diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/cranelift-codegen/src/dominator_tree.rs | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/cranelift-codegen/src/dominator_tree.rs')
-rw-r--r-- | third_party/rust/cranelift-codegen/src/dominator_tree.rs | 837 |
1 files changed, 837 insertions, 0 deletions
diff --git a/third_party/rust/cranelift-codegen/src/dominator_tree.rs b/third_party/rust/cranelift-codegen/src/dominator_tree.rs new file mode 100644 index 0000000000..5077354f7a --- /dev/null +++ b/third_party/rust/cranelift-codegen/src/dominator_tree.rs @@ -0,0 +1,837 @@ +//! A Dominator Tree represented as mappings of Blocks to their immediate dominator. + +use crate::entity::SecondaryMap; +use crate::flowgraph::{BlockPredecessor, ControlFlowGraph}; +use crate::ir::instructions::BranchInfo; +use crate::ir::{Block, ExpandedProgramPoint, Function, Inst, Layout, ProgramOrder, Value}; +use crate::packed_option::PackedOption; +use crate::timing; +use alloc::vec::Vec; +use core::cmp; +use core::cmp::Ordering; +use core::mem; + +/// RPO numbers are not first assigned in a contiguous way but as multiples of STRIDE, to leave +/// room for modifications of the dominator tree. +const STRIDE: u32 = 4; + +/// Special RPO numbers used during `compute_postorder`. +const DONE: u32 = 1; +const SEEN: u32 = 2; + +/// Dominator tree node. We keep one of these per block. +#[derive(Clone, Default)] +struct DomNode { + /// Number of this node in a reverse post-order traversal of the CFG, starting from 1. + /// This number is monotonic in the reverse postorder but not contiguous, since we leave + /// holes for later localized modifications of the dominator tree. + /// Unreachable nodes get number 0, all others are positive. + rpo_number: u32, + + /// The immediate dominator of this block, represented as the branch or jump instruction at the + /// end of the dominating basic block. + /// + /// This is `None` for unreachable blocks and the entry block which doesn't have an immediate + /// dominator. + idom: PackedOption<Inst>, +} + +/// The dominator tree for a single function. +pub struct DominatorTree { + nodes: SecondaryMap<Block, DomNode>, + + /// CFG post-order of all reachable blocks. + postorder: Vec<Block>, + + /// Scratch memory used by `compute_postorder()`. + stack: Vec<Block>, + + valid: bool, +} + +/// Methods for querying the dominator tree. +impl DominatorTree { + /// Is `block` reachable from the entry block? + pub fn is_reachable(&self, block: Block) -> bool { + self.nodes[block].rpo_number != 0 + } + + /// Get the CFG post-order of blocks that was used to compute the dominator tree. + /// + /// Note that this post-order is not updated automatically when the CFG is modified. It is + /// computed from scratch and cached by `compute()`. + pub fn cfg_postorder(&self) -> &[Block] { + debug_assert!(self.is_valid()); + &self.postorder + } + + /// Returns the immediate dominator of `block`. + /// + /// The immediate dominator of a basic block is a basic block which we represent by + /// the branch or jump instruction at the end of the basic block. This does not have to be the + /// terminator of its block. + /// + /// A branch or jump is said to *dominate* `block` if all control flow paths from the function + /// entry to `block` must go through the branch. + /// + /// The *immediate dominator* is the dominator that is closest to `block`. All other dominators + /// also dominate the immediate dominator. + /// + /// This returns `None` if `block` is not reachable from the entry block, or if it is the entry block + /// which has no dominators. + pub fn idom(&self, block: Block) -> Option<Inst> { + self.nodes[block].idom.into() + } + + /// Compare two blocks relative to the reverse post-order. + fn rpo_cmp_block(&self, a: Block, b: Block) -> Ordering { + self.nodes[a].rpo_number.cmp(&self.nodes[b].rpo_number) + } + + /// Compare two program points relative to a reverse post-order traversal of the control-flow + /// graph. + /// + /// Return `Ordering::Less` if `a` comes before `b` in the RPO. + /// + /// If `a` and `b` belong to the same block, compare their