asin):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigASinD));
+ case uint32_t(MozOp::F64Acos):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigACosD));
+ case uint32_t(MozOp::F64Atan):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigATanD));
+ case uint32_t(MozOp::F64Exp):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigExpD));
+ case uint32_t(MozOp::F64Log):
+ CHECK(EmitUnaryMathBuiltinCall(f, SASigLogD));
+ case uint32_t(MozOp::F64Pow):
+ CHECK(EmitBinaryMathBuiltinCall(f, SASigPowD));
+ case uint32_t(MozOp::F64Atan2):
+ CHECK(EmitBinaryMathBuiltinCall(f, SASigATan2D));
+ case uint32_t(MozOp::OldCallDirect):
+ CHECK(EmitCall(f, /* asmJSFuncDef = */ true));
+ case uint32_t(MozOp::OldCallIndirect):
+ CHECK(EmitCallIndirect(f, /* oldStyle = */ true));
+
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ break;
+ }
+
+ default:
+ return f.iter().unrecognizedOpcode(&op);
+ }
+ }
+
+ MOZ_CRASH("unreachable");
+
+#undef CHECK
+#undef CHECK_SIMD_EXPERIMENTAL
+}
+
+bool wasm::IonCompileFunctions(const ModuleEnvironment& moduleEnv,
+ const CompilerEnvironment& compilerEnv,
+ LifoAlloc& lifo,
+ const FuncCompileInputVector& inputs,
+ CompiledCode* code, UniqueChars* error) {
+ MOZ_ASSERT(compilerEnv.tier() == Tier::Optimized);
+ MOZ_ASSERT(compilerEnv.debug() == DebugEnabled::False);
+ MOZ_ASSERT(compilerEnv.optimizedBackend() == OptimizedBackend::Ion);
+
+ TempAllocator alloc(&lifo);
+ JitContext jitContext(&alloc);
+ MOZ_ASSERT(IsCompilingWasm());
+ WasmMacroAssembler masm(alloc, moduleEnv);
+
+ // Swap in already-allocated empty vectors to avoid malloc/free.
+ MOZ_ASSERT(code->empty());
+ if (!code->swap(masm)) {
+ return false;
+ }
+
+ // Create a description of the stack layout created by GenerateTrapExit().
+ MachineState trapExitLayout;
+ size_t trapExitLayoutNumWords;
+ GenerateTrapExitMachineState(&trapExitLayout, &trapExitLayoutNumWords);
+
+ for (const FuncCompileInput& func : inputs) {
+ JitSpewCont(JitSpew_Codegen, "\n");
+ JitSpew(JitSpew_Codegen,
+ "# ================================"
+ "==================================");
+ JitSpew(JitSpew_Codegen, "# ==");
+ JitSpew(JitSpew_Codegen,
+ "# wasm::IonCompileFunctions: starting on function index %d",
+ (int)func.index);
+
+ Decoder d(func.begin, func.end, func.lineOrBytecode, error);
+
+ // Build the local types vector.
+
+ const FuncType& funcType = *moduleEnv.funcs[func.index].type;
+ const TypeIdDesc& funcTypeId = *moduleEnv.funcs[func.index].typeId;
+ ValTypeVector locals;
+ if (!locals.appendAll(funcType.args())) {
+ return false;
+ }
+ if (!DecodeLocalEntries(d, moduleEnv.types, moduleEnv.features, &locals)) {
+ return false;
+ }
+
+ // Set up for Ion compilation.
+
+ const JitCompileOptions options;
+ MIRGraph graph(&alloc);
+ CompileInfo compileInfo(locals.length());
+ MIRGenerator mir(nullptr, options, &alloc, &graph, &compileInfo,
+ IonOptimizations.get(OptimizationLevel::Wasm));
+ mir.initMinWasmHeapLength(moduleEnv.minMemoryLength);
+
+ // Build MIR graph
+ {
+ FunctionCompiler f(moduleEnv, d, func, locals, mir);
+ if (!f.init()) {
+ return false;
+ }
+
+ if (!f.startBlock()) {
+ return false;
+ }
+
+ if (!EmitBodyExprs(f)) {
+ return false;
+ }
+
+ f.finish();
+ }
+
+ // Compile MIR graph
+ {
+ jit::SpewBeginWasmFunction(&mir, func.index);
+ jit::AutoSpewEndFunction spewEndFunction(&mir);
+
+ if (!OptimizeMIR(&mir)) {
+ return false;
+ }
+
+ LIRGraph* lir = GenerateLIR(&mir);
+ if (!lir) {
+ return false;
+ }
+
+ CodeGenerator codegen(&mir, lir, &masm);
+
+ BytecodeOffset prologueTrapOffset(func.lineOrBytecode);
+ FuncOffsets offsets;
+ ArgTypeVector args(funcType);
+ if (!codegen.generateWasm(funcTypeId, prologueTrapOffset, args,
+ trapExitLayout, trapExitLayoutNumWords,
+ &offsets, &code->stackMaps)) {
+ return false;
+ }
+
+ if (!code->codeRanges.emplaceBack(func.index, func.lineOrBytecode,
+ offsets)) {
+ return false;
+ }
+ }
+
+ JitSpew(JitSpew_Codegen,
+ "# wasm::IonCompileFunctions: completed function index %d",
+ (int)func.index);
+ JitSpew(JitSpew_Codegen, "# ==");
+ JitSpew(JitSpew_Codegen,
+ "# ================================"
+ "==================================");
+ JitSpewCont(JitSpew_Codegen, "\n");
+ }
+
+ masm.finish();
+ if (masm.oom()) {
+ return false;
+ }
+
+ return code->swap(masm);
+}
+
+bool js::wasm::IonPlatformSupport() {
+#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || \
+ defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS32) || \
+ defined(JS_CODEGEN_MIPS64)
+ return true;
+#else
+ return false;
+#endif
+}