diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/bumpalo/src/lib.rs | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/bumpalo/src/lib.rs')
-rw-r--r-- | third_party/rust/bumpalo/src/lib.rs | 1331 |
1 files changed, 1331 insertions, 0 deletions
diff --git a/third_party/rust/bumpalo/src/lib.rs b/third_party/rust/bumpalo/src/lib.rs new file mode 100644 index 0000000000..dd06c5ce5b --- /dev/null +++ b/third_party/rust/bumpalo/src/lib.rs @@ -0,0 +1,1331 @@ +/*! + +**A fast bump allocation arena for Rust.** + +[![](https://docs.rs/bumpalo/badge.svg)](https://docs.rs/bumpalo/) +[![](https://img.shields.io/crates/v/bumpalo.svg)](https://crates.io/crates/bumpalo) +[![](https://img.shields.io/crates/d/bumpalo.svg)](https://crates.io/crates/bumpalo) +[![Build Status](https://dev.azure.com/fitzgen/bumpalo/_apis/build/status/fitzgen.bumpalo?branchName=master)](https://dev.azure.com/fitzgen/bumpalo/_build/latest?definitionId=2&branchName=master) + +![](https://github.com/fitzgen/bumpalo/raw/master/bumpalo.png) + +## Bump Allocation + +Bump allocation is a fast, but limited approach to allocation. We have a chunk +of memory, and we maintain a pointer within that memory. Whenever we allocate an +object, we do a quick test that we have enough capacity left in our chunk to +allocate the object and then update the pointer by the object's size. *That's +it!* + +The disadvantage of bump allocation is that there is no general way to +deallocate individual objects or reclaim the memory region for a +no-longer-in-use object. + +These trade offs make bump allocation well-suited for *phase-oriented* +allocations. That is, a group of objects that will all be allocated during the +same program phase, used, and then can all be deallocated together as a group. + +## Deallocation en Masse, but No `Drop` + +To deallocate all the objects in the arena at once, we can simply reset the bump +pointer back to the start of the arena's memory chunk. This makes mass +deallocation *extremely* fast, but allocated objects' `Drop` implementations are +not invoked. + +> **However:** [`bumpalo::boxed::Box<T>`][crate::boxed::Box] can be used to wrap +> `T` values allocated in the `Bump` arena, and calls `T`'s `Drop` +> implementation when the `Box<T>` wrapper goes out of scope. This is similar to +> how [`std::boxed::Box`] works, except without deallocating its backing memory. + +[`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html + +## What happens when the memory chunk is full? + +This implementation will allocate a new memory chunk from the global allocator +and then start bump allocating into this new memory chunk. + +## Example + +``` +use bumpalo::Bump; +use std::u64; + +struct Doggo { + cuteness: u64, + age: u8, + scritches_required: bool, +} + +// Create a new arena to bump allocate into. +let bump = Bump::new(); + +// Allocate values into the arena. +let scooter = bump.alloc(Doggo { + cuteness: u64::max_value(), + age: 8, + scritches_required: true, +}); + +assert!(scooter.scritches_required); +``` + +## Collections + +When the `"collections"` cargo feature is enabled, a fork of some of the `std` +library's collections are available in the `collections` module. These +collection types are modified to allocate their space inside `bumpalo::Bump` +arenas. + +```rust +# #[cfg(feature = "collections")] +# { +use bumpalo::{Bump, collections::Vec}; + +// Create a new bump arena. +let bump = Bump::new(); + +// Create a vector of integers whose storage is backed by the bump arena. The +// vector cannot outlive its backing arena, and this property is enforced with +// Rust's lifetime rules. +let mut v = Vec::new_in(&bump); + +// Push a bunch of integers onto `v`! +for i in 0..100 { + v.push(i); +} +# } +``` + +Eventually [all `std` collection types will be parameterized by an +allocator](https://github.com/rust-lang/rust/issues/42774) and we can remove +this `collections` module and use the `std` versions. + +## `bumpalo::boxed::Box` + +When the `"boxed"` cargo feature is enabled, a fork of `std::boxed::Box` library +is available in the `boxed` module. This `Box` type is modified to allocate its +space inside `bumpalo::Bump` arenas. + +**A `Box<T>` runs `T`'s drop implementation when the `Box<T>` is dropped.** You +can use this to work around the fact that `Bump` does not drop values allocated +in its space itself. + +```rust +# #[cfg(feature = "boxed")] +# { +use bumpalo::{Bump, boxed::Box}; +use std::sync::atomic::{AtomicUsize, Ordering}; + +static NUM_DROPPED: AtomicUsize = AtomicUsize::new(0); + +struct CountDrops; + +impl Drop for CountDrops { + fn drop(&mut self) { + NUM_DROPPED.fetch_add(1, Ordering::SeqCst); + } +} + +// Create a new bump arena. +let bump = Bump::new(); + +// Create a `CountDrops` inside the bump arena. +let mut c = Box::new_in(CountDrops, &bump); + +// No `CountDrops` have been dropped yet. +assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 0); + +// Drop our `Box<CountDrops>`. +drop(c); + +// Its `Drop` implementation was run, and so `NUM_DROPS` has been incremented. +assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 