relative position in the block. + pub fn rpo_cmp<A, B>(&self, a: A, b: B, layout: &Layout) -> Ordering + where + A: Into<ExpandedProgramPoint>, + B: Into<ExpandedProgramPoint>, + { + let a = a.into(); + let b = b.into(); + self.rpo_cmp_block(layout.pp_block(a), layout.pp_block(b)) + .then(layout.cmp(a, b)) + } + + /// Returns `true` if `a` dominates `b`. + /// + /// This means that every control-flow path from the function entry to `b` must go through `a`. + /// + /// Dominance is ill defined for unreachable blocks. This function can always determine + /// dominance for instructions in the same block, but otherwise returns `false` if either block + /// is unreachable. + /// + /// An instruction is considered to dominate itself. + pub fn dominates<A, B>(&self, a: A, b: B, layout: &Layout) -> bool + where + A: Into<ExpandedProgramPoint>, + B: Into<ExpandedProgramPoint>, + { + let a = a.into(); + let b = b.into(); + match a { + ExpandedProgramPoint::Block(block_a) => { + a == b || self.last_dominator(block_a, b, layout).is_some() + } + ExpandedProgramPoint::Inst(inst_a) => { + let block_a = layout + .inst_block(inst_a) + .expect("Instruction not in layout."); + match self.last_dominator(block_a, b, layout) { + Some(last) => layout.cmp(inst_a, last) != Ordering::Greater, + None => false, + } + } + } + } + + /// Find the last instruction in `a` that dominates `b`. + /// If no instructions in `a` dominate `b`, return `None`. + pub fn last_dominator<B>(&self, a: Block, b: B, layout: &Layout) -> Option<Inst> + where + B: Into<ExpandedProgramPoint>, + { + let (mut block_b, mut inst_b) = match b.into() { + ExpandedProgramPoint::Block(block) => (block, None), + ExpandedProgramPoint::Inst(inst) => ( + layout.inst_block(inst).expect("Instruction not in layout."), + Some(inst), + ), + }; + let rpo_a = self.nodes[a].rpo_number; + + // Run a finger up the dominator tree from b until we see a. + // Do nothing if b is unreachable. + while rpo_a < self.nodes[block_b].rpo_number { + let idom = match self.idom(block_b) { + Some(idom) => idom, + None => return None, // a is unreachable, so we climbed past the entry + }; + block_b = layout.inst_block(idom).expect("Dominator got removed."); + inst_b = Some(idom); + } + if a == block_b { + inst_b + } else { + None + } + } + + /// Compute the common dominator of two basic blocks. + /// + /// Both basic blocks are assumed to be reachable. + pub fn common_dominator( + &self, + mut a: BlockPredecessor, + mut b: BlockPredecessor, + layout: &Layout, + ) -> BlockPredecessor { + loop { + match self.rpo_cmp_block(a.block, b.block) { + Ordering::Less => { + // `a` comes before `b` in the RPO. Move `b` up. + let idom = self.nodes[b.block].idom.expect("Unreachable basic block?"); + b = BlockPredecessor::new( + layout.inst_block(idom).expect("Dangling idom instruction"), + idom, + ); + } + Ordering::Greater => { + // `b` comes before `a` in the RPO. Move `a` up. + let idom = self.nodes[a.block].idom.expect("Unreachable basic block?"); + a = BlockPredecessor::new( + layout.inst_block(idom).expect("Dangling idom instruction"), + idom, + ); + } + Ordering::Equal => break, + } + } + + debug_assert_eq!( + a.block, b.block, + "Unreachable block passed to common_dominator?" + ); + + // We're in the same block. The common dominator is the earlier instruction. + if layout.cmp(a.inst, b.inst) == Ordering::Less { + a + } else { + b + } + } +} + +impl DominatorTree { + /// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a + /// function. + pub fn new() -> Self { + Self { + nodes: SecondaryMap::new(), + postorder: Vec::new(), + stack: Vec::new(), + valid: false, + } + } + + /// Allocate and compute a dominator tree. + pub fn with_function(func: &Function, cfg: &ControlFlowGraph) -> Self { + let block_capacity = func.layout.block_capacity(); + let mut domtree = Self { + nodes: SecondaryMap::with_capacity(block_capacity), + postorder: Vec::with_capacity(block_capacity), + stack: Vec::new(), + valid: false, + }; + domtree.compute(func, cfg); + domtree + } + + /// Reset and compute a CFG post-order and dominator tree. + pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) { + let _tt = timing::domtree(); + debug_assert!