diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/byteorder/src | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/byteorder/src')
-rw-r--r-- | third_party/rust/byteorder/src/io.rs | 1605 | ||||
-rw-r--r-- | third_party/rust/byteorder/src/lib.rs | 3328 |
2 files changed, 4933 insertions, 0 deletions
diff --git a/third_party/rust/byteorder/src/io.rs b/third_party/rust/byteorder/src/io.rs new file mode 100644 index 0000000000..ed6a848451 --- /dev/null +++ b/third_party/rust/byteorder/src/io.rs @@ -0,0 +1,1605 @@ +use std::io::{self, Result}; +use std::slice; + +use ByteOrder; + +/// Extends [`Read`] with methods for reading numbers. (For `std::io`.) +/// +/// Most of the methods defined here have an unconstrained type parameter that +/// must be explicitly instantiated. Typically, it is instantiated with either +/// the [`BigEndian`] or [`LittleEndian`] types defined in this crate. +/// +/// # Examples +/// +/// Read unsigned 16 bit big-endian integers from a [`Read`]: +/// +/// ```rust +/// use std::io::Cursor; +/// use byteorder::{BigEndian, ReadBytesExt}; +/// +/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +/// [`LittleEndian`]: enum.LittleEndian.html +/// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html +pub trait ReadBytesExt: io::Read { + /// Reads an unsigned 8 bit integer from the underlying reader. + /// + /// Note that since this reads a single byte, no byte order conversions + /// are used. It is included for completeness. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read unsigned 8 bit integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::ReadBytesExt; + /// + /// let mut rdr = Cursor::new(vec![2, 5]); + /// assert_eq!(2, rdr.read_u8().unwrap()); + /// assert_eq!(5, rdr.read_u8().unwrap()); + /// ``` + #[inline] + fn read_u8(&mut self) -> Result<u8> { + let mut buf = [0; 1]; + try!(self.read_exact(&mut buf)); + Ok(buf[0]) + } + + /// Reads a signed 8 bit integer from the underlying reader. + /// + /// Note that since this reads a single byte, no byte order conversions + /// are used. It is included for completeness. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read signed 8 bit integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::ReadBytesExt; + /// + /// let mut rdr = Cursor::new(vec![0x02, 0xfb]); + /// assert_eq!(2, rdr.read_i8().unwrap()); + /// assert_eq!(-5, rdr.read_i8().unwrap()); + /// ``` + #[inline] + fn read_i8(&mut self) -> Result<i8> { + let mut buf = [0; 1]; + try!(self.read_exact(&mut buf)); + Ok(buf[0] as i8) + } + + /// Reads an unsigned 16 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read unsigned 16 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![2, 5, 3, 0]); + /// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); + /// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_u16<T: ByteOrder>(&mut self) -> Result<u16> { + let mut buf = [0; 2]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u16(&buf)) + } + + /// Reads a signed 16 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read signed 16 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x00, 0xc1, 0xff, 0x7c]); + /// assert_eq!(193, rdr.read_i16::<BigEndian>().unwrap()); + /// assert_eq!(-132, rdr.read_i16::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_i16<T: ByteOrder>(&mut self) -> Result<i16> { + let mut buf = [0; 2]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i16(&buf)) + } + + /// Reads an unsigned 24 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read unsigned 24 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x00, 0x01, 0x0b]); + /// assert_eq!(267, rdr.read_u24::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_u24<T: ByteOrder>(&mut self) -> Result<u32> { + let mut buf = [0; 3]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u24(&buf)) + } + + /// Reads a signed 24 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read signed 24 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0xff, 0x7a, 0x33]); + /// assert_eq!(-34253, rdr.read_i24::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_i24<T: ByteOrder>(&mut self) -> Result<i32> { + let mut buf = [0; 3]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i24(&buf)) + } + + /// Reads an unsigned 32 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read unsigned 32 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x00, 0x00, 0x01, 0x0b]); + /// assert_eq!(267, rdr.read_u32::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_u32<T: ByteOrder>(&mut self) -> Result<u32> { + let mut buf = [0; 4]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u32(&buf)) + } + + /// Reads a signed 32 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read signed 32 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0xff, 0xff, 0x7a, 0x33]); + /// assert_eq!(-34253, rdr.read_i32::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_i32<T: ByteOrder>(&mut self) -> Result<i32> { + let mut buf = [0; 4]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i32(&buf)) + } + + /// Reads an unsigned 48 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read unsigned 48 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0xb6, 0x71, 0x6b, 0xdc, 0x2b, 0x31]); + /// assert_eq!(200598257150769, rdr.read_u48::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_u48<T: ByteOrder>(&mut self) -> Result<u64> { + let mut buf = [0; 6]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u48(&buf)) + } + + /// Reads a signed 48 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read signed 48 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x9d, 0x71, 0xab, 0xe7, 0x97, 0x8f]); + /// assert_eq!(-108363435763825, rdr.read_i48::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_i48<T: ByteOrder>(&mut self) -> Result<i64> { + let mut buf = [0; 6]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i48(&buf)) + } + + /// Reads an unsigned 64 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read an unsigned 64 bit big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83]); + /// assert_eq!(918733457491587, rdr.read_u64::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_u64<T: ByteOrder>(&mut self) -> Result<u64> { + let mut buf = [0; 8]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u64(&buf)) + } + + /// Reads a signed 64 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a signed 64 bit big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0]); + /// assert_eq!(i64::min_value(), rdr.read_i64::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_i64<T: ByteOrder>(&mut self) -> Result<i64> { + let mut buf = [0; 8]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i64(&buf)) + } + + /// Reads an unsigned 128 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read an unsigned 128 bit big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83, + /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83 + /// ]); + /// assert_eq!(16947640962301618749969007319746179, rdr.read_u128::<BigEndian>().unwrap()); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_u128<T: ByteOrder>(&mut self) -> Result<u128> { + let mut buf = [0; 16]; + try!(self.read_exact(&mut buf)); + Ok(T::read_u128(&buf)) + } + + /// Reads a signed 128 bit integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a signed 128 bit big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); + /// assert_eq!(i128::min_value(), rdr.read_i128::<BigEndian>().unwrap()); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_i128<T: ByteOrder>(&mut self) -> Result<i128> { + let mut buf = [0; 16]; + try!(self.read_exact(&mut buf)); + Ok(T::read_i128(&buf)) + } + + /// Reads an unsigned n-bytes integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read an unsigned n-byte big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0x80, 0x74, 0xfa]); + /// assert_eq!(8418554, rdr.read_uint::<BigEndian>(3).unwrap()); + #[inline] + fn read_uint<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u64> { + let mut buf = [0; 8]; + try!(self.read_exact(&mut buf[..nbytes])); + Ok(T::read_uint(&buf[..nbytes], nbytes)) + } + + /// Reads a signed n-bytes integer from the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read an unsigned n-byte big-endian integer from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0xc1, 0xff, 0x7c]); + /// assert_eq!(-4063364, rdr.read_int::<BigEndian>(3).unwrap()); + #[inline] + fn read_int<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i64> { + let mut buf = [0; 8]; + try!(self.read_exact(&mut buf[..nbytes])); + Ok(T::read_int(&buf[..nbytes], nbytes)) + } + + /// Reads an unsigned n-bytes integer from the underlying reader. + #[cfg(byteorder_i128)] + #[inline] + fn read_uint128<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u128> { + let mut buf = [0; 16]; + try!(self.read_exact(&mut buf[..nbytes])); + Ok(T::read_uint128(&buf[..nbytes], nbytes)) + } + + /// Reads a signed n-bytes integer from the underlying reader. + #[cfg(byteorder_i128)] + #[inline] + fn read_int128<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i128> { + let mut buf = [0; 16]; + try!(self.read_exact(&mut buf[..nbytes])); + Ok(T::read_int128(&buf[..nbytes], nbytes)) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number from + /// the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a big-endian single-precision floating point number from a `Read`: + /// + /// ```rust + /// use std::f32; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x49, 0x0f, 0xdb, + /// ]); + /// assert_eq!(f32::consts::PI, rdr.read_f32::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_f32<T: ByteOrder>(&mut self) -> Result<f32> { + let mut buf = [0; 4]; + try!(self.read_exact(&mut buf)); + Ok(T::read_f32(&buf)) + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number from + /// the underlying reader. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a big-endian double-precision floating point number from a `Read`: + /// + /// ```rust + /// use std::f64; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18, + /// ]); + /// assert_eq!(f64::consts::PI, rdr.read_f64::<BigEndian>().unwrap()); + /// ``` + #[inline] + fn read_f64<T: ByteOrder>(&mut self) -> Result<f64> { + let mut buf = [0; 8]; + try!