summaryrefslogtreecommitdiffstats
path: root/third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs')
-rw-r--r--third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs924
1 files changed, 924 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs b/third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs
new file mode 100644
index 0000000000..31ad7d354e
--- /dev/null
+++ b/third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs
@@ -0,0 +1,924 @@
+use core::cell::UnsafeCell;
+use core::fmt;
+use core::mem;
+use core::ptr;
+use core::slice;
+use core::sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};
+
+use Backoff;
+
+/// A thread-safe mutable memory location.
+///
+/// This type is equivalent to [`Cell`], except it can also be shared among multiple threads.
+///
+/// Operations on `AtomicCell`s use atomic instructions whenever possible, and synchronize using
+/// global locks otherwise. You can call [`AtomicCell::<T>::is_lock_free()`] to check whether
+/// atomic instructions or locks will be used.
+///
+/// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html
+/// [`AtomicCell::<T>::is_lock_free()`]: struct.AtomicCell.html#method.is_lock_free
+pub struct AtomicCell<T> {
+ /// The inner value.
+ ///
+ /// If this value can be transmuted into a primitive atomic type, it will be treated as such.
+ /// Otherwise, all potentially concurrent operations on this data will be protected by a global
+ /// lock.
+ value: UnsafeCell<T>,
+}
+
+unsafe impl<T: Send> Send for AtomicCell<T> {}
+unsafe impl<T: Send> Sync for AtomicCell<T> {}
+
+impl<T> AtomicCell<T> {
+ /// Creates a new atomic cell initialized with `val`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(7);
+ /// ```
+ pub fn new(val: T) -> AtomicCell<T> {
+ AtomicCell {
+ value: UnsafeCell::new(val),
+ }
+ }
+
+ /// Returns a mutable reference to the inner value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let mut a = AtomicCell::new(7);
+ /// *a.get_mut() += 1;
+ ///
+ /// assert_eq!(a.load(), 8);
+ /// ```
+ pub fn get_mut(&mut self) -> &mut T {
+ unsafe { &mut *self.value.get() }
+ }
+
+ /// Unwraps the atomic cell and returns its inner value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let mut a = AtomicCell::new(7);
+ /// let v = a.into_inner();
+ ///
+ /// assert_eq!(v, 7);
+ /// ```
+ pub fn into_inner(self) -> T {
+ self.value.into_inner()
+ }
+
+ /// Returns `true` if operations on values of this type are lock-free.
+ ///
+ /// If the compiler or the platform doesn't support the necessary atomic instructions,
+ /// `AtomicCell<T>` will use global locks for every potentially concurrent atomic operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// // This type is internally represented as `AtomicUsize` so we can just use atomic
+ /// // operations provided by it.
+ /// assert_eq!(AtomicCell::<usize>::is_lock_free(), true);
+ ///
+ /// // A wrapper struct around `isize`.
+ /// struct Foo {
+ /// bar: isize,
+ /// }
+ /// // `AtomicCell<Foo>` will be internally represented as `AtomicIsize`.
+ /// assert_eq!(AtomicCell::<Foo>::is_lock_free(), true);
+ ///
+ /// // Operations on zero-sized types are always lock-free.
+ /// assert_eq!(AtomicCell::<()>::is_lock_free(), true);
+ ///
+ /// // Very large types cannot be represented as any of the standard atomic types, so atomic
+ /// // operations on them will have to use global locks for synchronization.
+ /// assert_eq!(AtomicCell::<[u8; 1000]>::is_lock_free(), false);
+ /// ```
+ pub fn is_lock_free() -> bool {
+ atomic_is_lock_free::<T>()
+ }
+
+ /// Stores `val` into the atomic cell.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(7);
+ ///
+ /// assert_eq!(a.load(), 7);
+ /// a.store(8);
+ /// assert_eq!(a.load(), 8);
+ /// ```
+ pub fn store(&self, val: T) {
+ if mem::needs_drop::<T>() {
+ drop(self.swap(val));
+ } else {
+ unsafe {
+ atomic_store(self.value.get(), val);
+ }
+ }
+ }
+
+ /// Stores `val` into the atomic cell and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(7);
+ ///
+ /// assert_eq!(a.load(), 7);
+ /// assert_eq!(a.swap(8), 7);
+ /// assert_eq!(a.load(), 8);
+ /// ```
+ pub fn swap(&self, val: T) -> T {
+ unsafe { atomic_swap(self.value.get(), val) }
+ }
+}
+
+impl<T: Copy> AtomicCell<T> {
+ /// Loads a value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(7);
+ ///
+ /// assert_eq!(a.load(), 7);
+ /// ```
+ pub fn load(&self) -> T {
+ unsafe { atomic_load(self.value.get()) }
+ }
+}
+
+impl<T: Copy + Eq> AtomicCell<T> {
+ /// If the current value equals `current`, stores `new` into the atomic cell.