1); +# } +``` + +## `#![no_std]` Support + +Bumpalo is a `no_std` crate. It depends only on the `alloc` and `core` crates. + + */ + +#![deny(missing_debug_implementations)] +#![deny(missing_docs)] +#![no_std] + +#[doc(hidden)] +pub extern crate alloc as core_alloc; + +#[cfg(feature = "boxed")] +pub mod boxed; +#[cfg(feature = "collections")] +pub mod collections; + +mod alloc; + +use core::cell::Cell; +use core::iter; +use core::marker::PhantomData; +use core::mem; +use core::ptr::{self, NonNull}; +use core::slice; +use core::str; +use core_alloc::alloc::{alloc, dealloc, Layout}; + +/// An arena to bump allocate into. +/// +/// ## No `Drop`s +/// +/// Objects that are bump-allocated will never have their `Drop` implementation +/// called — unless you do it manually yourself. This makes it relatively +/// easy to leak memory or other resources. +/// +/// If you have a type which internally manages +/// +/// * an allocation from the global heap (e.g. `Vec<T>`), +/// * open file descriptors (e.g. `std::fs::File`), or +/// * any other resource that must be cleaned up (e.g. an `mmap`) +/// +/// and relies on its `Drop` implementation to clean up the internal resource, +/// then if you allocate that type with a `Bump`, you need to find a new way to +/// clean up after it yourself. +/// +/// Potential solutions are +/// +/// * calling [`drop_in_place`][drop_in_place] or using +/// [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types, +/// * using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`] +/// * using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], +/// that will drop wrapped values similarly to [`std::boxed::Box`]. +/// * simply avoiding allocating these problematic types within a `Bump`. +/// +/// Note that not calling `Drop` is memory safe! Destructors are never +/// guaranteed to run in Rust, you can't rely on them for enforcing memory +/// safety. +/// +/// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html +/// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html +/// [`bumpalo::collections::Vec`]: ./collections/struct.Vec.html +/// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html +/// [`bumpalo::boxed::Box::new_in`]: ./boxed/struct.Box.html#method.new_in +/// [`Bump::alloc`]: ./struct.Bump.html#method.alloc +/// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html +/// +/// ## Example +/// +/// ``` +/// use bumpalo::Bump; +/// +/// // Create a new bump arena. +/// let bump = Bump::new(); +/// +/// // Allocate values into the arena. +/// let forty_two = bump.alloc(42); +/// assert_eq!(*forty_two, 42); +/// +/// // Mutable references are returned from allocation. +/// let mut s = bump.alloc("bumpalo"); +/// *s = "the bump allocator; and also is a buffalo"; +/// ``` +#[derive(Debug)] +pub struct Bump { + // The current chunk we are bump allocating within. + current_chunk_footer: Cell<NonNull<ChunkFooter>>, +} + +#[repr(C)] +#[derive(Debug)] +struct ChunkFooter { + // Pointer to the start of this chunk allocation. This footer is always at + // the end of the chunk. + data: NonNull<u8>, + + // The layout of this chunk's allocation. + layout: Layout, + + // Link to the previous chunk, if any. + prev: Cell<Option<NonNull<ChunkFooter>>>, + + // Bump allocation finger that is always in the range `self.data..=self`. + ptr: Cell<NonNull<u8>>, +} + +impl Default for Bump { + fn default() -> Bump { + Bump::new() + } +} + +impl Drop for Bump { + fn drop(&mut self) { + unsafe { + dealloc_chunk_list(Some(self.current_chunk_footer.get())); + } + } +} + +#[inline] +unsafe fn dealloc_chunk_list(mut footer: Option<NonNull<ChunkFooter>>) { + while let Some(f) = footer { + footer = f.as_ref().prev.get(); + dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout); + } +} + +// `Bump`s are safe to send between threads because nothing aliases its owned +// chunks until you start allocating from it. But by the time you allocate from +// it, the returned references to allocations borrow the `Bump` and therefore +// prevent sending the `Bump` across threads until the borrows end. +unsafe impl Send for Bump {} + +#[inline] +pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> { + debug_assert!(divisor > 0); + debug_assert!(divisor.is_power_of_two()); + Some(n.checked_add(divisor - 1)? & !(divisor - 1)) +} + +// After this point, we try to hit page boundaries instead of powers of 2 +const PAGE_STRATEGY_CUTOFF: usize = 0x1000; + +// We only support alignments of up to 16 bytes for iter_allocated_chunks. +const SUPPORTED_ITER_ALIGNMENT: usize = 16; +const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT; +const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>(); + +// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case +const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN; +const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()]; + +// Maximum typical overhead per allocation imposed by allocators. +const MALLOC_OVERHEAD: usize = 16; + +// This is the overhead from malloc, footer and alignment. For instance, if +// we