(self.read_exact(&mut buf)); + Ok(T::read_f64(&buf)) + } + + /// Reads a sequence of unsigned 16 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of unsigned 16 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![2, 5, 3, 0]); + /// let mut dst = [0; 2]; + /// rdr.read_u16_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_u16_into<T: ByteOrder>(&mut self, dst: &mut [u16]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_u16(dst); + Ok(()) + } + + /// Reads a sequence of unsigned 32 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of unsigned 32 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0, 0, 2, 5, 0, 0, 3, 0]); + /// let mut dst = [0; 2]; + /// rdr.read_u32_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_u32_into<T: ByteOrder>(&mut self, dst: &mut [u32]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_u32(dst); + Ok(()) + } + + /// Reads a sequence of unsigned 64 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of unsigned 64 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0, 0, 0, 0, 0, 0, 2, 5, + /// 0, 0, 0, 0, 0, 0, 3, 0, + /// ]); + /// let mut dst = [0; 2]; + /// rdr.read_u64_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_u64_into<T: ByteOrder>(&mut self, dst: &mut [u64]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_u64(dst); + Ok(()) + } + + /// Reads a sequence of unsigned 128 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of unsigned 128 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, + /// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, + /// ]); + /// let mut dst = [0; 2]; + /// rdr.read_u128_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_u128_into<T: ByteOrder>( + &mut self, + dst: &mut [u128], + ) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_u128(dst); + Ok(()) + } + + /// Reads a sequence of signed 8 bit integers from the underlying reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// Note that since each `i8` is a single byte, no byte order conversions + /// are used. This method is included because it provides a safe, simple + /// way for the caller to read into a `&mut [i8]` buffer. (Without this + /// method, the caller would have to either use `unsafe` code or convert + /// each byte to `i8` individually.) + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of signed 8 bit integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![2, 251, 3]); + /// let mut dst = [0; 3]; + /// rdr.read_i8_into(&mut dst).unwrap(); + /// assert_eq!([2, -5, 3], dst); + /// ``` + #[inline] + fn read_i8_into(&mut self, dst: &mut [i8]) -> Result<()> { + let buf = unsafe { slice_to_u8_mut(dst) }; + self.read_exact(buf) + } + + /// Reads a sequence of signed 16 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of signed 16 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![2, 5, 3, 0]); + /// let mut dst = [0; 2]; + /// rdr.read_i16_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_i16_into<T: ByteOrder>(&mut self, dst: &mut [i16]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_i16(dst); + Ok(()) + } + + /// Reads a sequence of signed 32 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of signed 32 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![0, 0, 2, 5, 0, 0, 3, 0]); + /// let mut dst = [0; 2]; + /// rdr.read_i32_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_i32_into<T: ByteOrder>(&mut self, dst: &mut [i32]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_i32(dst); + Ok(()) + } + + /// Reads a sequence of signed 64 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of signed 64 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0, 0, 0, 0, 0, 0, 2, 5, + /// 0, 0, 0, 0, 0, 0, 3, 0, + /// ]); + /// let mut dst = [0; 2]; + /// rdr.read_i64_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[inline] + fn read_i64_into<T: ByteOrder>(&mut self, dst: &mut [i64]) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_i64(dst); + Ok(()) + } + + /// Reads a sequence of signed 128 bit integers from the underlying + /// reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of signed 128 bit big-endian integers from a `Read`: + /// + /// ```rust + /// use std::io::Cursor; + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, + /// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, + /// ]); + /// let mut dst = [0; 2]; + /// rdr.read_i128_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([517, 768], dst); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_i128_into<T: ByteOrder>( + &mut self, + dst: &mut [i128], + ) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_i128(dst); + Ok(()) + } + + /// Reads a sequence of IEEE754 single-precision (4 bytes) floating + /// point numbers from the underlying reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of big-endian single-precision floating point number + /// from a `Read`: + /// + /// ```rust + /// use std::f32; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x49, 0x0f, 0xdb, + /// 0x3f, 0x80, 0x00, 0x00, + /// ]); + /// let mut dst = [0.0; 2]; + /// rdr.read_f32_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([f32::consts::PI, 1.0], dst); + /// ``` + #[inline] + fn read_f32_into<T: ByteOrder>( + &mut self, + dst: &mut [f32], + ) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_f32(dst); + Ok(()) + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f32_into` instead. + /// + /// Reads a sequence of IEEE754 single-precision (4 bytes) floating + /// point numbers from the underlying reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of big-endian single-precision floating point number + /// from a `Read`: + /// + /// ```rust + /// use std::f32; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x49, 0x0f, 0xdb, + /// 0x3f, 0x80, 0x00, 0x00, + /// ]); + /// let mut dst = [0.0; 2]; + /// rdr.read_f32_into_unchecked::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([f32::consts::PI, 1.0], dst); + /// ``` + #[inline] + #[deprecated(since="1.2.0", note="please use `read_f32_into` instead")] + fn read_f32_into_unchecked<T: ByteOrder>( + &mut self, + dst: &mut [f32], + ) -> Result<()> { + self.read_f32_into::<T>(dst) + } + + /// Reads a sequence of IEEE754 double-precision (8 bytes) floating + /// point numbers from the underlying reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of big-endian single-precision floating point number + /// from a `Read`: + /// + /// ```rust + /// use std::f64; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18, + /// 0x3f, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /// ]); + /// let mut dst = [0.0; 2]; + /// rdr.read_f64_into::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([f64::consts::PI, 1.0], dst); + /// ``` + #[inline] + fn read_f64_into<T: ByteOrder>( + &mut self, + dst: &mut [f64], + ) -> Result<()> { + { + let buf = unsafe { slice_to_u8_mut(dst) }; + try!(self.read_exact(buf)); + } + T::from_slice_f64(dst); + Ok(()) + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f64_into` instead. + /// + /// Reads a sequence of IEEE754 double-precision (8 bytes) floating + /// point numbers from the underlying reader. + /// + /// The given buffer is either filled completely or an error is returned. + /// If an error is returned, the contents of `dst` are unspecified. + /// + /// # Safety + /// + /// This method is unsafe because there are no guarantees made about the + /// floating point values. In particular, this method does not check for + /// signaling NaNs, which may result in undefined behavior. + /// + /// # Errors + /// + /// This method returns the same errors as [`Read::read_exact`]. + /// + /// [`Read::read_exact`]: https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact + /// + /// # Examples + /// + /// Read a sequence of big-endian single-precision floating point number + /// from a `Read`: + /// + /// ```rust + /// use std::f64; + /// use std::io::Cursor; + /// + /// use byteorder::{BigEndian, ReadBytesExt}; + /// + /// let mut rdr = Cursor::new(vec![ + /// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18, + /// 0x3f, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /// ]); + /// let mut dst = [0.0; 2]; + /// rdr.read_f64_into_unchecked::<BigEndian>(&mut dst).unwrap(); + /// assert_eq!([f64::consts::PI, 1.0], dst); + /// ``` + #[inline] + #[deprecated(since="1.2.0", note="please use `read_f64_into` instead")] + fn read_f64_into_unchecked<T: ByteOrder>( + &mut self, + dst: &mut [f64], + ) -> Result<()> { + self.read_f64_into::<T>(dst) + } +} + +/// All types that implement `Read` get methods defined in `ReadBytesExt` +/// for free. +impl<R: io::Read + ?Sized> ReadBytesExt for R {} + +/// Extends [`Write`] with methods for writing numbers. (For `std::io`.) +/// +/// Most of the methods defined here have an unconstrained type parameter that +/// must be explicitly instantiated. Typically, it is instantiated with either +/// the [`BigEndian`] or [`LittleEndian`] types defined in this crate. +/// +/// # Examples +/// +/// Write unsigned 16 bit big-endian integers to a [`Write`]: +/// +/// ```rust +/// use byteorder::{BigEndian, WriteBytesExt}; +/// +/// let mut wtr = vec![]; +/// wtr.write_u16::<BigEndian>(517).unwrap(); +/// wtr.write_u16::<BigEndian>(768).unwrap(); +/// assert_eq!(wtr, vec![2, 5, 3, 0]); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +/// [`LittleEndian`]: enum.LittleEndian.html +/// [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html +pub trait WriteBytesExt: io::Write { + /// Writes an unsigned 8 bit integer to the underlying writer. + /// + /// Note that since this writes a single byte, no byte order conversions + /// are used. It is included for completeness. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 8 bit integers to a `Write`: + /// + /// ```rust + /// use byteorder::WriteBytesExt; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u8(2).unwrap(); + /// wtr.write_u8(5).unwrap(); + /// assert_eq!(wtr, b"\x02\x05"); + /// ``` + #[inline] + fn write_u8(&mut self, n: u8) -> Result<()> { + self.write_all(&[n]) + } + + /// Writes a signed 8 bit integer to the underlying writer. + /// + /// Note that since this writes a single byte, no byte order conversions + /// are used. It is included for completeness. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 8 bit integers to a `Write`: + /// + /// ```rust + /// use byteorder::WriteBytesExt; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i8(2).unwrap(); + /// wtr.write_i8(-5).unwrap(); + /// assert_eq!(wtr, b"\x02\xfb"); + /// ``` + #[inline] + fn write_i8(&mut self, n: i8) -> Result<()> { + self.write_all(&[n as u8]) + } + + /// Writes an unsigned 16 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 16 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u16::<BigEndian>(517).unwrap(); + /// wtr.write_u16::<BigEndian>(768).unwrap(); + /// assert_eq!(wtr, b"\x02\x05\x03\x00"); + /// ``` + #[inline] + fn write_u16<T: ByteOrder>(&mut self, n: u16) -> Result<()> { + let mut buf = [0; 2]; + T::write_u16(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 16 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 16 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i16::<BigEndian>(193).unwrap(); + /// wtr.write_i16::<BigEndian>(-132).unwrap(); + /// assert_eq!(wtr, b"\x00\xc1\xff\x7c"); + /// ``` + #[inline] + fn write_i16<T: ByteOrder>(&mut self, n: i16) -> Result<()> { + let mut buf = [0; 2]; + T::write_i16(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned 24 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 24 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u24::<BigEndian>(267).unwrap(); + /// wtr.write_u24::<BigEndian>(120111).unwrap(); + /// assert_eq!