(cfg.is_valid()); + self.compute_postorder(func); + self.compute_domtree(func, cfg); + self.valid = true; + } + + /// Clear the data structures used to represent the dominator tree. This will leave the tree in + /// a state where `is_valid()` returns false. + pub fn clear(&mut self) { + self.nodes.clear(); + self.postorder.clear(); + debug_assert!(self.stack.is_empty()); + self.valid = false; + } + + /// Check if the dominator tree is in a valid state. + /// + /// Note that this doesn't perform any kind of validity checks. It simply checks if the + /// `compute()` method has been called since the last `clear()`. It does not check that the + /// dominator tree is consistent with the CFG. + pub fn is_valid(&self) -> bool { + self.valid + } + + /// Reset all internal data structures and compute a post-order of the control flow graph. + /// + /// This leaves `rpo_number == 1` for all reachable blocks, 0 for unreachable ones. + fn compute_postorder(&mut self, func: &Function) { + self.clear(); + self.nodes.resize(func.dfg.num_blocks()); + + // This algorithm is a depth first traversal (DFT) of the control flow graph, computing a + // post-order of the blocks that are reachable form the entry block. A DFT post-order is not + // unique. The specific order we get is controlled by two factors: + // + // 1. The order each node's children are visited, and + // 2. The method used for pruning graph edges to get a tree. + // + // There are two ways of viewing the CFG as a graph: + // + // 1. Each block is a node, with outgoing edges for all the branches in the block. + // 2. Each basic block is a node, with outgoing edges for the single branch at the end of + // the BB. (A block is a linear sequence of basic blocks). + // + // The first graph is a contraction of the second one. We want to compute a block post-order + // that is compatible both graph interpretations. That is, if you compute a BB post-order + // and then remove those BBs that do not correspond to block headers, you get a post-order of + // the block graph. + // + // Node child order: + // + // In the BB graph, we always go down the fall-through path first and follow the branch + // destination second. + // + // In the block graph, this is equivalent to visiting block successors in a bottom-up + // order, starting from the destination of the block's terminating jump, ending at the + // destination of the first branch in the block. + // + // Edge pruning: + // + // In the BB graph, we keep an edge to a block the first time we visit the *source* side + // of the edge. Any subsequent edges to the same block are pruned. + // + // The equivalent tree is reached in the block graph by keeping the first edge to a block + // in a top-down traversal of the successors. (And then visiting edges in a bottom-up + // order). + // + // This pruning method makes it possible to compute the DFT without storing lots of + // information about the progress through a block. + + // During this algorithm only, use `rpo_number` to hold the following state: + // + // 0: block has not yet been reached in the pre-order. + // SEEN: block has been pushed on the stack but successors not yet pushed. + // DONE: Successors pushed. + + match func.layout.entry_block() { + Some(block) => { + self.stack.push(block); + self.nodes[block].rpo_number = SEEN; + } + None => return, + } + + while let Some(block) = self.stack.pop() { + match self.nodes[block].rpo_number { + SEEN => { + // This is the first time we pop the block, so we need to scan its successors and + // then revisit it. + self.nodes[block].rpo_number = DONE; + self.stack.push(block); + self.push_successors(func, block); + } + DONE => { + // This is the second time we pop the block, so all successors have been + // processed. + self.postorder.push(block); + } + _ => unreachable!