want to request a chunk of memory that has at least X bytes usable for +// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the +// after adding a footer, malloc overhead and alignment, the chunk of memory +// the allocator actually sets asside for us is X+OVERHEAD rounded up to the +// nearest suitable size boundary. +const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1); + +// Choose a relatively small default initial chunk size, since we double chunk +// sizes as we grow bump arenas to amortize costs of hitting the global +// allocator. +const FIRST_ALLOCATION_GOAL: usize = 1 << 9; + +// The actual size of the first allocation is going to be a bit smaller +// than the goal. We need to make room for the footer, and we also need +// take the alignment into account. +const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD; + +#[inline] +fn layout_for_array<T>(len: usize) -> Option<Layout> { + // TODO: use Layout::array once the rust feature `alloc_layout_extra` + // gets stabilized + // + // According to https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment + // the size of a value is always a multiple of it's alignment. But that does not seem to match + // with https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.from_size_align + // + // Let's be on the safe size and round up to the padding in any case. + // + // An interesting question is whether there needs to be padding at the end of + // the last object in the array. Again, we take the safe approach and include it. + + let layout = Layout::new::<T>(); + let size_rounded_up = round_up_to(layout.size(), layout.align())?; + let total_size = len.checked_mul(size_rounded_up)?; + + Layout::from_size_align(total_size, layout.align()).ok() +} + +/// Wrapper around `Layout::from_size_align` that adds debug assertions. +#[inline] +unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout { + if cfg!(debug_assertions) { + Layout::from_size_align(size, align).unwrap() + } else { + Layout::from_size_align_unchecked(size, align) + } +} + +#[inline(never)] +fn allocation_size_overflow<T>() -> T { + panic!("requested allocation size overflowed") +} + +impl Bump { + /// Construct a new arena to bump allocate into. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// # let _ = bump; + /// ``` + pub fn new() -> Bump { + Self::with_capacity(0) + } + + /// Attempt to construct a new arena to bump allocate into. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::try_new(); + /// # let _ = bump.unwrap(); + /// ``` + pub fn try_new() -> Result<Bump, alloc::AllocErr> { + Bump::try_with_capacity(0) + } + + /// Construct a new arena with the specified byte capacity to bump allocate into. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::with_capacity(100); + /// # let _ = bump; + /// ``` + pub fn with_capacity(capacity: usize) -> Bump { + Bump::try_with_capacity(capacity).unwrap_or_else(|_| oom()) + } + + /// Attempt to construct a new arena with the specified byte capacity to bump allocate into. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::try_with_capacity(100); + /// # let _ = bump.unwrap(); + /// ``` + pub fn try_with_capacity(capacity: usize) -> Result<Self, alloc::AllocErr> { + let chunk_footer = Self::new_chunk( + None, + Some(unsafe { layout_from_size_align(capacity, 1) }), + None, + ) + .ok_or(alloc::AllocErr {})?; + + Ok(Bump { + current_chunk_footer: Cell::new(chunk_footer), + }) + } + + /// Allocate a new chunk and return its initialized footer. + /// + /// If given, `layouts` is a tuple of the current chunk size and the + /// layout of the allocation request that triggered us to fall back to + /// allocating a new chunk of memory. + fn new_chunk( + old_size_with_footer: Option<usize>, + requested_layout: Option<Layout>, + prev: Option<NonNull<ChunkFooter>>, + ) -> Option<NonNull<ChunkFooter>> { + unsafe { + // As a sane default, we want our new allocation to be about twice as + // big as the previous allocation + let mut new_size_without_footer = + if let Some(old_size_with_footer) = old_size_with_footer { + let old_size_without_footer = old_size_with_footer - FOOTER_SIZE; + old_size_without_footer.checked_mul(2)? + } else { + DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER + }; + + // We want to have CHUNK_ALIGN or better alignment + let mut align = CHUNK_ALIGN; + + // If we already know we need to fulfill some request, + // make sure we allocate at least enough to satisfy it + if let Some(requested_layout) = requested_layout { + align = align.max(requested_layout.align()); + let requested_size = round_up_to(requested_layout.size(), align) + .unwrap_or_else(allocation_size_overflow); + new_size_without_footer = new_size_without_footer.max(requested_size); + } + + // We want our allocations to play nice with the memory allocator, + // and waste as little memory as possible. + // For small allocations, this means that the entire allocation + // including the chunk footer and mallocs internal overhead is + // as close to a power of two as we can go without going over. + // For larger allocations, we only need to get close to a page + // boundary without going over. + if new_size_without_footer < PAGE_STRATEGY_CUTOFF { + new_size_without_footer = + (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD; + } else { + new_size_without_footer = + round_up_to(new_size_without_footer + OVERHEAD, 0x1000)? - OVERHEAD; + } + + debug_assert_eq!