(wtr, b"\x00\x01\x0b\x01\xd5\x2f"); + /// ``` + #[inline] + fn write_u24<T: ByteOrder>(&mut self, n: u32) -> Result<()> { + let mut buf = [0; 3]; + T::write_u24(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 24 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 24 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i24::<BigEndian>(-34253).unwrap(); + /// wtr.write_i24::<BigEndian>(120111).unwrap(); + /// assert_eq!(wtr, b"\xff\x7a\x33\x01\xd5\x2f"); + /// ``` + #[inline] + fn write_i24<T: ByteOrder>(&mut self, n: i32) -> Result<()> { + let mut buf = [0; 3]; + T::write_i24(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned 32 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 32 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u32::<BigEndian>(267).unwrap(); + /// wtr.write_u32::<BigEndian>(1205419366).unwrap(); + /// assert_eq!(wtr, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66"); + /// ``` + #[inline] + fn write_u32<T: ByteOrder>(&mut self, n: u32) -> Result<()> { + let mut buf = [0; 4]; + T::write_u32(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 32 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 32 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i32::<BigEndian>(-34253).unwrap(); + /// wtr.write_i32::<BigEndian>(1205419366).unwrap(); + /// assert_eq!(wtr, b"\xff\xff\x7a\x33\x47\xd9\x3d\x66"); + /// ``` + #[inline] + fn write_i32<T: ByteOrder>(&mut self, n: i32) -> Result<()> { + let mut buf = [0; 4]; + T::write_i32(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned 48 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 48 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u48::<BigEndian>(52360336390828).unwrap(); + /// wtr.write_u48::<BigEndian>(541).unwrap(); + /// assert_eq!(wtr, b"\x2f\x9f\x17\x40\x3a\xac\x00\x00\x00\x00\x02\x1d"); + /// ``` + #[inline] + fn write_u48<T: ByteOrder>(&mut self, n: u64) -> Result<()> { + let mut buf = [0; 6]; + T::write_u48(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 48 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 48 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i48::<BigEndian>(-108363435763825).unwrap(); + /// wtr.write_i48::<BigEndian>(77).unwrap(); + /// assert_eq!(wtr, b"\x9d\x71\xab\xe7\x97\x8f\x00\x00\x00\x00\x00\x4d"); + /// ``` + #[inline] + fn write_i48<T: ByteOrder>(&mut self, n: i64) -> Result<()> { + let mut buf = [0; 6]; + T::write_i48(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned 64 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write unsigned 64 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_u64::<BigEndian>(918733457491587).unwrap(); + /// wtr.write_u64::<BigEndian>(143).unwrap(); + /// assert_eq!(wtr, b"\x00\x03\x43\x95\x4d\x60\x86\x83\x00\x00\x00\x00\x00\x00\x00\x8f"); + /// ``` + #[inline] + fn write_u64<T: ByteOrder>(&mut self, n: u64) -> Result<()> { + let mut buf = [0; 8]; + T::write_u64(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 64 bit integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write signed 64 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_i64::<BigEndian>(i64::min_value()).unwrap(); + /// wtr.write_i64::<BigEndian>(i64::max_value()).unwrap(); + /// assert_eq!(wtr, b"\x80\x00\x00\x00\x00\x00\x00\x00\x7f\xff\xff\xff\xff\xff\xff\xff"); + /// ``` + #[inline] + fn write_i64<T: ByteOrder>(&mut self, n: i64) -> Result<()> { + let mut buf = [0; 8]; + T::write_i64(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned 128 bit integer to the underlying writer. + #[cfg(byteorder_i128)] + #[inline] + fn write_u128<T: ByteOrder>(&mut self, n: u128) -> Result<()> { + let mut buf = [0; 16]; + T::write_u128(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a signed 128 bit integer to the underlying writer. + #[cfg(byteorder_i128)] + #[inline] + fn write_i128<T: ByteOrder>(&mut self, n: i128) -> Result<()> { + let mut buf = [0; 16]; + T::write_i128(&mut buf, n); + self.write_all(&buf) + } + + /// Writes an unsigned n-bytes integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Panics + /// + /// If the given integer is not representable in the given number of bytes, + /// this method panics. If `nbytes > 8`, this method panics. + /// + /// # Examples + /// + /// Write unsigned 40 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_uint::<BigEndian>(312550384361, 5).unwrap(); + /// wtr.write_uint::<BigEndian>(43, 5).unwrap(); + /// assert_eq!(wtr, b"\x48\xc5\x74\x62\xe9\x00\x00\x00\x00\x2b"); + /// ``` + #[inline] + fn write_uint<T: ByteOrder>( + &mut self, + n: u64, + nbytes: usize, + ) -> Result<()> { + let mut buf = [0; 8]; + T::write_uint(&mut buf, n, nbytes); + self.write_all(&buf[0..nbytes]) + } + + /// Writes a signed n-bytes integer to the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Panics + /// + /// If the given integer is not representable in the given number of bytes, + /// this method panics. If `nbytes > 8`, this method panics. + /// + /// # Examples + /// + /// Write signed 56 bit big-endian integers to a `Write`: + /// + /// ```rust + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_int::<BigEndian>(-3548172039376767, 7).unwrap(); + /// wtr.write_int::<BigEndian>(43, 7).unwrap(); + /// assert_eq!(wtr, b"\xf3\x64\xf4\xd1\xfd\xb0\x81\x00\x00\x00\x00\x00\x00\x2b"); + /// ``` + #[inline] + fn write_int<T: ByteOrder>( + &mut self, + n: i64, + nbytes: usize, + ) -> Result<()> { + let mut buf = [0; 8]; + T::write_int(&mut buf, n, nbytes); + self.write_all(&buf[0..nbytes]) + } + + /// Writes an unsigned n-bytes integer to the underlying writer. + /// + /// If the given integer is not representable in the given number of bytes, + /// this method panics. If `nbytes > 16`, this method panics. + #[cfg(byteorder_i128)] + #[inline] + fn write_uint128<T: ByteOrder>( + &mut self, + n: u128, + nbytes: usize, + ) -> Result<()> { + let mut buf = [0; 16]; + T::write_uint128(&mut buf, n, nbytes); + self.write_all(&buf[0..nbytes]) + } + + /// Writes a signed n-bytes integer to the underlying writer. + /// + /// If the given integer is not representable in the given number of bytes, + /// this method panics. If `nbytes > 16`, this method panics. + #[cfg(byteorder_i128)] + #[inline] + fn write_int128<T: ByteOrder>( + &mut self, + n: i128, + nbytes: usize, + ) -> Result<()> { + let mut buf = [0; 16]; + T::write_int128(&mut buf, n, nbytes); + self.write_all(&buf[0..nbytes]) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number to + /// the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write a big-endian single-precision floating point number to a `Write`: + /// + /// ```rust + /// use std::f32; + /// + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_f32::<BigEndian>(f32::consts::PI).unwrap(); + /// assert_eq!(wtr, b"\x40\x49\x0f\xdb"); + /// ``` + #[inline] + fn write_f32<T: ByteOrder>(&mut self, n: f32) -> Result<()> { + let mut buf = [0; 4]; + T::write_f32(&mut buf, n); + self.write_all(&buf) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number to + /// the underlying writer. + /// + /// # Errors + /// + /// This method returns the same errors as [`Write::write_all`]. + /// + /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all + /// + /// # Examples + /// + /// Write a big-endian double-precision floating point number to a `Write`: + /// + /// ```rust + /// use std::f64; + /// + /// use byteorder::{BigEndian, WriteBytesExt}; + /// + /// let mut wtr = Vec::new(); + /// wtr.write_f64::<BigEndian>(f64::consts::PI).unwrap(); + /// assert_eq!(wtr, b"\x40\x09\x21\xfb\x54\x44\x2d\x18"); + /// ``` + #[inline] + fn write_f64<T: ByteOrder>(&mut self, n: f64) -> Result<()> { + let mut buf = [0; 8]; + T::write_f64(&mut buf, n); + self.write_all(&buf) + } +} + +/// All types that implement `Write` get methods defined in `WriteBytesExt` +/// for free. +impl<W: io::Write + ?Sized> WriteBytesExt for W {} + +/// Convert a slice of T (where T is plain old data) to its mutable binary +/// representation. +/// +/// This function is wildly unsafe because it permits arbitrary modification of +/// the binary representation of any `Copy` type. Use with care. +unsafe fn slice_to_u8_mut<T: Copy>(slice: &mut [T]) -> &mut [u8] { + use std::mem::size_of; + + let len = size_of::<T>() * slice.len(); + slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut u8, len) +} diff --git a/third_party/rust/byteorder/src/lib.rs b/third_party/rust/byteorder/src/lib.rs new file mode 100644 index 0000000000..db4d24d812 --- /dev/null +++ b/third_party/rust/byteorder/src/lib.rs @@ -0,0 +1,3328 @@ +/*! +This crate provides convenience methods for encoding and decoding numbers in +either [big-endian or little-endian order]. + +The organization of the crate is pretty simple. A trait, [`ByteOrder`], specifies +byte conversion methods for each type of number in Rust (sans numbers that have +a platform dependent size like `usize` and `isize`). Two types, [`BigEndian`] +and [`LittleEndian`] implement these methods. Finally, [`ReadBytesExt`] and +[`WriteBytesExt`] provide convenience methods available to all types that +implement [`Read`] and [`Write`]. + +An alias, [`NetworkEndian`], for [`BigEndian`] is provided to help improve +code clarity. + +An additional alias, [`NativeEndian`], is provided for the endianness of the +local platform. This is convenient when serializing data for use and +conversions are not desired. + +# Examples + +Read unsigned 16 bit big-endian integers from a [`Read`] type: + +```rust +use std::io::Cursor; +use byteorder::{BigEndian, ReadBytesExt}; + +let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +// Note that we use type parameters to indicate which kind of byte order +// we want! +assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +``` + +Write unsigned 16 bit little-endian integers to a [`Write`] type: + +```rust +use byteorder::{LittleEndian, WriteBytesExt}; + +let mut wtr = vec![]; +wtr.write_u16::<LittleEndian>(517).unwrap(); +wtr.write_u16::<LittleEndian>(768).unwrap(); +assert_eq!(wtr, vec![5, 2, 0, 3]); +``` + +# Optional Features + +This crate optionally provides support for 128 bit values (`i128` and `u128`) +when built with the `i128` feature enabled. + +This crate can also be used without the standard library. + +# Alternatives + +Note that as of Rust 1.32, the standard numeric types provide built-in methods +like `to_le_bytes` and `from_le_bytes`, which support some of the same use +cases. + +[big-endian or little-endian order]: https://en.wikipedia.org/wiki/Endianness +[`ByteOrder`]: trait.ByteOrder.html +[`BigEndian`]: enum.BigEndian.html +[`LittleEndian`]: enum.LittleEndian.html +[`ReadBytesExt`]: trait.ReadBytesExt.html +[`WriteBytesExt`]: trait.WriteBytesExt.html +[`NetworkEndian`]: type.NetworkEndian.html +[`NativeEndian`]: type.NativeEndian.html +[`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html +[`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html +*/ + +#![deny(missing_docs)] +#![cfg_attr(not(feature = "std"), no_std)] + +#[cfg(feature = "std")] +extern crate core; + +#[cfg(test)] +#[macro_use] +extern crate doc_comment; + +#[cfg(test)] +doctest!