(), + } + } + } + + /// Push `block` successors onto `self.stack`, filtering out those that have already been seen. + /// + /// The successors are pushed in program order which is important to get a split-invariant + /// post-order. Split-invariant means that if a block is split in two, we get the same + /// post-order except for the insertion of the new block header at the split point. + fn push_successors(&mut self, func: &Function, block: Block) { + for inst in func.layout.block_likely_branches(block) { + match func.dfg.analyze_branch(inst) { + BranchInfo::SingleDest(succ, _) => self.push_if_unseen(succ), + BranchInfo::Table(jt, dest) => { + for succ in func.jump_tables[jt].iter() { + self.push_if_unseen(*succ); + } + if let Some(dest) = dest { + self.push_if_unseen(dest); + } + } + BranchInfo::NotABranch => {} + } + } + } + + /// Push `block` onto `self.stack` if it has not already been seen. + fn push_if_unseen(&mut self, block: Block) { + if self.nodes[block].rpo_number == 0 { + self.nodes[block].rpo_number = SEEN; + self.stack.push(block); + } + } + + /// Build a dominator tree from a control flow graph using Keith D. Cooper's + /// "Simple, Fast Dominator Algorithm." + fn compute_domtree(&mut self, func: &Function, cfg: &ControlFlowGraph) { + // During this algorithm, `rpo_number` has the following values: + // + // 0: block is not reachable. + // 1: block is reachable, but has not yet been visited during the first pass. This is set by + // `compute_postorder`. + // 2+: block is reachable and has an assigned RPO number. + + // We'll be iterating over a reverse post-order of the CFG, skipping the entry block. + let (entry_block, postorder) = match self.postorder.as_slice().split_last() { + Some((&eb, rest)) => (eb, rest), + None => return, + }; + debug_assert_eq!(Some(entry_block), func.layout.entry_block()); + + // Do a first pass where we assign RPO numbers to all reachable nodes. + self.nodes[entry_block].rpo_number = 2 * STRIDE; + for (rpo_idx, &block) in postorder.iter().rev().enumerate() { + // Update the current node and give it an RPO number. + // The entry block got 2, the rest start at 3 by multiples of STRIDE to leave + // room for future dominator tree modifications. + // + // Since `compute_idom` will only look at nodes with an assigned RPO number, the + // function will never see an uninitialized predecessor. + // + // Due to the nature of the post-order traversal, every node we visit will have at + // least one predecessor that has previously been visited during this RPO. + self.nodes[block] = DomNode { + idom: self.compute_idom(block, cfg, &func.layout).into(), + rpo_number: (rpo_idx as u32 + 3) * STRIDE, + } + } + + // Now that we have RPO numbers for everything and initial immediate dominator estimates, + // iterate until convergence. + // + // If the function is free of irreducible control flow, this will exit after one iteration. + let mut changed = true; + while changed { + changed = false; + for &block in postorder.iter().rev() { + let idom = self.compute_idom(block, cfg, &func.layout).into(); + if self.nodes[block].idom != idom { + self.nodes[block].idom = idom; + changed = true; + } + } + } + } + + // Compute the immediate dominator for `block` using the current `idom` states for the reachable + // nodes. + fn compute_idom(&self, block: Block, cfg: &ControlFlowGraph, layout: &Layout) -> Inst { + // Get an iterator with just the reachable, already visited predecessors to `block`. + // Note that during the first pass, `rpo_number` is 1 for reachable blocks that haven't + // been visited yet, 0 for unreachable blocks. + let mut reachable_preds = cfg + .pred_iter(block) + .filter(|&BlockPredecessor { block: pred, .. }| self.nodes[pred].rpo_number > 1); + + // The RPO must visit at least one predecessor before this node. + let mut idom = reachable_preds + .next() + .expect("block node must have one reachable predecessor"); + + for pred in reachable_preds { + idom = self.common_dominator(idom, pred, layout); + } + + idom.inst + } +} + +/// Optional pre-order information that can be computed for a dominator tree. +/// +/// This data structure is computed from a `DominatorTree` and provides: +/// +/// - A forward traversable dominator tree through the `children()` iterator. +/// - An ordering of blocks according to a dominator tree pre-order. +/// - Constant time dominance