+ ///
+ /// The return value is always the previous value. If it is equal to `current`, then the value
+ /// was updated.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(1);
+ ///
+ /// assert_eq!(a.compare_exchange(2, 3), Err(1));
+ /// assert_eq!(a.load(), 1);
+ ///
+ /// assert_eq!(a.compare_exchange(1, 2), Ok(1));
+ /// assert_eq!(a.load(), 2);
+ /// ```
+ pub fn compare_and_swap(&self, current: T, new: T) -> T {
+ match self.compare_exchange(current, new) {
+ Ok(v) => v,
+ Err(v) => v,
+ }
+ }
+
+ /// If the current value equals `current`, stores `new` into the atomic cell.
+ ///
+ /// The return value is a result indicating whether the new value was written and containing
+ /// the previous value. On success this value is guaranteed to be equal to `current`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(1);
+ ///
+ /// assert_eq!(a.compare_exchange(2, 3), Err(1));
+ /// assert_eq!(a.load(), 1);
+ ///
+ /// assert_eq!(a.compare_exchange(1, 2), Ok(1));
+ /// assert_eq!(a.load(), 2);
+ /// ```
+ pub fn compare_exchange(&self, mut current: T, new: T) -> Result<T, T> {
+ loop {
+ match unsafe { atomic_compare_exchange_weak(self.value.get(), current, new) } {
+ Ok(_) => return Ok(current),
+ Err(previous) => {
+ if previous != current {
+ return Err(previous);
+ }
+
+ // The compare-exchange operation has failed and didn't store `new`. The
+ // failure is either spurious, or `previous` was semantically equal to
+ // `current` but not byte-equal. Let's retry with `previous` as the new
+ // `current`.
+ current = previous;
+ }
+ }
+ }
+ }
+}
+
+macro_rules! impl_arithmetic {
+ ($t:ty, $example:tt) => {
+ impl AtomicCell<$t> {
+ /// Increments the current value by `val` and returns the previous value.
+ ///
+ /// The addition wraps on overflow.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_add(3), 7);
+ /// assert_eq!(a.load(), 10);
+ /// ```
+ #[inline]
+ pub fn fetch_add(&self, val: $t) -> $t {
+ if can_transmute::<$t, atomic::AtomicUsize>() {
+ let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
+ a.fetch_add(val as usize, Ordering::SeqCst) as $t
+ } else {
+ let _guard = lock(self.value.get() as usize).write();
+ let value = unsafe { &mut *(self.value.get()) };
+ let old = *value;
+ *value = value.wrapping_add(val);
+ old
+ }
+ }
+
+ /// Decrements the current value by `val` and returns the previous value.