("../README.md"); + +use core::fmt::Debug; +use core::hash::Hash; +use core::ptr::copy_nonoverlapping; +use core::slice; + +#[cfg(feature = "std")] +pub use io::{ReadBytesExt, WriteBytesExt}; + +#[cfg(feature = "std")] +mod io; + +#[inline] +fn extend_sign(val: u64, nbytes: usize) -> i64 { + let shift = (8 - nbytes) * 8; + (val << shift) as i64 >> shift +} + +#[cfg(byteorder_i128)] +#[inline] +fn extend_sign128(val: u128, nbytes: usize) -> i128 { + let shift = (16 - nbytes) * 8; + (val << shift) as i128 >> shift +} + +#[inline] +fn unextend_sign(val: i64, nbytes: usize) -> u64 { + let shift = (8 - nbytes) * 8; + (val << shift) as u64 >> shift +} + +#[cfg(byteorder_i128)] +#[inline] +fn unextend_sign128(val: i128, nbytes: usize) -> u128 { + let shift = (16 - nbytes) * 8; + (val << shift) as u128 >> shift +} + +#[inline] +fn pack_size(n: u64) -> usize { + if n < 1 << 8 { + 1 + } else if n < 1 << 16 { + 2 + } else if n < 1 << 24 { + 3 + } else if n < 1 << 32 { + 4 + } else if n < 1 << 40 { + 5 + } else if n < 1 << 48 { + 6 + } else if n < 1 << 56 { + 7 + } else { + 8 + } +} + +#[cfg(byteorder_i128)] +#[inline] +fn pack_size128(n: u128) -> usize { + if n < 1 << 8 { + 1 + } else if n < 1 << 16 { + 2 + } else if n < 1 << 24 { + 3 + } else if n < 1 << 32 { + 4 + } else if n < 1 << 40 { + 5 + } else if n < 1 << 48 { + 6 + } else if n < 1 << 56 { + 7 + } else if n < 1 << 64 { + 8 + } else if n < 1 << 72 { + 9 + } else if n < 1 << 80 { + 10 + } else if n < 1 << 88 { + 11 + } else if n < 1 << 96 { + 12 + } else if n < 1 << 104 { + 13 + } else if n < 1 << 112 { + 14 + } else if n < 1 << 120 { + 15 + } else { + 16 + } +} + +mod private { + /// Sealed stops crates other than byteorder from implementing any traits + /// that use it. + pub trait Sealed{} + impl Sealed for super::LittleEndian {} + impl Sealed for super::BigEndian {} +} + +/// `ByteOrder` describes types that can serialize integers as bytes. +/// +/// Note that `Self` does not appear anywhere in this trait's definition! +/// Therefore, in order to use it, you'll need to use syntax like +/// `T::read_u16(&[0, 1])` where `T` implements `ByteOrder`. +/// +/// This crate provides two types that implement `ByteOrder`: [`BigEndian`] +/// and [`LittleEndian`]. +/// This trait is sealed and cannot be implemented for callers to avoid +/// breaking backwards compatibility when adding new derived traits. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -5_000); +/// assert_eq!(-5_000, BigEndian::read_i16(&buf)); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +/// [`LittleEndian`]: enum.LittleEndian.html +pub trait ByteOrder + : Clone + Copy + Debug + Default + Eq + Hash + Ord + PartialEq + PartialOrd + + private::Sealed +{ + /// Reads an unsigned 16 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + fn read_u16(buf: &[u8]) -> u16; + + /// Reads an unsigned 24 bit integer from `buf`, stored in u32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_u24(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u24(&buf)); + /// ``` + fn read_u24(buf: &[u8]) -> u32 { + Self::read_uint(buf, 3) as u32 + } + + /// Reads an unsigned 32 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_u32(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); + /// ``` + fn read_u32(buf: &[u8]) -> u32; + + /// Reads an unsigned 48 bit integer from `buf`, stored in u64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_u48(&mut buf, 1_000_000_000_000); + /// assert_eq!(1_000_000_000_000, LittleEndian::read_u48(&buf)); + /// ``` + fn read_u48(buf: &[u8]) -> u64 { + Self::read_uint(buf, 6) as u64 + } + + /// Reads an unsigned 64 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_u64(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u64(&buf)); + /// ``` + fn read_u64(buf: &[u8]) -> u64; + + /// Reads an unsigned 128 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_u128(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u128(&buf)); + /// ``` + #[cfg(byteorder_i128)] + fn read_u128(buf: &[u8]) -> u128; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint(&buf, 3)); + /// ``` + fn read_uint(buf: &[u8], nbytes: usize) -> u64; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 16` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint128(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint128(&buf, 3)); + /// ``` + #[cfg(byteorder_i128)] + fn read_uint128(buf: &[u8], nbytes: usize) -> u128; + + /// Writes an unsigned 16 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_u16(&mut buf, 1_000); + /// assert_eq!(1_000, LittleEndian::read_u16(&buf)); + /// ``` + fn write_u16(buf: &mut [u8], n: u16); + + /// Writes an unsigned 24 bit integer `n` to `buf`, stored in u32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_u24(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u24(&buf)); + /// ``` + fn write_u24(buf: &mut [u8], n: u32) { + Self::write_uint(buf, n as u64, 3) + } + + /// Writes an unsigned 32 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_u32(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); + /// ``` + fn write_u32(buf: &mut [u8], n: u32); + + /// Writes an unsigned 48 bit integer `n` to `buf`, stored in u64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_u48(&mut buf, 1_000_000_000_000); + /// assert_eq!(1_000_000_000_000, LittleEndian::read_u48(&buf)); + /// ``` + fn write_u48(buf: &mut [u8], n: u64) { + Self::write_uint(buf, n as u64, 6) + } + + /// Writes an unsigned 64 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_u64(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u64(&buf)); + /// ``` + fn write_u64(buf: &mut [u8], n: u64); + + /// Writes an unsigned 128 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_u128(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u128(&buf)); + /// ``` + #[cfg(byteorder_i128)] + fn write_u128(buf: &mut [u8], n: u128); + + /// Writes an unsigned integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint(&buf, 3)); + /// ``` + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize); + + /// Writes an unsigned integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 16`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint128(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint128(&buf, 3)); + /// ``` + #[cfg(byteorder_i128)] + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize); + + /// Reads a signed 16 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_i16(&mut buf, -1_000); + /// assert_eq!(-1_000, LittleEndian::read_i16(&buf)); + /// ``` + #[inline] + fn read_i16(buf: &[u8]) -> i16 { + Self::read_u16(buf) as i16 + } + + /// Reads a signed 24 bit integer from `buf`, stored in i32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_i24(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i24(&buf)); + /// ``` + #[inline] + fn read_i24(buf: &[u8]) -> i32 { + Self::read_int(buf, 3) as i32 + } + + /// Reads a signed 32 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_i32(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i32(&buf)); + /// ``` + #[inline] + fn read_i32(buf: &[u8]) -> i32 { + Self::read_u32(buf) as i32 + } + + /// Reads a signed 48 bit integer from `buf`, stored in i64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_i48(&mut buf, -1_000_000_000_000); + /// assert_eq!(-1_000_000_000_000, LittleEndian::read_i48(&buf)); + /// ``` + #[inline] + fn read_i48(buf: &[u8]) -> i64 { + Self::read_int(buf, 6) as i64 + } + + /// Reads a signed 64 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_i64(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i64(&buf)); + /// ``` + #[inline] + fn read_i64(buf: &[u8]) -> i64 { + Self::read_u64(buf) as i64 + } + + /// Reads a signed 128 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_i128(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i128(&buf)); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_i128(buf: &[u8]) -> i128 { + Self::read_u128(buf) as i128 + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int(&buf, 3)); + /// ``` + #[inline] + fn read_int(buf: &[u8], nbytes: usize) -> i64 { + extend_sign(Self::read_uint(buf, nbytes), nbytes) + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 16` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int128(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int128(&buf, 3)); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_int128(buf: &[u8], nbytes: usize) -> i128 { + extend_sign128(Self::read_uint128(buf, nbytes), nbytes) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let e = 2.71828; + /// let mut buf = [0; 4]; + /// LittleEndian::write_f32(&mut buf, e); + /// assert_eq!(e, LittleEndian::read_f32(&buf)); + /// ``` + #[inline] + fn read_f32(buf: &[u8]) -> f32 { + unsafe { *(&Self::read_u32(buf) as *const u32 as *const f32) } + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let phi = 1.6180339887; + /// let mut buf = [0; 8]; + /// LittleEndian::write_f64(&mut buf, phi); + /// assert_eq!(phi, LittleEndian::read_f64(&buf)); + /// ``` + #[inline] + fn read_f64(buf: &[u8]) -> f64 { + unsafe { *(&Self::read_u64(buf) as *const u64 as *const f64) } + } + + /// Writes a signed 16 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_i16(&mut buf, -1_000); + /// assert_eq!(-1_000, LittleEndian::read_i16(&buf)); + /// ``` + #[inline] + fn write_i16(buf: &mut [u8], n: i16) { + Self::write_u16(buf, n as u16) + } + + /// Writes a signed 24 bit integer `n` to `buf`, stored in i32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_i24(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i24(&buf)); + /// ``` + #[inline] + fn write_i24(buf: &mut [u8], n: i32) { + Self::write_int(buf, n as i64, 3) + } + + /// Writes a signed 32 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_i32(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i32(&buf)); + /// ``` + #[inline] + fn write_i32(buf: &mut [u8], n: i32) { + Self::write_u32(buf, n as u32) + } + + /// Writes a signed 48 bit integer `n` to `buf`, stored in i64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_i48(&mut buf, -1_000_000_000_000); + /// assert_eq!