checks at the block granularity. +/// +/// The information in this auxiliary data structure is not easy to update when the control flow +/// graph changes, which is why it is kept separate. +pub struct DominatorTreePreorder { + nodes: SecondaryMap<Block, ExtraNode>, + + // Scratch memory used by `compute_postorder()`. + stack: Vec<Block>, +} + +#[derive(Default, Clone)] +struct ExtraNode { + /// First child node in the domtree. + child: PackedOption<Block>, + + /// Next sibling node in the domtree. This linked list is ordered according to the CFG RPO. + sibling: PackedOption<Block>, + + /// Sequence number for this node in a pre-order traversal of the dominator tree. + /// Unreachable blocks have number 0, the entry block is 1. + pre_number: u32, + + /// Maximum `pre_number` for the sub-tree of the dominator tree that is rooted at this node. + /// This is always >= `pre_number`. + pre_max: u32, +} + +/// Creating and computing the dominator tree pre-order. +impl DominatorTreePreorder { + /// Create a new blank `DominatorTreePreorder`. + pub fn new() -> Self { + Self { + nodes: SecondaryMap::new(), + stack: Vec::new(), + } + } + + /// Recompute this data structure to match `domtree`. + pub fn compute(&mut self, domtree: &DominatorTree, layout: &Layout) { + self.nodes.clear(); + debug_assert_eq!(self.stack.len(), 0); + + // Step 1: Populate the child and sibling links. + // + // By following the CFG post-order and pushing to the front of the lists, we make sure that + // sibling lists are ordered according to the CFG reverse post-order. + for &block in domtree.cfg_postorder() { + if let Some(idom_inst) = domtree.idom(block) { + let idom = layout.pp_block(idom_inst); + let sib = mem::replace(&mut self.nodes[idom].child, block.into()); + self.nodes[block].sibling = sib; + } else { + // The only block without an immediate dominator is the entry. + self.stack.push(block); + } + } + + // Step 2. Assign pre-order numbers from a DFS of the dominator tree. + debug_assert!(self.stack.len() <= 1); + let mut n = 0; + while let Some(block) = self.stack.pop() { + n += 1; + let node = &mut self.nodes[block]; + node.pre_number = n; + node.pre_max = n; + if let Some(n) = node.sibling.expand() { + self.stack.push(n); + } + if let Some(n) = node.child.expand() { + self.stack.push(n); + } + } + + // Step 3. Propagate the `pre_max` numbers up the tree. + // The CFG post-order is topologically ordered w.r.t. dominance so a node comes after all + // its dominator tree children. + for &block in domtree.cfg_postorder() { + if let Some(idom_inst) = domtree.idom(block) { + let idom = layout.pp_block(idom_inst); + let pre_max = cmp::max(self.nodes[block].pre_max, self.nodes[idom].pre_max); + self.nodes[idom].pre_max = pre_max; + } + } + } +} + +/// An iterator that enumerates the direct children of a block in the dominator tree. +pub struct ChildIter<'a> { + dtpo: &'a DominatorTreePreorder, + next: PackedOption<Block>, +} + +impl<'a> Iterator for ChildIter<'a> { + type Item = Block; + + fn next(&mut self) -> Option<Block> { + let n = self.next.expand(); + if let Some(block) = n { + self.next = self.dtpo.nodes[block].sibling; + } + n + } +} + +/// Query interface for the dominator tree pre-order. +impl DominatorTreePreorder { + /// Get an iterator over the direct children of `block` in the dominator tree. + /// + /// These are the block's whose immediate dominator is an instruction in `block`, ordered according + /// to the CFG reverse post-order. + pub fn children(&self, block: Block) -> ChildIter { + ChildIter { + dtpo: self, + next: self.nodes[block].child, + } + } + + /// Fast, constant time dominance check with block granularity. + /// + /// This computes the same result as `domtree.dominates(a, b)`, but in guaranteed fast constant + /// time. This is less general than the `DominatorTree` method because it only works with block + /// program points. + /// + /// A block is considered to dominate itself. + pub fn dominates(&self, a: Block, b: Block) -> bool { + let na = &self.nodes[a]; + let nb = &self.nodes[b]; + na.pre_number <= nb.pre_number && na.pre_max >= nb.pre_max + } + + /// Compare