+ ///
+ /// The subtraction wraps on overflow.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_sub(3), 7);
+ /// assert_eq!(a.load(), 4);
+ /// ```
+ #[inline]
+ pub fn fetch_sub(&self, val: $t) -> $t {
+ if can_transmute::<$t, atomic::AtomicUsize>() {
+ let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
+ a.fetch_sub(val as usize, Ordering::SeqCst) as $t
+ } else {
+ let _guard = lock(self.value.get() as usize).write();
+ let value = unsafe { &mut *(self.value.get()) };
+ let old = *value;
+ *value = value.wrapping_sub(val);
+ old
+ }
+ }
+
+ /// Applies bitwise "and" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_and(3), 7);
+ /// assert_eq!(a.load(), 3);
+ /// ```
+ #[inline]
+ pub fn fetch_and(&self, val: $t) -> $t {
+ if can_transmute::<$t, atomic::AtomicUsize>() {
+ let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
+ a.fetch_and(val as usize, Ordering::SeqCst) as $t
+ } else {
+ let _guard = lock(self.value.get() as usize).write();
+ let value = unsafe { &mut *(self.value.get()) };
+ let old = *value;
+ *value &= val;
+ old
+ }
+ }
+
+ /// Applies bitwise "or" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_or(16), 7);
+ /// assert_eq!(a.load(), 23);
+ /// ```
+ #[inline]
+ pub fn fetch_or(&self, val: $t) -> $t {
+ if can_transmute::<$t, atomic::AtomicUsize>() {
+ let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
+ a.fetch_or(val as usize, Ordering::SeqCst) as $t
+ } else {
+ let _guard = lock(self.value.get() as usize).write();
+ let value = unsafe { &mut *(self.value.get()) };
+ let old = *value;
+ *value |= val;
+ old
+ }
+ }
+
+ /// Applies bitwise "xor" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_xor(2), 7);
+ /// assert_eq!(a.load(), 5);
+ /// ```
+ #[inline]
+ pub fn fetch_xor(&self, val: $t) -> $t {
+ if can_transmute::<$t, atomic::AtomicUsize>() {
+ let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
+ a.fetch_xor(val as usize, Ordering::SeqCst) as $t
+ } else {
+ let _guard = lock(self.value.get() as usize).write();
+ let value = unsafe { &mut *(self.value.get()) };
+ let old = *value;
+ *value ^= val;
+ old
+ }
+ }
+ }
+ };
+ ($t:ty, $atomic:ty, $example:tt) => {
+ impl AtomicCell<$t> {
+ /// Increments the current value by `val` and returns the previous value.
+ ///
+ /// The addition wraps on overflow.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_add(3), 7);
+ /// assert_eq!(a.load(), 10);
+ /// ```
+ #[inline]
+ pub fn fetch_add(&self, val: $t) -> $t {
+ let a = unsafe { &*(self.value.get() as *const $atomic) };
+ a.fetch_add(val, Ordering::SeqCst)
+ }
+
+ /// Decrements the current value by `val` and returns the previous value.
+ ///
+ /// The subtraction wraps on overflow.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_sub(3), 7);
+ /// assert_eq!(a.load(), 4);
+ /// ```
+ #[inline]
+ pub fn fetch_sub(&self, val: $t) -> $t {
+ let a = unsafe { &*(self.value.get() as *const $atomic) };
+ a.fetch_sub(val, Ordering::SeqCst)
+ }
+
+ /// Applies bitwise "and" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_and(3), 7);
+ /// assert_eq!(a.load(), 3);
+ /// ```
+ #[inline]
+ pub fn fetch_and(&self, val: $t) -> $t {
+ let a = unsafe { &*(self.value.get() as *const $atomic) };
+ a.fetch_and(val, Ordering::SeqCst)
+ }
+
+ /// Applies bitwise "or" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_or(16), 7);
+ /// assert_eq!(a.load(), 23);
+ /// ```
+ #[inline]
+ pub fn fetch_or(&self, val: $t) -> $t {
+ let a = unsafe { &*(self.value.get() as *const $atomic) };
+ a.fetch_or(val, Ordering::SeqCst)
+ }
+
+ /// Applies bitwise "xor" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ #[doc = $example]
+ ///
+ /// assert_eq!(a.fetch_xor(2), 7);
+ /// assert_eq!(a.load(), 5);
+ /// ```