(-1_000_000_000_000, LittleEndian::read_i48(&buf)); + /// ``` + #[inline] + fn write_i48(buf: &mut [u8], n: i64) { + Self::write_int(buf, n as i64, 6) + } + + /// Writes a signed 64 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_i64(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i64(&buf)); + /// ``` + #[inline] + fn write_i64(buf: &mut [u8], n: i64) { + Self::write_u64(buf, n as u64) + } + + /// Writes a signed 128 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read n-byte `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_i128(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i128(&buf)); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn write_i128(buf: &mut [u8], n: i128) { + Self::write_u128(buf, n as u128) + } + + /// Writes a signed integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int(&buf, 3)); + /// ``` + #[inline] + fn write_int(buf: &mut [u8], n: i64, nbytes: usize) { + Self::write_uint(buf, unextend_sign(n, nbytes), nbytes) + } + + /// Writes a signed integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 16`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int128(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int128(&buf, 3)); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn write_int128(buf: &mut [u8], n: i128, nbytes: usize) { + Self::write_uint128(buf, unextend_sign128(n, nbytes), nbytes) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let e = 2.71828; + /// let mut buf = [0; 4]; + /// LittleEndian::write_f32(&mut buf, e); + /// assert_eq!(e, LittleEndian::read_f32(&buf)); + /// ``` + #[inline] + fn write_f32(buf: &mut [u8], n: f32) { + let n = unsafe { *(&n as *const f32 as *const u32) }; + Self::write_u32(buf, n) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let phi = 1.6180339887; + /// let mut buf = [0; 8]; + /// LittleEndian::write_f64(&mut buf, phi); + /// assert_eq!(phi, LittleEndian::read_f64(&buf)); + /// ``` + #[inline] + fn write_f64(buf: &mut [u8], n: f64) { + let n = unsafe { *(&n as *const f64 as *const u64) }; + Self::write_u64(buf, n) + } + + /// Reads unsigned 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 2*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u16_into(src: &[u8], dst: &mut [u16]); + + /// Reads unsigned 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u32_into(src: &[u8], dst: &mut [u32]); + + /// Reads unsigned 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u64_into(src: &[u8], dst: &mut [u64]); + + /// Reads unsigned 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 16*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[cfg(byteorder_i128)] + fn read_u128_into(src: &[u8], dst: &mut [u128]); + + /// Reads signed 16 bit integers from `src` to `dst`. + /// + /// # Panics + /// + /// Panics when `buf.len() != 2*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0x0f, 0xee]; + /// LittleEndian::write_i16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i16_into(src: &[u8], dst: &mut [i16]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u16, dst.len()) + }; + Self::read_u16_into(src, dst) + } + + /// Reads signed 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i32_into(src: &[u8], dst: &mut [i32]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u32, dst.len()) + }; + Self::read_u32_into(src, dst); + } + + /// Reads signed 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i64_into(src: &[u8], dst: &mut [i64]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u64, dst.len()) + }; + Self::read_u64_into(src, dst); + } + + /// Reads signed 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 16*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn read_i128_into(src: &[u8], dst: &mut [i128]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u128, dst.len()) + }; + Self::read_u128_into(src, dst); + } + + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_f32_into(src: &[u8], dst: &mut [f32]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u32, dst.len()) + }; + Self::read_u32_into(src, dst); + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f32_into` instead. + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f32_into_unchecked(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + #[deprecated(since="1.3.0", note="please use `read_f32_into` instead")] + fn read_f32_into_unchecked(src: &[u8], dst: &mut [f32]) { + Self::read_f32_into(src, dst); + } + + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_f64_into(src: &[u8], dst: &mut [f64]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u64, dst.len()) + }; + Self::read_u64_into(src, dst); + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f64_into` instead. + /// + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f64_into_unchecked(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + #[deprecated(since="1.3.0", note="please use `read_f64_into` instead")] + fn read_f64_into_unchecked(src: &[u8], dst: &mut [f64]) { + Self::read_f64_into(src, dst); + } + + /// Writes unsigned 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 2*src.len()`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u16_into(src: &[u16], dst: &mut [u8]); + + /// Writes unsigned 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 4*src.len()`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u32_into(src: &[u32], dst: &mut [u8]); + + /// Writes unsigned 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 8*src.len()`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u64_into(src: &[u64], dst: &mut [u8]); + + /// Writes unsigned 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 16*src.len()`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[cfg(byteorder_i128)] + fn write_u128_into(src: &[u128], dst: &mut [u8]); + + /// Writes signed 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `buf.len() != 2*src.len()`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0x0f, 0xee]; + /// LittleEndian::write_i16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i16_into(src: &[i16], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u16, src.len()) + }; + Self::write_u16_into(src, dst); + } + + /// Writes signed 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 4*src.len()`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i32_into(src: &[i32], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u32, src.len()) + }; + Self::write_u32_into(src, dst); + } + + /// Writes signed 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 8*src.len()`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i64_into(src: &[i64], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u64, src.len()) + }; + Self::write_u64_into(src, dst); + } + + /// Writes signed 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 16*src.len()`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[cfg(byteorder_i128)] + fn write_i128_into(src: &[i128], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u128, src.len()) + }; + Self::write_u128_into(src, dst); + } + + /// Writes IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// unsafe { + /// LittleEndian::read_f32_into(&bytes, &mut numbers_got); + /// } + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_f32_into(src: &[f32], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u32, src.len()) + }; + Self::write_u32_into(src, dst); + } + + /// Writes IEEE754 double-precision (8 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// unsafe { + /// LittleEndian::read_f64_into(&bytes, &mut numbers_got); + /// } + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_f64_into(src: &[f64], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u64, src.len()) + }; + Self::write_u64_into(src, dst); + } + + /// Converts the given slice of unsigned 16 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u16(&mut numbers); + /// assert_eq!(numbers, [5u16.to_be(), 65000u16.to_be()]); + /// ``` + fn from_slice_u16(numbers: &mut [u16]); + + /// Converts the given slice of unsigned 32 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u32(&mut numbers); + /// assert_eq!(numbers, [5u32.to_be(), 65000u32.to_be()]); + /// ``` + fn from_slice_u32(numbers: &mut [u32]); + + /// Converts the given slice of unsigned 64 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u64(&mut numbers); + /// assert_eq!(numbers, [5u64.to_be(), 65000u64.to_be()]); + /// ``` + fn from_slice_u64(numbers: &mut [u64]); + + /// Converts the given slice of unsigned 128 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u128(&mut numbers); + /// assert_eq!(numbers, [5u128.to_be(), 65000u128.to_be()]); + /// ``` + #[cfg(byteorder_i128)] + fn from_slice_u128(numbers: &mut [u128]); + + /// Converts the given slice of signed 16 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 6500]; + /// BigEndian::from_slice_i16(&mut numbers); + /// assert_eq!(numbers, [5i16.to_be(), 6500i16.to_be()]); + /// ``` + #[inline] + fn from_slice_i16(src: &mut [i16]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_ptr() as *mut u16, src.len()) + }; + Self::from_slice_u16(src); + } + + /// Converts the given slice of signed 32 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i32(&mut numbers); + /// assert_eq!(numbers, [5i32.to_be(), 65000i32.to_be()]); + /// ``` + #[inline] + fn from_slice_i32(src: &mut [i32]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_ptr() as *mut u32, src.len()) + }; + Self::from_slice_u32(src); + } + + /// Converts the given slice of signed 64 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i64(&mut numbers); + /// assert_eq!(numbers, [5i64.to_be(), 65000i64.to_be()]); + /// ``` + #[inline] + fn from_slice_i64(src: &mut [i64]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_ptr() as *mut u64, src.len()) + }; + Self::from_slice_u64(src); + } + + /// Converts the given slice of signed 128 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i128(&mut numbers); + /// assert_eq!(numbers, [5i128.to_be(), 65000i128.to_be()]); + /// ``` + #[cfg(byteorder_i128)] + #[inline] + fn from_slice_i128(src: &mut [i128]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_ptr() as *mut u128, src.len()) + }; + Self::from_slice_u128(src); + } + + /// Converts the given slice of IEEE754 single-precision (4 bytes) floating + /// point numbers to a particular endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + fn from_slice_f32(numbers: &mut [f32]); + + /// Converts the given slice of IEEE754 double-precision (8 bytes) floating + /// point numbers to a particular endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + fn from_slice_f64(numbers: &mut [f64]); +} + +/// Defines big-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `u32` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 4]; +/// BigEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, BigEndian::read_u32(&buf)); +/// ``` +#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] +pub enum BigEndian {} + +impl Default for BigEndian { + fn default() -> BigEndian { + panic!("BigEndian default") + } +} + +/// A type alias for [`BigEndian`]. +/// +/// [`BigEndian`]: enum.BigEndian.html +pub type BE = BigEndian; + +/// Defines little-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] +pub enum LittleEndian {} + +impl Default for LittleEndian { + fn default() -> LittleEndian { + panic!("LittleEndian default") + } +} + +/// A type alias for [`LittleEndian`]. +/// +/// [`LittleEndian`]: enum.LittleEndian.html +pub type LE = LittleEndian; + +/// Defines network byte order serialization. +/// +/// Network byte order is defined by [RFC 1700][1] to be big-endian, and is +/// referred to in several protocol specifications. This type is an alias of +/// [`BigEndian`]. +/// +/// [1]: https://tools.ietf.org/html/rfc1700 +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, NetworkEndian, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -5_000); +/// assert_eq!