(align % CHUNK_ALIGN, 0); + debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0); + let size = new_size_without_footer + .checked_add(FOOTER_SIZE) + .unwrap_or_else(allocation_size_overflow); + let layout = layout_from_size_align(size, align); + + debug_assert!(size >= old_size_with_footer.unwrap_or(0) * 2); + + let data = alloc(layout); + let data = NonNull::new(data)?; + + // The `ChunkFooter` is at the end of the chunk. + let footer_ptr = data.as_ptr() as usize + new_size_without_footer; + debug_assert_eq!((data.as_ptr() as usize) % align, 0); + debug_assert_eq!(footer_ptr % CHUNK_ALIGN, 0); + let footer_ptr = footer_ptr as *mut ChunkFooter; + + // The bump pointer is initialized to the end of the range we will + // bump out of. + let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8)); + + ptr::write( + footer_ptr, + ChunkFooter { + data, + layout, + prev: Cell::new(prev), + ptr, + }, + ); + + Some(NonNull::new_unchecked(footer_ptr)) + } + } + + /// Reset this bump allocator. + /// + /// Performs mass deallocation on everything allocated in this arena by + /// resetting the pointer into the underlying chunk of memory to the start + /// of the chunk. Does not run any `Drop` implementations on deallocated + /// objects; see [the `Bump` type's top-level + /// documentation](./struct.Bump.html) for details. + /// + /// If this arena has allocated multiple chunks to bump allocate into, then + /// the excess chunks are returned to the global allocator. + /// + /// ## Example + /// + /// ``` + /// let mut bump = bumpalo::Bump::new(); + /// + /// // Allocate a bunch of things. + /// { + /// for i in 0..100 { + /// bump.alloc(i); + /// } + /// } + /// + /// // Reset the arena. + /// bump.reset(); + /// + /// // Allocate some new things in the space previously occupied by the + /// // original things. + /// for j in 200..400 { + /// bump.alloc(j); + /// } + ///``` + pub fn reset(&mut self) { + // Takes `&mut self` so `self` must be unique and there can't be any + // borrows active that would get invalidated by resetting. + unsafe { + let cur_chunk = self.current_chunk_footer.get(); + + // Deallocate all chunks except the current one + let prev_chunk = cur_chunk.as_ref().prev.replace(None); + dealloc_chunk_list(prev_chunk); + + // Reset the bump finger to the end of the chunk. + cur_chunk.as_ref().ptr.set(cur_chunk.cast()); + + debug_assert!( + self.current_chunk_footer + .get() + .as_ref() + .prev + .get() + .is_none(), + "We should only have a single chunk" + ); + debug_assert_eq!( + self.current_chunk_footer.get().as_ref().ptr.get(), + self.current_chunk_footer.get().cast(), + "Our chunk's bump finger should be reset to the start of its allocation" + ); + } + } + + /// Allocate an object in this `Bump` and return an exclusive reference to + /// it. + /// + /// ## Panics + /// + /// Panics if reserving space for `T` would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc("hello"); + /// assert_eq!(*x, "hello"); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc<T>(&self, val: T) -> &mut T { + self.alloc_with(|| val) + } + + /// Pre-allocate space for an object in this `Bump`, initializes it using + /// the closure, then returns an exclusive reference to it. + /// + /// Calling `bump.alloc(x)` is essentially equivalent to calling + /// `bump.alloc_with(|| x)`. However if you use `alloc_with`, then the + /// closure will not be invoked until after allocating space for storing + /// `x` on the heap. + /// + /// This can be useful in certain edge-cases related to compiler + /// optimizations. When evaluating `bump.alloc(x)`, semantically `x` is + /// first put on the stack and then moved onto the heap. In some cases, + /// the compiler is able to optimize this into constructing `x` directly + /// on the heap, however in many cases it does not. + /// + /// The function `alloc_with` tries to help the compiler be smarter. In + /// most cases doing `bump.alloc_with(|| x)` on release mode will be + /// enough to help the compiler to realize this optimization is valid + /// and construct `x` directly onto the heap. + /// + /// ## Warning + /// + /// This function critically depends on compiler optimizations to achieve + /// its desired effect. This means that it is not an effective tool when + /// compiling without optimizations on. + /// + /// Even when optimizations are on, this function does not **guarantee** + /// that the value is constructed on the heap. To the best of our + /// knowledge no such guarantee can be made in stable Rust as of 1.33. + /// + /// ## Panics + /// + /// Panics if reserving space for `T` would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc_with(|| "hello"); + /// assert_eq!