two blocks according to the dominator pre-order. + pub fn pre_cmp_block(&self, a: Block, b: Block) -> Ordering { + self.nodes[a].pre_number.cmp(&self.nodes[b].pre_number) + } + + /// Compare two program points according to the dominator tree pre-order. + /// + /// This ordering of program points have the property that given a program point, pp, all the + /// program points dominated by pp follow immediately and contiguously after pp in the order. + pub fn pre_cmp<A, B>(&self, a: A, b: B, layout: &Layout) -> Ordering + where + A: Into<ExpandedProgramPoint>, + B: Into<ExpandedProgramPoint>, + { + let a = a.into(); + let b = b.into(); + self.pre_cmp_block(layout.pp_block(a), layout.pp_block(b)) + .then(layout.cmp(a, b)) + } + + /// Compare two value defs according to the dominator tree pre-order. + /// + /// Two values defined at the same program point are compared according to their parameter or + /// result order. + /// + /// This is a total ordering of the values in the function. + pub fn pre_cmp_def(&self, a: Value, b: Value, func: &Function) -> Ordering { + let da = func.dfg.value_def(a); + let db = func.dfg.value_def(b); + self.pre_cmp(da, db, &func.layout) + .then_with(|| da.num().cmp(&db.num())) + } +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::cursor::{Cursor, FuncCursor}; + use crate::flowgraph::ControlFlowGraph; + use crate::ir::types::*; + use crate::ir::{Function, InstBuilder, TrapCode}; + + #[test] + fn empty() { + let func = Function::new(); + let cfg = ControlFlowGraph::with_function(&func); + debug_assert!(cfg.is_valid()); + let dtree = DominatorTree::with_function(&func, &cfg); + assert_eq!(0, dtree.nodes.keys().count()); + assert_eq!(dtree.cfg_postorder(), &[]); + + let mut dtpo = DominatorTreePreorder::new(); + dtpo.compute(&dtree, &func.layout); + } + + #[test] + fn unreachable_node() { + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + let v0 = func.dfg.append_block_param(block0, I32); + let block1 = func.dfg.make_block(); + let block2 = func.dfg.make_block(); + + let mut cur = FuncCursor::new(&mut func); + + cur.insert_block(block0); + cur.ins().brnz(v0, block2, &[]); + cur.ins().trap(TrapCode::User(0)); + + cur.insert_block(block1); + let v1 = cur.ins().iconst(I32, 1); + let v2 = cur.ins().iadd(v0, v1); + cur.ins().jump(block0, &[v2]); + + cur.insert_block(block2); + cur.ins().return_(&[v0]); + + let cfg = ControlFlowGraph::with_function(cur.func); + let dt = DominatorTree::with_function(cur.func, &cfg); + + // Fall-through-first, prune-at-source DFT: + // + // block0 { + // brnz block2 { + // trap + // block2 { + // return + // } block2 + // } block0 + assert_eq!(dt.cfg_postorder(), &[block2, block0]); + + let v2_def = cur.func.dfg.value_def(v2).unwrap_inst(); + assert!(!dt.dominates(v2_def, block0, &cur.func.layout)); + assert!(!dt.dominates(block0, v2_def, &cur.func.layout)); + + let mut dtpo = DominatorTreePreorder::new(); + dtpo.compute(&dt, &cur.func.layout); + assert!(dtpo.dominates(block0, block0)); + assert!(!dtpo.dominates(block0, block1)); + assert!(dtpo.dominates(block0, block2)); + assert!(!dtpo.dominates(block1, block0)); + assert!(dtpo.dominates(block1, block1)); + assert!(!dtpo.dominates(block1, block2)); + assert!(!dtpo.dominates(block2, block0)); + assert!(!dtpo.dominates(block2, block1)); + assert!(dtpo.dominates(block2, block2)); + } + + #[test] + fn non_zero_entry_block() { + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + let block1 = func.dfg.make_block(); + let block2 = func.dfg.make_block(); + let block3 = func.dfg.make_block(); + let cond = func.dfg.append_block_param(block3, I32); + + let mut cur = FuncCursor::new(&mut func); + + cur.insert_block(block3); + let jmp_block3_block1 = cur.ins().jump(block1, &[]); + + cur.insert_block(block1); + let br_block1_block0 = cur.ins().brnz(cond, block0, &[]); + let jmp_block1_block2 = cur.ins().jump(block2, &[]); + + cur.insert_block(block2); + cur.ins().jump(block0, &[]); + + cur.insert_block(block0); + + let cfg = ControlFlowGraph::with_function(cur.func); + let dt = DominatorTree::with_function(cur.func, &cfg); + + // Fall-through-first, prune-at-source DFT: + // + // block3 { + // block3:jump block1 { + // block1 { + // block1:brnz block0 { + // block1:jump block2 { + // block2 { + // block2:jump block0 (seen) + // } block2 + // } block1:jump block2 + // block0 { + // } block0 + // } block1:brnz block0 + // } block1 + // } block3:jump block1 + // } block3 + + assert_eq!