(-5_000, NetworkEndian::read_i16(&buf)); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +pub type NetworkEndian = BigEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// On this platform, this is an alias for [`LittleEndian`]. +/// +/// [`LittleEndian`]: enum.LittleEndian.html +#[cfg(target_endian = "little")] +pub type NativeEndian = LittleEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// On this platform, this is an alias for [`BigEndian`]. +/// +/// [`BigEndian`]: enum.BigEndian.html +#[cfg(target_endian = "big")] +pub type NativeEndian = BigEndian; + +macro_rules! read_num_bytes { + ($ty:ty, $size:expr, $src:expr, $which:ident) => ({ + assert!($size == ::core::mem::size_of::<$ty>()); + assert!($size <= $src.len()); + let mut data: $ty = 0; + unsafe { + copy_nonoverlapping( + $src.as_ptr(), + &mut data as *mut $ty as *mut u8, + $size); + } + data.$which() + }); +} + +macro_rules! write_num_bytes { + ($ty:ty, $size:expr, $n:expr, $dst:expr, $which:ident) => ({ + assert!($size <= $dst.len()); + unsafe { + // N.B. https://github.com/rust-lang/rust/issues/22776 + let bytes = *(&$n.$which() as *const _ as *const [u8; $size]); + copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); + } + }); +} + +macro_rules! read_slice { + ($src:expr, $dst:expr, $size:expr, $which:ident) => {{ + assert_eq!($src.len(), $size * $dst.len()); + + unsafe { + copy_nonoverlapping( + $src.as_ptr(), + $dst.as_mut_ptr() as *mut u8, + $src.len()); + } + for v in $dst.iter_mut() { + *v = v.$which(); + } + }}; +} + +macro_rules! write_slice_native { + ($src:expr, $dst:expr, $ty:ty, $size:expr) => {{ + assert!($size == ::core::mem::size_of::<$ty>()); + assert_eq!($size * $src.len(), $dst.len()); + + unsafe { + copy_nonoverlapping( + $src.as_ptr() as *const u8, + $dst.as_mut_ptr(), + $dst.len()); + } + }}; +} + +macro_rules! write_slice { + ($src:expr, $dst:expr, $ty:ty, $size:expr, $write:expr) => ({ + assert!($size == ::core::mem::size_of::<$ty>()); + assert_eq!($size * $src.len(), $dst.len()); + + for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { + $write(chunk, n); + } + }); +} + +impl ByteOrder for BigEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_be) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_be) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_be) + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_u128(buf: &[u8]) -> u128 { + read_num_bytes!(u128, 16, buf, to_be) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = [0u8; 8]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping( + buf.as_ptr(), ptr_out.offset((8 - nbytes) as isize), nbytes); + (*(ptr_out as *const u64)).to_be() + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_uint128(buf: &[u8], nbytes: usize) -> u128 { + assert!(1 <= nbytes && nbytes <= 16 && nbytes <= buf.len()); + let mut out = [0u8; 16]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping( + buf.as_ptr(), ptr_out.offset((16 - nbytes) as isize), nbytes); + (*(ptr_out as *const u128)).to_be() + } + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_be); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_be); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_be); + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_u128(buf: &mut [u8], n: u128) { + write_num_bytes!(u128, 16, n, buf, to_be); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_be() as *const u64 as *const [u8; 8]); + copy_nonoverlapping( + bytes.as_ptr().offset((8 - nbytes) as isize), + buf.as_mut_ptr(), + nbytes); + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize) { + assert!(pack_size128(n) <= nbytes && nbytes <= 16); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_be() as *const u128 as *const [u8; 16]); + copy_nonoverlapping( + bytes.as_ptr().offset((16 - nbytes) as isize), + buf.as_mut_ptr(), + nbytes); + } + } + + #[inline] + fn read_u16_into(src: &[u8], dst: &mut [u16]) { + read_slice!(src, dst, 2, to_be); + } + + #[inline] + fn read_u32_into(src: &[u8], dst: &mut [u32]) { + read_slice!(src, dst, 4, to_be); + } + + #[inline] + fn read_u64_into(src: &[u8], dst: &mut [u64]) { + read_slice!(src, dst, 8, to_be); + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_u128_into(src: &[u8], dst: &mut [u128]) { + read_slice!(src, dst, 16, to_be); + } + + #[inline] + fn write_u16_into(src: &[u16], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + write_slice_native!(src, dst, u16, 2); + } else { + write_slice!(src, dst, u16, 2, Self::write_u16); + } + } + + #[inline] + fn write_u32_into(src: &[u32], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + write_slice_native!(src, dst, u32, 4); + } else { + write_slice!(src, dst, u32, 4, Self::write_u32); + } + } + + #[inline] + fn write_u64_into(src: &[u64], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + write_slice_native!(src, dst, u64, 8); + } else { + write_slice!(src, dst, u64, 8, Self::write_u64); + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_u128_into(src: &[u128], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + write_slice_native!(src, dst, u128, 16); + } else { + write_slice!(src, dst, u128, 16, Self::write_u128); + } + } + + #[inline] + fn from_slice_u16(numbers: &mut [u16]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_u32(numbers: &mut [u32]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_u64(numbers: &mut [u64]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn from_slice_u128(numbers: &mut [u128]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_f32(numbers: &mut [f32]) { + if cfg!(target_endian = "little") { + for n in numbers { + unsafe { + let int = *(n as *const f32 as *const u32); + *n = *(&int.to_be() as *const u32 as *const f32); + } + } + } + } + + #[inline] + fn from_slice_f64(numbers: &mut [f64]) { + if cfg!(target_endian = "little") { + for n in numbers { + unsafe { + let int = *(n as *const f64 as *const u64); + *n = *(&int.to_be() as *const u64 as *const f64); + } + } + } + } +} + +impl ByteOrder for LittleEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_le) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_le) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_le) + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_u128(buf: &[u8]) -> u128 { + read_num_bytes!(u128, 16, buf, to_le) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = [0u8; 8]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); + (*(ptr_out as *const u64)).to_le() + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_uint128(buf: &[u8], nbytes: usize) -> u128 { + assert!(1 <= nbytes && nbytes <= 16 && nbytes <= buf.len()); + let mut out = [0u8; 16]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); + (*(ptr_out as *const u128)).to_le() + } + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_le); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_le); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_le); + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_u128(buf: &mut [u8], n: u128) { + write_num_bytes!(u128, 16, n, buf, to_le); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n as u64) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_le() as *const u64 as *const [u8; 8]); + copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize) { + assert!(pack_size128(n as u128) <= nbytes && nbytes <= 16); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_le() as *const u128 as *const [u8; 16]); + copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); + } + } + + #[inline] + fn read_u16_into(src: &[u8], dst: &mut [u16]) { + read_slice!(src, dst, 2, to_le); + } + + #[inline] + fn read_u32_into(src: &[u8], dst: &mut [u32]) { + read_slice!(src, dst, 4, to_le); + } + + #[inline] + fn read_u64_into(src: &[u8], dst: &mut [u64]) { + read_slice!(src, dst, 8, to_le); + } + + #[cfg(byteorder_i128)] + #[inline] + fn read_u128_into(src: &[u8], dst: &mut [u128]) { + read_slice!(src, dst, 16, to_le); + } + + #[inline] + fn write_u16_into(src: &[u16], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + write_slice_native!(src, dst, u16, 2); + } else { + write_slice!(src, dst, u16, 2, Self::write_u16); + } + } + + #[inline] + fn write_u32_into(src: &[u32], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + write_slice_native!(src, dst, u32, 4); + } else { + write_slice!(src, dst, u32, 4, Self::write_u32); + } + } + + #[inline] + fn write_u64_into(src: &[u64], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + write_slice_native!(src, dst, u64, 8); + } else { + write_slice!(src, dst, u64, 8, Self::write_u64); + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn write_u128_into(src: &[u128], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + write_slice_native!(src, dst, u128, 16); + } else { + write_slice!(src, dst, u128, 16, Self::write_u128); + } + } + + #[inline] + fn from_slice_u16(numbers: &mut [u16]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_u32(numbers: &mut [u32]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_u64(numbers: &mut [u64]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[cfg(byteorder_i128)] + #[inline] + fn from_slice_u128(numbers: &mut [u128]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_f32(numbers: &mut [f32]) { + if cfg!(target_endian = "big") { + for n in numbers { + unsafe { + let int = *(n as *const f32 as *const u32); + *n = *(&int.to_le() as *const u32 as *const f32); + } + } + } + } + + #[inline] + fn from_slice_f64(numbers: &mut [f64]) { + if cfg!(target_endian = "big") { + for n in numbers { + unsafe { + let int = *(n as *const f64 as *const u64); + *n = *(&int.to_le() as *const u64 as *const f64); + } + } + } + } +} + +#[cfg(test)] +mod test { + extern crate quickcheck; + extern crate rand; + + use self::quickcheck::{QuickCheck, StdGen, Testable}; + use self::rand::thread_rng; + #[cfg(byteorder_i128)] + use self::rand::Rng; + #[cfg(byteorder_i128)] + use self::quickcheck::{Arbitrary, Gen}; + + pub const U24_MAX: u32 = 16_777_215; + pub const I24_MAX: i32 = 8_388_607; + pub const U48_MAX: u64 = 281_474_976_710_655; + pub const I48_MAX: i64 = 140_737_488_355_327; + + pub const U64_MAX: u64 = ::core::u64::MAX; + pub const I64_MAX: u64 = ::core::i64::MAX as u64; + + macro_rules! calc_max { + ($max:expr, $bytes:expr) => { calc_max!($max, $bytes, 8) }; + ($max:expr, $bytes:expr, $maxbytes:expr) => { + ($max - 1) >> (8 * ($maxbytes - $bytes)) + }; + } + + #[derive(Clone, Debug)] + pub struct Wi128<T>(pub T); + + #[cfg(byteorder_i128)] + impl<T: Clone> Wi128<T> { + pub fn clone(&self) -> T { + self.0.clone() + } + } + + impl<T: PartialEq> PartialEq<T> for Wi128<T> { + fn eq(&self, other: &T) -> bool { + self.0.eq(other) + } + } + + #[cfg(byteorder_i128)] + impl Arbitrary for Wi128<u128> { + fn arbitrary<G: Gen>(gen: &mut G) -> Wi128<u128> { + let max = calc_max!