(*x, "hello"); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_with<F, T>(&self, f: F) -> &mut T + where + F: FnOnce() -> T, + { + #[inline(always)] + unsafe fn inner_writer<T, F>(ptr: *mut T, f: F) + where + F: FnOnce() -> T, + { + // This function is translated as: + // - allocate space for a T on the stack + // - call f() with the return value being put onto this stack space + // - memcpy from the stack to the heap + // + // Ideally we want LLVM to always realize that doing a stack + // allocation is unnecessary and optimize the code so it writes + // directly into the heap instead. It seems we get it to realize + // this most consistently if we put this critical line into it's + // own function instead of inlining it into the surrounding code. + ptr::write(ptr, f()) + } + + let layout = Layout::new::<T>(); + + unsafe { + let p = self.alloc_layout(layout); + let p = p.as_ptr() as *mut T; + inner_writer(p, f); + &mut *p + } + } + + /// `Copy` a slice into this `Bump` and return an exclusive reference to + /// the copy. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc_slice_copy(&[1, 2, 3]); + /// assert_eq!(x, &[1, 2, 3]); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T] + where + T: Copy, + { + let layout = Layout::for_value(src); + let dst = self.alloc_layout(layout).cast::<T>(); + + unsafe { + ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len()); + slice::from_raw_parts_mut(dst.as_ptr(), src.len()) + } + } + + /// `Clone` a slice into this `Bump` and return an exclusive reference to + /// the clone. Prefer `alloc_slice_copy` if `T` is `Copy`. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// #[derive(Clone, Debug, Eq, PartialEq)] + /// struct Sheep { + /// name: String, + /// } + /// + /// let originals = vec![ + /// Sheep { name: "Alice".into() }, + /// Sheep { name: "Bob".into() }, + /// Sheep { name: "Cathy".into() }, + /// ]; + /// + /// let bump = bumpalo::Bump::new(); + /// let clones = bump.alloc_slice_clone(&originals); + /// assert_eq!(originals, clones); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T] + where + T: Clone, + { + let layout = Layout::for_value(src); + let dst = self.alloc_layout(layout).cast::<T>(); + + unsafe { + for (i, val) in src.iter().cloned().enumerate() { + ptr::write(dst.as_ptr().add(i), val); + } + + slice::from_raw_parts_mut(dst.as_ptr(), src.len()) + } + } + + /// `Copy` a string slice into this `Bump` and return an exclusive reference to it. + /// + /// ## Panics + /// + /// Panics if reserving space for the string would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let hello = bump.alloc_str("hello world"); + /// assert_eq!("hello world", hello); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_str(&self, src: &str) -> &mut str { + let buffer = self.alloc_slice_copy(src.as_bytes()); + unsafe { + // This is OK, because it already came in as str, so it is guaranteed to be utf8 + str::from_utf8_unchecked_mut(buffer) + } + } + + /// Allocates a new slice of size `len` into this `Bump` and returns an + /// exclusive reference to the copy. + /// + /// The elements of the slice are initialized using the supplied closure. + /// The closure argument is the position in the slice. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc_slice_fill_with(5, |i| 5*(i+1)); + /// assert_eq!(x, &[5, 10, 15, 20, 25]); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T] + where + F: FnMut(usize) -> T, + { + let layout = layout_for_array::<T>(len).unwrap_or_else(|| oom()); + let dst = self.alloc_layout(layout).cast::<T>(); + + unsafe { + for i in 0..len { + ptr::write(dst.as_ptr().add(i), f(i)); + } + + let result = slice::from_raw_parts_mut(dst.as_ptr(), len); + debug_assert_eq!(Layout::for_value(result), layout); + result + } + } + + /// Allocates a new slice of size `len` into this `Bump` and returns an + /// exclusive reference to the copy. + /// + /// All elements of the slice are initialized to `value`. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc_slice_fill_copy(5, 42); + /// assert_eq!(x, &[42, 42, 42, 42, 42]); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] { + self.alloc_slice_fill_with(len, |_| value) + } + + /// Allocates a new slice of size `len` slice into this `Bump` and return an + /// exclusive reference to the copy. + /// + /// All elements of the slice are initialized to `value.clone()`. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let s: String = "Hello Bump!".to_string(); + /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s); + /// assert_eq!(x.len(), 2); + /// assert_eq!(&x[0], &s); + /// assert_eq!(&x[1], &s); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] { + self.alloc_slice_fill_with(len, |_| value.clone()) + } + + /// Allocates a new slice of size `len` slice into this `Bump` and return an + /// exclusive reference to the copy. + /// + /// The elements are initialized using the supplied iterator. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow, or if the supplied + /// iterator returns fewer elements than it promised. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i)); + /// assert_eq!