+ #[inline]
+ pub fn fetch_xor(&self, val: $t) -> $t {
+ let a = unsafe { &*(self.value.get() as *const $atomic) };
+ a.fetch_xor(val, Ordering::SeqCst)
+ }
+ }
+ };
+ ($t:ty, $size:tt, $atomic:ty, $example:tt) => {
+ #[cfg(target_has_atomic = $size)]
+ impl_arithmetic!($t, $atomic, $example);
+ };
+}
+
+cfg_if! {
+ if #[cfg(feature = "nightly")] {
+ impl_arithmetic!(u8, "8", atomic::AtomicU8, "let a = AtomicCell::new(7u8);");
+ impl_arithmetic!(i8, "8", atomic::AtomicI8, "let a = AtomicCell::new(7i8);");
+ impl_arithmetic!(u16, "16", atomic::AtomicU16, "let a = AtomicCell::new(7u16);");
+ impl_arithmetic!(i16, "16", atomic::AtomicI16, "let a = AtomicCell::new(7i16);");
+ impl_arithmetic!(u32, "32", atomic::AtomicU32, "let a = AtomicCell::new(7u32);");
+ impl_arithmetic!(i32, "32", atomic::AtomicI32, "let a = AtomicCell::new(7i32);");
+ impl_arithmetic!(u64, "64", atomic::AtomicU64, "let a = AtomicCell::new(7u64);");
+ impl_arithmetic!(i64, "64", atomic::AtomicI64, "let a = AtomicCell::new(7i64);");
+ impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);");
+ impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);");
+ } else {
+ impl_arithmetic!(u8, "let a = AtomicCell::new(7u8);");
+ impl_arithmetic!(i8, "let a = AtomicCell::new(7i8);");
+ impl_arithmetic!(u16, "let a = AtomicCell::new(7u16);");
+ impl_arithmetic!(i16, "let a = AtomicCell::new(7i16);");
+ impl_arithmetic!(u32, "let a = AtomicCell::new(7u32);");
+ impl_arithmetic!(i32, "let a = AtomicCell::new(7i32);");
+ impl_arithmetic!(u64, "let a = AtomicCell::new(7u64);");
+ impl_arithmetic!(i64, "let a = AtomicCell::new(7i64);");
+ impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);");
+ impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);");
+ }
+}
+
+impl_arithmetic!(
+ usize,
+ atomic::AtomicUsize,
+ "let a = AtomicCell::new(7usize);"
+);
+impl_arithmetic!(
+ isize,
+ atomic::AtomicIsize,
+ "let a = AtomicCell::new(7isize);"
+);
+
+impl AtomicCell<bool> {
+ /// Applies logical "and" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(true);
+ ///
+ /// assert_eq!(a.fetch_and(true), true);
+ /// assert_eq!(a.load(), true);
+ ///
+ /// assert_eq!(a.fetch_and(false), true);
+ /// assert_eq!(a.load(), false);
+ /// ```
+ #[inline]
+ pub fn fetch_and(&self, val: bool) -> bool {
+ let a = unsafe { &*(self.value.get() as *const AtomicBool) };
+ a.fetch_and(val, Ordering::SeqCst)
+ }
+
+ /// Applies logical "or" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(false);
+ ///
+ /// assert_eq!(a.fetch_or(false), false);
+ /// assert_eq!(a.load(), false);
+ ///
+ /// assert_eq!(a.fetch_or(true), false);
+ /// assert_eq!(a.load(), true);
+ /// ```
+ #[inline]
+ pub fn fetch_or(&self, val: bool) -> bool {
+ let a = unsafe { &*(self.value.get() as *const AtomicBool) };
+ a.fetch_or(val, Ordering::SeqCst)
+ }
+
+ /// Applies logical "xor" to the current value and returns the previous value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_utils::atomic::AtomicCell;
+ ///
+ /// let a = AtomicCell::new(true);
+ ///
+ /// assert_eq!(a.fetch_xor(false), true);
+ /// assert_eq!(a.load(), true);
+ ///
+ /// assert_eq!(a.fetch_xor(true), true);
+ /// assert_eq!(a.load(), false);
+ /// ```
+ #[inline]
+ pub fn fetch_xor(&self, val: bool) -> bool {
+ let a = unsafe { &*(self.value.get() as *const AtomicBool) };
+ a.fetch_xor(val, Ordering::SeqCst)
+ }
+}
+
+impl<T: Default> Default for AtomicCell<T> {
+ fn default() -> AtomicCell<T> {
+ AtomicCell::new(T::default())
+ }
+}
+
+impl<T: Copy + fmt::Debug> fmt::Debug for AtomicCell<T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("AtomicCell")
+ .field("value", &self.load())
+ .finish()
+ }
+}
+
+/// Returns `true` if the two values are equal byte-for-byte.