(::core::u128::MAX, gen.size(), 16); + let output = + (gen.gen::<u64>() as u128) | + ((gen.gen::<u64>() as u128) << 64); + Wi128(output & (max - 1)) + } + } + + #[cfg(byteorder_i128)] + impl Arbitrary for Wi128<i128> { + fn arbitrary<G: Gen>(gen: &mut G) -> Wi128<i128> { + let max = calc_max!(::core::i128::MAX, gen.size(), 16); + let output = + (gen.gen::<i64>() as i128) | + ((gen.gen::<i64>() as i128) << 64); + Wi128(output & (max - 1)) + } + } + + pub fn qc_sized<A: Testable>(f: A, size: u64) { + QuickCheck::new() + .gen(StdGen::new(thread_rng(), size as usize)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! qc_byte_order { + ($name:ident, $ty_int:ty, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + #[allow(unused_imports)] use super::{ qc_sized, Wi128 }; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + BigEndian::$write(&mut buf, n.clone(), $bytes); + n == BigEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + LittleEndian::$write(&mut buf, n.clone(), $bytes); + n == LittleEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + NativeEndian::$write(&mut buf, n.clone(), $bytes); + n == NativeEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + } + ); + ($name:ident, $ty_int:ty, $max:expr, + $read:ident, $write:ident) => ( + mod $name { + use core::mem::size_of; + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + #[allow(unused_imports)] use super::{ qc_sized, Wi128 }; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + BigEndian::$write(&mut buf[16 - bytes..], n.clone()); + n == BigEndian::$read(&mut buf[16 - bytes..]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + LittleEndian::$write(&mut buf[..bytes], n.clone()); + n == LittleEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + NativeEndian::$write(&mut buf[..bytes], n.clone()); + n == NativeEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_byte_order!(prop_u16, u16, ::core::u16::MAX as u64, read_u16, write_u16); + qc_byte_order!(prop_i16, i16, ::core::i16::MAX as u64, read_i16, write_i16); + qc_byte_order!(prop_u24, u32, ::test::U24_MAX as u64, read_u24, write_u24); + qc_byte_order!(prop_i24, i32, ::test::I24_MAX as u64, read_i24, write_i24); + qc_byte_order!(prop_u32, u32, ::core::u32::MAX as u64, read_u32, write_u32); + qc_byte_order!(prop_i32, i32, ::core::i32::MAX as u64, read_i32, write_i32); + qc_byte_order!(prop_u48, u64, ::test::U48_MAX as u64, read_u48, write_u48); + qc_byte_order!(prop_i48, i64, ::test::I48_MAX as u64, read_i48, write_i48); + qc_byte_order!(prop_u64, u64, ::core::u64::MAX as u64, read_u64, write_u64); + qc_byte_order!(prop_i64, i64, ::core::i64::MAX as u64, read_i64, write_i64); + qc_byte_order!(prop_f32, f32, ::core::u64::MAX as u64, read_f32, write_f32); + qc_byte_order!(prop_f64, f64, ::core::i64::MAX as u64, read_f64, write_f64); + + #[cfg(byteorder_i128)] + qc_byte_order!(prop_u128, Wi128<u128>, 16 + 1, read_u128, write_u128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_i128, Wi128<i128>, 16 + 1, read_i128, write_i128); + + qc_byte_order!(prop_uint_1, + u64, calc_max!(super::U64_MAX, 1), 1, read_uint, write_uint); + qc_byte_order!(prop_uint_2, + u64, calc_max!(super::U64_MAX, 2), 2, read_uint, write_uint); + qc_byte_order!(prop_uint_3, + u64, calc_max!(super::U64_MAX, 3), 3, read_uint, write_uint); + qc_byte_order!(prop_uint_4, + u64, calc_max!(super::U64_MAX, 4), 4, read_uint, write_uint); + qc_byte_order!(prop_uint_5, + u64, calc_max!(super::U64_MAX, 5), 5, read_uint, write_uint); + qc_byte_order!(prop_uint_6, + u64, calc_max!(super::U64_MAX, 6), 6, read_uint, write_uint); + qc_byte_order!(prop_uint_7, + u64, calc_max!(super::U64_MAX, 7), 7, read_uint, write_uint); + qc_byte_order!(prop_uint_8, + u64, calc_max!(super::U64_MAX, 8), 8, read_uint, write_uint); + + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_1, + Wi128<u128>, 1, 1, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_2, + Wi128<u128>, 2, 2, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_3, + Wi128<u128>, 3, 3, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_4, + Wi128<u128>, 4, 4, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_5, + Wi128<u128>, 5, 5, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_6, + Wi128<u128>, 6, 6, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_7, + Wi128<u128>, 7, 7, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_8, + Wi128<u128>, 8, 8, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_9, + Wi128<u128>, 9, 9, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_10, + Wi128<u128>, 10, 10, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_11, + Wi128<u128>, 11, 11, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_12, + Wi128<u128>, 12, 12, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_13, + Wi128<u128>, 13, 13, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_14, + Wi128<u128>, 14, 14, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_15, + Wi128<u128>, 15, 15, read_uint128, write_uint128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_uint128_16, + Wi128<u128>, 16, 16, read_uint128, write_uint128); + + qc_byte_order!(prop_int_1, + i64, calc_max!(super::I64_MAX, 1), 1, read_int, write_int); + qc_byte_order!(prop_int_2, + i64, calc_max!(super::I64_MAX, 2), 2, read_int, write_int); + qc_byte_order!(prop_int_3, + i64, calc_max!(super::I64_MAX, 3), 3, read_int, write_int); + qc_byte_order!(prop_int_4, + i64, calc_max!(super::I64_MAX, 4), 4, read_int, write_int); + qc_byte_order!(prop_int_5, + i64, calc_max!(super::I64_MAX, 5), 5, read_int, write_int); + qc_byte_order!(prop_int_6, + i64, calc_max!(super::I64_MAX, 6), 6, read_int, write_int); + qc_byte_order!(prop_int_7, + i64, calc_max!(super::I64_MAX, 7), 7, read_int, write_int); + qc_byte_order!(prop_int_8, + i64, calc_max!(super::I64_MAX, 8), 8, read_int, write_int); + + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_1, + Wi128<i128>, 1, 1, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_2, + Wi128<i128>, 2, 2, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_3, + Wi128<i128>, 3, 3, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_4, + Wi128<i128>, 4, 4, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_5, + Wi128<i128>, 5, 5, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_6, + Wi128<i128>, 6, 6, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_7, + Wi128<i128>, 7, 7, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_8, + Wi128<i128>, 8, 8, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_9, + Wi128<i128>, 9, 9, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_10, + Wi128<i128>, 10, 10, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_11, + Wi128<i128>, 11, 11, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_12, + Wi128<i128>, 12, 12, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_13, + Wi128<i128>, 13, 13, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_14, + Wi128<i128>, 14, 14, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_15, + Wi128<i128>, 15, 15, read_int128, write_int128); + #[cfg(byteorder_i128)] + qc_byte_order!(prop_int128_16, + Wi128<i128>, 16, 16, read_int128, write_int128); + + + // Test that all of the byte conversion functions panic when given a + // buffer that is too small. + // + // These tests are critical to ensure safety, otherwise we might end up + // with a buffer overflow. + macro_rules! too_small { + ($name:ident, $maximally_small:expr, $zero:expr, + $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut buf = [0; $maximally_small]; + BigEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut buf = [0; $maximally_small]; + LittleEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut buf = [0; $maximally_small]; + NativeEndian::$write(&mut buf, $zero); + } + } + ); + ($name:ident, $maximally_small:expr, $read:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf, $maximally_small + 1); + } + } + ); + } + + too_small!(small_u16, 1, 0, read_u16, write_u16); + too_small!(small_i16, 1, 0, read_i16, write_i16); + too_small!(small_u32, 3, 0, read_u32, write_u32); + too_small!(small_i32, 3, 0, read_i32, write_i32); + too_small!(small_u64, 7, 0, read_u64, write_u64); + too_small!(small_i64, 7, 0, read_i64, write_i64); + too_small!(small_f32, 3, 0.0, read_f32, write_f32); + too_small!(small_f64, 7, 0.0, read_f64, write_f64); + #[cfg(byteorder_i128)] + too_small!(small_u128, 15, 0, read_u128, write_u128); + #[cfg(byteorder_i128)] + too_small!(small_i128, 15, 0, read_i128, write_i128); + + too_small!(small_uint_1, 1, read_uint); + too_small!(small_uint_2, 2, read_uint); + too_small!(small_uint_3, 3, read_uint); + too_small!(small_uint_4, 4, read_uint); + too_small!(small_uint_5, 5, read_uint); + too_small!(small_uint_6, 6, read_uint); + too_small!(small_uint_7, 7, read_uint); + + #[cfg(byteorder_i128)] + too_small!(small_uint128_1, 1, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_2, 2, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_3, 3, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_4, 4, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_5, 5, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_6, 6, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_7, 7, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_8, 8, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_9, 9, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_10, 10, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_11, 11, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_12, 12, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_13, 13, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_14, 14, read_uint128); + #[cfg(byteorder_i128)] + too_small!(small_uint128_15, 15, read_uint128); + + too_small!(small_int_1, 1, read_int); + too_small!(small_int_2, 2, read_int); + too_small!(small_int_3, 3, read_int); + too_small!(small_int_4, 4, read_int); + too_small!(small_int_5, 5, read_int); + too_small!(small_int_6, 6, read_int); + too_small!(small_int_7, 7, read_int); + + #[cfg(byteorder_i128)] + too_small!(small_int128_1, 1, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_2, 2, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_3, 3, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_4, 4, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_5, 5, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_6, 6, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_7, 7, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_8, 8, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_9, 9, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_10, 10, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_11, 11, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_12, 12, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_13, 13, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_14, 14, read_int128); + #[cfg(byteorder_i128)] + too_small!