(x, [4, 9, 25]); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T] + where + I: IntoIterator<Item = T>, + I::IntoIter: ExactSizeIterator, + { + let mut iter = iter.into_iter(); + self.alloc_slice_fill_with(iter.len(), |_| { + iter.next().expect("Iterator supplied too few elements") + }) + } + + /// Allocates a new slice of size `len` slice into this `Bump` and return an + /// exclusive reference to the copy. + /// + /// All elements of the slice are initialized to `T::default()`. + /// + /// ## Panics + /// + /// Panics if reserving space for the slice would cause an overflow. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let x = bump.alloc_slice_fill_default::<u32>(5); + /// assert_eq!(x, &[0, 0, 0, 0, 0]); + /// ``` + #[inline(always)] + #[allow(clippy::mut_from_ref)] + pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] { + self.alloc_slice_fill_with(len, |_| T::default()) + } + + /// Allocate space for an object with the given `Layout`. + /// + /// The returned pointer points at uninitialized memory, and should be + /// initialized with + /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html). + #[inline(always)] + pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> { + self.try_alloc_layout(layout).unwrap_or_else(|_| oom()) + } + + /// Attempts to allocate space for an object with the given `Layout` or else returns + /// an `Err`. + /// + /// The returned pointer points at uninitialized memory, and should be + /// initialized with + /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html). + #[inline(always)] + pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> { + if let Some(p) = self.try_alloc_layout_fast(layout) { + Ok(p) + } else { + self.alloc_layout_slow(layout).ok_or(alloc::AllocErr {}) + } + } + + #[inline(always)] + fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> { + // We don't need to check for ZSTs here since they will automatically + // be handled properly: the pointer will be bumped by zero bytes, + // modulo alignment. This keeps the fast path optimized for non-ZSTs, + // which are much more common. + unsafe { + let footer = self.current_chunk_footer.get(); + let footer = footer.as_ref(); + let ptr = footer.ptr.get().as_ptr() as usize; + let start = footer.data.as_ptr() as usize; + debug_assert!(start <= ptr); + debug_assert!(ptr <= footer as *const _ as usize); + + let ptr = ptr.checked_sub(layout.size())?; + let aligned_ptr = ptr & !(layout.align() - 1); + + if aligned_ptr >= start { + let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8); + footer.ptr.set(aligned_ptr); + Some(aligned_ptr) + } else { + None + } + } + } + + /// Gets the remaining capacity in the current chunk (in bytes). + /// + /// ## Example + /// + /// ``` + /// use bumpalo::Bump; + /// + /// let bump = Bump::with_capacity(100); + /// + /// let capacity = bump.chunk_capacity(); + /// assert!(capacity >= 100); + /// ``` + pub fn chunk_capacity(&self) -> usize { + let current_footer = self.current_chunk_footer.get(); + let current_footer = unsafe { current_footer.as_ref() }; + + current_footer as *const _ as usize - current_footer.data.as_ptr() as usize + } + + /// Slow path allocation for when we need to allocate a new chunk from the + /// parent bump set because there isn't enough room in our current chunk. + #[inline(never)] + fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> { + unsafe { + let size = layout.size(); + + // Get a new chunk from the global allocator. + let current_footer = self.current_chunk_footer.get(); + let current_layout = current_footer.as_ref().layout; + let new_footer = Bump::new_chunk( + Some(current_layout.size()), + Some(layout), + Some(current_footer), + )?; + debug_assert_eq!( + new_footer.as_ref().data.as_ptr() as usize % layout.align(), + 0 + ); + + // Set the new chunk as our new current chunk. + self.current_chunk_footer.set(new_footer); + + let new_footer = new_footer.as_ref(); + + // Move the bump ptr finger down to allocate room for `val`. We know + // this can't overflow because we successfully allocated a chunk of + // at least the requested size. + let ptr = new_footer.ptr.get().as_ptr() as usize - size; + // Round the pointer down to the requested alignment. + let ptr = ptr & !(layout.align() - 1); + debug_assert!( + ptr <= new_footer as *const _ as usize, + "{:#x} <= {:#x}", + ptr, + new_footer as *const _ as usize + ); + let ptr = NonNull::new_unchecked(ptr as *mut u8); + new_footer.ptr.set(ptr); + + // Return a pointer to the freshly allocated region in this chunk. + Some(ptr) + } + } + + /// Returns an iterator over each chunk of allocated memory that + /// this arena has bump allocated into. + /// + /// The chunks are returned ordered by allocation time, with the most + /// recently allocated chunk being returned first, and the least recently + /// allocated chunk being returned last. + /// + /// The values inside each chunk are also ordered by allocation time, with + /// the most recent allocation being earlier in the slice, and the least + /// recent allocation being towards the end of the slice. + /// + /// ## Safety + /// + /// Because