diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /modules/fdlibm/src/k_log.h | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'modules/fdlibm/src/k_log.h')
-rw-r--r-- | modules/fdlibm/src/k_log.h | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/modules/fdlibm/src/k_log.h b/modules/fdlibm/src/k_log.h new file mode 100644 index 0000000000..0efa020f63 --- /dev/null +++ b/modules/fdlibm/src/k_log.h @@ -0,0 +1,100 @@ + +/* @(#)e_log.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +//#include <sys/cdefs.h> +//__FBSDID("$FreeBSD$"); + +/* + * k_log1p(f): + * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. + * + * The following describes the overall strategy for computing + * logarithms in base e. The argument reduction and adding the final + * term of the polynomial are done by the caller for increased accuracy + * when different bases are used. + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +static const double +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +/* + * We always inline k_log1p(), since doing so produces a + * substantial performance improvement (~40% on amd64). + */ +static inline double +k_log1p(double f) +{ + double hfsq,s,z,R,w,t1,t2; + + s = f/(2.0+f); + z = s*s; + w = z*z; + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + R = t2+t1; + hfsq=0.5*f*f; + return s*(hfsq+R); +} |