(small_int128_15, 15, read_int128); + + // Test that reading/writing slices enforces the correct lengths. + macro_rules! slice_lengths { + ($name:ident, $read:ident, $write:ident, + $num_bytes:expr, $numbers:expr) => { + mod $name { + use {ByteOrder, BigEndian, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + BigEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + LittleEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + NativeEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + BigEndian::$write(&numbers, &mut bytes); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + LittleEndian::$write(&numbers, &mut bytes); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + NativeEndian::$write(&numbers, &mut bytes); + } + } + } + } + + slice_lengths!( + slice_len_too_small_u16, read_u16_into, write_u16_into, 3, [0, 0]); + slice_lengths!( + slice_len_too_big_u16, read_u16_into, write_u16_into, 5, [0, 0]); + slice_lengths!( + slice_len_too_small_i16, read_i16_into, write_i16_into, 3, [0, 0]); + slice_lengths!( + slice_len_too_big_i16, read_i16_into, write_i16_into, 5, [0, 0]); + + slice_lengths!( + slice_len_too_small_u32, read_u32_into, write_u32_into, 7, [0, 0]); + slice_lengths!( + slice_len_too_big_u32, read_u32_into, write_u32_into, 9, [0, 0]); + slice_lengths!( + slice_len_too_small_i32, read_i32_into, write_i32_into, 7, [0, 0]); + slice_lengths!( + slice_len_too_big_i32, read_i32_into, write_i32_into, 9, [0, 0]); + + slice_lengths!( + slice_len_too_small_u64, read_u64_into, write_u64_into, 15, [0, 0]); + slice_lengths!( + slice_len_too_big_u64, read_u64_into, write_u64_into, 17, [0, 0]); + slice_lengths!( + slice_len_too_small_i64, read_i64_into, write_i64_into, 15, [0, 0]); + slice_lengths!( + slice_len_too_big_i64, read_i64_into, write_i64_into, 17, [0, 0]); + + #[cfg(byteorder_i128)] + slice_lengths!( + slice_len_too_small_u128, read_u128_into, write_u128_into, 31, [0, 0]); + #[cfg(byteorder_i128)] + slice_lengths!( + slice_len_too_big_u128, read_u128_into, write_u128_into, 33, [0, 0]); + #[cfg(byteorder_i128)] + slice_lengths!( + slice_len_too_small_i128, read_i128_into, write_i128_into, 31, [0, 0]); + #[cfg(byteorder_i128)] + slice_lengths!( + slice_len_too_big_i128, read_i128_into, write_i128_into, 33, [0, 0]); + + #[test] + fn uint_bigger_buffer() { + use {ByteOrder, LittleEndian}; + let n = LittleEndian::read_uint(&[1, 2, 3, 4, 5, 6, 7, 8], 5); + assert_eq!(n, 0x0504030201); + } +} + +#[cfg(test)] +#[cfg(feature = "std")] +mod stdtests { + extern crate quickcheck; + extern crate rand; + + use self::quickcheck::{QuickCheck, StdGen, Testable}; + use self::rand::thread_rng; + + fn qc_unsized<A: Testable>(f: A) { + + QuickCheck::new() + .gen(StdGen::new(thread_rng(), 16)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! calc_max { + ($max:expr, $bytes:expr) => { ($max - 1) >> (8 * (8 - $bytes)) }; + } + + macro_rules! qc_bytes_ext { + ($name:ident, $ty_int:ty, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + #[allow(unused_imports)] use test::{qc_sized, Wi128}; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n.clone()).unwrap(); + let offset = wtr.len() - $bytes; + let mut rdr = Cursor::new(&mut wtr[offset..]); + n == rdr.$read::<BigEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n.clone()).unwrap(); + let offset = if cfg!(target_endian = "big") { + wtr.len() - $bytes + } else { + 0 + }; + let mut rdr = Cursor::new(&mut wtr[offset..]); + n == rdr.$read::<NativeEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + } + ); + ($name:ident, $ty_int:ty, $max:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + #[allow(unused_imports)] use test::{qc_sized, Wi128}; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<BigEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_bytes_ext!(prop_ext_u16, + u16, ::std::u16::MAX as u64, read_u16, write_u16); + qc_bytes_ext!(prop_ext_i16, + i16, ::std::i16::MAX as u64, read_i16, write_i16); + qc_bytes_ext!(prop_ext_u32, + u32, ::std::u32::MAX as u64, read_u32, write_u32); + qc_bytes_ext!(prop_ext_i32, + i32, ::std::i32::MAX as u64, read_i32, write_i32); + qc_bytes_ext!(prop_ext_u64, + u64, ::std::u64::MAX as u64, read_u64, write_u64); + qc_bytes_ext!(prop_ext_i64, + i64, ::std::i64::MAX as u64, read_i64, write_i64); + qc_bytes_ext!(prop_ext_f32, + f32, ::std::u64::MAX as u64, read_f32, write_f32); + qc_bytes_ext!(prop_ext_f64, + f64, ::std::i64::MAX as u64, read_f64, write_f64); + + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_u128, Wi128<u128>, 16 + 1, read_u128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_i128, Wi128<i128>, 16 + 1, read_i128, write_i128); + + qc_bytes_ext!(prop_ext_uint_1, + u64, calc_max!(::test::U64_MAX, 1), 1, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_2, + u64, calc_max!(::test::U64_MAX, 2), 2, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_3, + u64, calc_max!(::test::U64_MAX, 3), 3, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_4, + u64, calc_max!(::test::U64_MAX, 4), 4, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_5, + u64, calc_max!(::test::U64_MAX, 5), 5, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_6, + u64, calc_max!(::test::U64_MAX, 6), 6, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_7, + u64, calc_max!(::test::U64_MAX, 7), 7, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_8, + u64, calc_max!(::test::U64_MAX, 8), 8, read_uint, write_u64); + + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_1, + Wi128<u128>, 1, 1, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_2, + Wi128<u128>, 2, 2, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_3, + Wi128<u128>, 3, 3, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_4, + Wi128<u128>, 4, 4, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_5, + Wi128<u128>, 5, 5, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_6, + Wi128<u128>, 6, 6, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_7, + Wi128<u128>, 7, 7, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_8, + Wi128<u128>, 8, 8, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_9, + Wi128<u128>, 9, 9, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_10, + Wi128<u128>, 10, 10, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_11, + Wi128<u128>, 11, 11, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_12, + Wi128<u128>, 12, 12, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_13, + Wi128<u128>, 13, 13, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_14, + Wi128<u128>, 14, 14, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_15, + Wi128<u128>, 15, 15, read_uint128, write_u128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_uint128_16, + Wi128<u128>, 16, 16, read_uint128, write_u128); + + qc_bytes_ext!(prop_ext_int_1, + i64, calc_max!(::test::I64_MAX, 1), 1, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_2, + i64, calc_max!(::test::I64_MAX, 2), 2, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_3, + i64, calc_max!(::test::I64_MAX, 3), 3, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_4, + i64, calc_max!(::test::I64_MAX, 4), 4, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_5, + i64, calc_max!(::test::I64_MAX, 5), 5, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_6, + i64, calc_max!(::test::I64_MAX, 6), 6, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_7, + i64, calc_max!(::test::I64_MAX, 1), 7, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_8, + i64, calc_max!(::test::I64_MAX, 8), 8, read_int, write_i64); + + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_1, + Wi128<i128>, 1, 1, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_2, + Wi128<i128>, 2, 2, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_3, + Wi128<i128>, 3, 3, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_4, + Wi128<i128>, 4, 4, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_5, + Wi128<i128>, 5, 5, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_6, + Wi128<i128>, 6, 6, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_7, + Wi128<i128>, 7, 7, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_8, + Wi128<i128>, 8, 8, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_9, + Wi128<i128>, 9, 9, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_10, + Wi128<i128>, 10, 10, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_11, + Wi128<i128>, 11, 11, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_12, + Wi128<i128>, 12, 12, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_13, + Wi128<i128>, 13, 13, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_14, + Wi128<i128>, 14, 14, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_15, + Wi128<i128>, 15, 15, read_int128, write_i128); + #[cfg(byteorder_i128)] + qc_bytes_ext!(prop_ext_int128_16, + Wi128<i128>, 16, 16, read_int128, write_i128); + + // Test slice serialization/deserialization. + macro_rules! qc_slice { + ($name:ident, $ty_int:ty, $read:ident, $write:ident, $zero:expr) => { + mod $name { + use core::mem::size_of; + use {ByteOrder, BigEndian, NativeEndian, LittleEndian}; + use super::qc_unsized; + #[allow(unused_imports)] + use test::Wi128; + + #[test] + fn big_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = numbers + .into_iter() + .map(|x| x.clone()) + .collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + BigEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { BigEndian::$read(&bytes, &mut got); } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + + #[test] + fn little_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = numbers + .into_iter() + .map(|x| x.clone()) + .collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + LittleEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { LittleEndian::$read(&bytes, &mut got); } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + + #[test] + fn native_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = numbers + .into_iter() + .map(|x| x.clone()) + .collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + NativeEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { NativeEndian::$read(&bytes, &mut got); } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + } + } + } + + qc_slice!(prop_slice_u16, u16, read_u16_into, write_u16_into, 0); + qc_slice!(prop_slice_i16, i16, read_i16_into, write_i16_into, 0); + qc_slice!(prop_slice_u32, u32, read_u32_into, write_u32_into, 0); + qc_slice!(prop_slice_i32, i32, read_i32_into, write_i32_into, 0); + qc_slice!(prop_slice_u64, u64, read_u64_into, write_u64_into, 0); + qc_slice!(prop_slice_i64, i64, read_i64_into, write_i64_into, 0); + #[cfg(byteorder_i128)] + qc_slice!( + prop_slice_u128, Wi128<u128>, read_u128_into, write_u128_into, 0); + #[cfg(byteorder_i128)] + qc_slice!( + prop_slice_i128, Wi128<i128>, read_i128_into, write_i128_into, 0); + + qc_slice!( + prop_slice_f32, f32, read_f32_into, write_f32_into, 0.0); + qc_slice!( + prop_slice_f64, f64, read_f64_into, write_f64_into, 0.0); +} |