this method takes `&mut self`, we know that the bump arena + /// reference is unique and therefore there aren't any active references to + /// any of the objects we've allocated in it either. This potential aliasing + /// of exclusive references is one common footgun for unsafe code that we + /// don't need to worry about here. + /// + /// However, there could be regions of uninitialized memory used as padding + /// between allocations, which is why this iterator has items of type + /// `[MaybeUninit<u8>]`, instead of simply `[u8]`. + /// + /// The only way to guarantee that there is no padding between allocations + /// or within allocated objects is if all of these properties hold: + /// + /// 1. Every object allocated in this arena has the same alignment, + /// and that alignment is at most 16. + /// 2. Every object's size is a multiple of its alignment. + /// 3. None of the objects allocated in this arena contain any internal + /// padding. + /// + /// If you want to use this `iter_allocated_chunks` method, it is *your* + /// responsibility to ensure that these properties hold before calling + /// `MaybeUninit::assume_init` or otherwise reading the returned values. + /// + /// Finally, you must also ensure that any values allocated into the bump + /// arena have not had their `Drop` implementations called on them, + /// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box]. + /// + /// ## Example + /// + /// ``` + /// let mut bump = bumpalo::Bump::new(); + /// + /// // Allocate a bunch of `i32`s in this bump arena, potentially causing + /// // additional memory chunks to be reserved. + /// for i in 0..10000 { + /// bump.alloc(i); + /// } + /// + /// // Iterate over each chunk we've bump allocated into. This is safe + /// // because we have only allocated `i32`s in this arena, which fulfills + /// // the above requirements. + /// for ch in bump.iter_allocated_chunks() { + /// println!("Used a chunk that is {} bytes long", ch.len()); + /// println!("The first byte is {:?}", unsafe { + /// ch.get(0).unwrap().assume_init() + /// }); + /// } + /// + /// // Within a chunk, allocations are ordered from most recent to least + /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate + /// // through the chunk's data, we get them in the order 'c', then 'b', + /// // then 'a'. + /// + /// bump.reset(); + /// bump.alloc(b'a'); + /// bump.alloc(b'b'); + /// bump.alloc(b'c'); + /// + /// assert_eq!(bump.iter_allocated_chunks().count(), 1); + /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap(); + /// assert_eq!(chunk.len(), 3); + /// + /// // Safe because we've only allocated `u8`s in this arena, which + /// // fulfills the above requirements. + /// unsafe { + /// assert_eq!(chunk[0].assume_init(), b'c'); + /// assert_eq!(chunk[1].assume_init(), b'b'); + /// assert_eq!(chunk[2].assume_init(), b'a'); + /// } + /// ``` + pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> { + ChunkIter { + footer: Some(self.current_chunk_footer.get()), + bump: PhantomData, + } + } + + /// Calculates the number of bytes currently allocated across all chunks. + /// + /// If you allocate types of different alignments or types with + /// larger-than-typical alignment in the same arena, some padding + /// bytes might get allocated in the bump arena. Note that those padding + /// bytes will add to this method's resulting sum, so you cannot rely + /// on it only counting the sum of the sizes of the things + /// you've allocated in the arena. + /// + /// ## Example + /// + /// ``` + /// let bump = bumpalo::Bump::new(); + /// let _x = bump.alloc_slice_fill_default::<u32>(5); + /// let bytes = bump.allocated_bytes(); + /// assert!(bytes >= core::mem::size_of::<u32>() * 5); + /// ``` + pub fn allocated_bytes(&self) -> usize { + let mut footer = Some(self.current_chunk_footer.get()); + + let mut bytes = 0; + + while let Some(f) = footer { + let foot = unsafe { f.as_ref() }; + + let ptr = foot.ptr.get().as_ptr() as usize; + debug_assert!(ptr <= foot as *const _ as usize); + + bytes += foot as *const _ as usize - ptr; + + footer = foot.prev.get(); + } + + bytes + } + + #[inline] + unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool { + let footer = self.current_chunk_footer.get(); + let footer = footer.as_ref(); + footer.ptr.get() == ptr + } +} + +/// An iterator over each chunk of allocated memory that +/// an arena has bump allocated into. +/// +/// The chunks are returned ordered by allocation time, with the most recently +/// allocated chunk being returned first. +/// +/// The values inside each chunk is also ordered by allocation time, with the most +/// recent allocation being earlier in the slice. +/// +/// This struct is created by the [`iter_allocated_chunks`] method on +/// [`Bump`]. See that function for a safety description regarding reading from the returned items. +/// +/// [`Bump`]: ./struct.Bump.html +/// [`iter_allocated_chunks`]: ./struct.Bump.html#method.iter_allocated_chunks +#[derive(Debug)] +pub struct ChunkIter<'a> { + footer: Option<NonNull<ChunkFooter>>, + bump: PhantomData<&'a mut Bump>, +} + +impl<'a> Iterator for ChunkIter<'a> { + type Item = &'a [mem::MaybeUninit<u8>]; + fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> { + unsafe { + let foot = self.footer?; + let foot = foot.as_ref(); + let data = foot.data.as_ptr() as usize; + let ptr = foot.ptr.get().as_ptr() as usize; + debug_assert!