(dt.cfg_postorder(), &[block2, block0, block1, block3]); + + assert_eq!(cur.func.layout.entry_block().unwrap(), block3); + assert_eq!(dt.idom(block3), None); + assert_eq!(dt.idom(block1).unwrap(), jmp_block3_block1); + assert_eq!(dt.idom(block2).unwrap(), jmp_block1_block2); + assert_eq!(dt.idom(block0).unwrap(), br_block1_block0); + + assert!(dt.dominates(br_block1_block0, br_block1_block0, &cur.func.layout)); + assert!(!dt.dominates(br_block1_block0, jmp_block3_block1, &cur.func.layout)); + assert!(dt.dominates(jmp_block3_block1, br_block1_block0, &cur.func.layout)); + + assert_eq!( + dt.rpo_cmp(block3, block3, &cur.func.layout), + Ordering::Equal + ); + assert_eq!(dt.rpo_cmp(block3, block1, &cur.func.layout), Ordering::Less); + assert_eq!( + dt.rpo_cmp(block3, jmp_block3_block1, &cur.func.layout), + Ordering::Less + ); + assert_eq!( + dt.rpo_cmp(jmp_block3_block1, jmp_block1_block2, &cur.func.layout), + Ordering::Less + ); + } + + #[test] + fn backwards_layout() { + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + let block1 = func.dfg.make_block(); + let block2 = func.dfg.make_block(); + + let mut cur = FuncCursor::new(&mut func); + + cur.insert_block(block0); + let jmp02 = cur.ins().jump(block2, &[]); + + cur.insert_block(block1); + let trap = cur.ins().trap(TrapCode::User(5)); + + cur.insert_block(block2); + let jmp21 = cur.ins().jump(block1, &[]); + + let cfg = ControlFlowGraph::with_function(cur.func); + let dt = DominatorTree::with_function(cur.func, &cfg); + + assert_eq!(cur.func.layout.entry_block(), Some(block0)); + assert_eq!(dt.idom(block0), None); + assert_eq!(dt.idom(block1), Some(jmp21)); + assert_eq!(dt.idom(block2), Some(jmp02)); + + assert!(dt.dominates(block0, block0, &cur.func.layout)); + assert!(dt.dominates(block0, jmp02, &cur.func.layout)); + assert!(dt.dominates(block0, block1, &cur.func.layout)); + assert!(dt.dominates(block0, trap, &cur.func.layout)); + assert!(dt.dominates(block0, block2, &cur.func.layout)); + assert!(dt.dominates(block0, jmp21, &cur.func.layout)); + + assert!(!dt.dominates(jmp02, block0, &cur.func.layout)); + assert!(dt.dominates(jmp02, jmp02, &cur.func.layout)); + assert!(dt.dominates(jmp02, block1, &cur.func.layout)); + assert!(dt.dominates(jmp02, trap, &cur.func.layout)); + assert!(dt.dominates(jmp02, block2, &cur.func.layout)); + assert!(dt.dominates(jmp02, jmp21, &cur.func.layout)); + + assert!(!dt.dominates(block1, block0, &cur.func.layout)); + assert!(!dt.dominates(block1, jmp02, &cur.func.layout)); + assert!(dt.dominates(block1, block1, &cur.func.layout)); + assert!(dt.dominates(block1, trap, &cur.func.layout)); + assert!(!dt.dominates(block1, block2, &cur.func.layout)); + assert!(!dt.dominates(block1, jmp21, &cur.func.layout)); + + assert!(!dt.dominates(trap, block0, &cur.func.layout)); + assert!(!dt.dominates(trap, jmp02, &cur.func.layout)); + assert!(!dt.dominates(trap, block1, &cur.func.layout)); + assert!(dt.dominates(trap, trap, &cur.func.layout)); + assert!(!dt.dominates(trap, block2, &cur.func.layout)); + assert!(!dt.dominates(trap, jmp21, &cur.func.layout)); + + assert!(!dt.dominates(block2, block0, &cur.func.layout)); + assert!(!dt.dominates(block2, jmp02, &cur.func.layout)); + assert!(dt.dominates(block2, block1, &cur.func.layout)); + assert!(dt.dominates(block2, trap, &cur.func.layout)); + assert!(dt.dominates(block2, block2, &cur.func.layout)); + assert!(dt.dominates(block2, jmp21, &cur.func.layout)); + + assert!(!dt.dominates(jmp21, block0, &cur.func.layout)); + assert!(!dt.dominates(jmp21, jmp02, &cur.func.layout)); + assert!(dt.dominates(jmp21, block1, &cur.func.layout)); + assert!(dt.dominates(jmp21, trap, &cur.func.layout)); + assert!(!dt.dominates(jmp21, block2, &cur.func.layout)); + assert!(dt.dominates(jmp21, jmp21, &cur.func.layout)); + } +} |