(data <= ptr); + debug_assert!(ptr <= foot as *const _ as usize); + + let len = foot as *const _ as usize - ptr; + let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len); + self.footer = foot.prev.get(); + Some(slice) + } + } +} + +impl<'a> iter::FusedIterator for ChunkIter<'a> {} + +#[inline(never)] +#[cold] +fn oom() -> ! { + panic!("out of memory") +} + +unsafe impl<'a> alloc::Alloc for &'a Bump { + #[inline(always)] + unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> { + self.try_alloc_layout(layout) + } + + #[inline] + unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) { + // If the pointer is the last allocation we made, we can reuse the bytes, + // otherwise they are simply leaked -- at least until somebody calls reset(). + if self.is_last_allocation(ptr) { + let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size())); + self.current_chunk_footer.get().as_ref().ptr.set(ptr); + } + } + + #[inline] + unsafe fn realloc( + &mut self, + ptr: NonNull<u8>, + layout: Layout, + new_size: usize, + ) -> Result<NonNull<u8>, alloc::AllocErr> { + let old_size = layout.size(); + + if old_size == 0 { + return self.alloc(layout); + } + + if new_size <= old_size { + if self.is_last_allocation(ptr) + // Only reclaim the excess space (which requires a copy) if it + // is worth it: we are actually going to recover "enough" space + // and we can do a non-overlapping copy. + && new_size <= old_size / 2 + { + let delta = old_size - new_size; + let footer = self.current_chunk_footer.get(); + let footer = footer.as_ref(); + footer + .ptr + .set(NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta))); + let new_ptr = footer.ptr.get(); + // NB: we know it is non-overlapping because of the size check + // in the `if` condition. + ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size); + return Ok(new_ptr); + } else { + return Ok(ptr); + } + } + + if self.is_last_allocation(ptr) { + // Try to allocate the delta size within this same block so we can + // reuse the currently allocated space. + let delta = new_size - old_size; + if let Some(p) = + self.try_alloc_layout_fast(layout_from_size_align(delta, layout.align())) + { + ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size); + return Ok(p); + } + } + + // Fallback: do a fresh allocation and copy the existing data into it. + let new_layout = layout_from_size_align(new_size, layout.align()); + let new_ptr = self.try_alloc_layout(new_layout)?; + ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size); + Ok(new_ptr) + } +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn chunk_footer_is_five_words() { + assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 5); + } + + #[test] + #[allow(clippy::cognitive_complexity)] + fn test_realloc() { + use crate::alloc::Alloc; + + unsafe { + const CAPACITY: usize = 1024 - OVERHEAD; + let mut b = Bump::with_capacity(CAPACITY); + + // `realloc` doesn't shrink allocations that aren't "worth it". + let layout = Layout::from_size_align(100, 1).unwrap(); + let p = b.alloc_layout(layout); + let q = (&b).realloc(p, layout, 51).unwrap(); + assert_eq!(p, q); + b.reset(); + + // `realloc` will shrink allocations that are "worth it". + let layout = Layout::from_size_align(100, 1).unwrap(); + let p = b.alloc_layout(layout); + let q = (&b).realloc(p, layout, 50).unwrap(); + assert!(p != q); + b.reset(); + + // `realloc` will reuse the last allocation when growing. + let layout = Layout::from_size_align(10, 1).unwrap(); + let p = b.alloc_layout(layout); + let q = (&b).realloc(p, layout, 11).unwrap(); + assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1); + b.reset(); + + // `realloc` will allocate a new chunk when growing the last + // allocation, if need be. + let layout = Layout::from_size_align(1, 1).unwrap(); + let p = b.alloc_layout(layout); + let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap(); + assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY); + b = Bump::with_capacity(CAPACITY); + + // `realloc` will allocate and copy when reallocating anything that + // wasn't the last allocation. + let layout = Layout::from_size_align(1, 1).unwrap(); + let p = b.alloc_layout(layout); + let _ = b.alloc_layout(layout); + let q = (&b).realloc(p, layout, 2).unwrap(); + assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1); + b.reset(); + } + } + + #[test] + fn invalid_read() { + use alloc::Alloc; + + let mut b = &Bump::new(); + + unsafe { + let l1 = Layout::from_size_align(12000, 4).unwrap(); + let p1 = Alloc::alloc(&mut b, l1).unwrap(); + + let l2 = Layout::from_size_align(1000, 4).unwrap(); + Alloc::alloc(&mut b, l2).unwrap(); + + let p1 = b.realloc(p1, l1, 24000).unwrap(); + let l3 = Layout::from_size_align(24000, 4).unwrap(); + b.realloc(p1, l3, 48000).unwrap(); + } + } +} |