+fn byte_eq<T>(a: &T, b: &T) -> bool {
+ unsafe {
+ let a = slice::from_raw_parts(a as *const _ as *const u8, mem::size_of::<T>());
+ let b = slice::from_raw_parts(b as *const _ as *const u8, mem::size_of::<T>());
+ a == b
+ }
+}
+
+/// Returns `true` if values of type `A` can be transmuted into values of type `B`.
+fn can_transmute<A, B>() -> bool {
+ // Sizes must be equal, but alignment of `A` must be greater or equal than that of `B`.
+ mem::size_of::<A>() == mem::size_of::<B>() && mem::align_of::<A>() >= mem::align_of::<B>()
+}
+
+/// A simple stamped lock.
+struct Lock {
+ /// The current state of the lock.
+ ///
+ /// All bits except the least significant one hold the current stamp. When locked, the state
+ /// equals 1 and doesn't contain a valid stamp.
+ state: AtomicUsize,
+}
+
+impl Lock {
+ /// If not locked, returns the current stamp.
+ ///
+ /// This method should be called before optimistic reads.
+ #[inline]
+ fn optimistic_read(&self) -> Option<usize> {
+ let state = self.state.load(Ordering::Acquire);
+ if state == 1 {
+ None
+ } else {
+ Some(state)
+ }
+ }
+
+ /// Returns `true` if the current stamp is equal to `stamp`.
+ ///
+ /// This method should be called after optimistic reads to check whether they are valid. The
+ /// argument `stamp` should correspond to the one returned by method `optimistic_read`.
+ #[inline]
+ fn validate_read(&self, stamp: usize) -> bool {
+ atomic::fence(Ordering::Acquire);
+ self.state.load(Ordering::Relaxed) == stamp
+ }
+
+ /// Grabs the lock for writing.
+ #[inline]
+ fn write(&'static self) -> WriteGuard {
+ let backoff = Backoff::new();
+ loop {
+ let previous = self.state.swap(1, Ordering::Acquire);
+
+ if previous != 1 {
+ atomic::fence(Ordering::Release);
+
+ return WriteGuard {
+ lock: self,
+ state: previous,
+ };
+ }
+
+ backoff.snooze();
+ }
+ }
+}
+
+/// A RAII guard that releases the lock and increments the stamp when dropped.
+struct WriteGuard {
+ /// The parent lock.
+ lock: &'static Lock,
+
+ /// The stamp before locking.
+ state: usize,
+}
+
+impl WriteGuard {
+ /// Releases the lock without incrementing the stamp.
+ #[inline]
+ fn abort(self) {
+ self.lock.state.store(self.state, Ordering::Release);
+ }
+}
+
+impl Drop for WriteGuard {
+ #[inline]
+ fn drop(&mut self) {
+ // Release the lock and increment the stamp.
+ self.lock
+ .state
+ .store(self.state.wrapping_add(2), Ordering::Release);
+ }
+}
+
+/// Returns a reference to the global lock associated with the `AtomicCell` at address `addr`.
+///
+/// This function is used to protect atomic data which doesn't fit into any of the primitive atomic
+/// types in `std::sync::atomic`. Operations on such atomics must therefore use a global lock.
+///
+/// However, there is not only one global lock but an array of many locks, and one of them is
+/// picked based on the given address. Having many locks reduces contention and improves
+/// scalability.
+#[inline]
+#[must_use]
+fn lock(addr: usize) -> &'static Lock {
+ // The number of locks is a prime number because we want to make sure `addr % LEN` gets
+ // dispersed across all locks.
+ //
+ // Note that addresses are always aligned to some power of 2, depending on type `T` in
+ // `AtomicCell<T>`. If `LEN` was an even number, then `addr % LEN` would be an even number,
+ // too, which means only half of the locks would get utilized!
+ //
+ // It is also possible for addresses to accidentally get aligned to a number that is not a
+ // power of 2. Consider this example:
+ //
+ // ```
+ // #[repr(C)]
+ // struct Foo {
+ // a: AtomicCell<u8>,
+ // b: u8,
+ // c: u8,
+ // }
+ // ```
+ //
+ // Now, if we have a slice of type `&[Foo]`, it is possible that field `a` in all items gets
+ // stored at addresses that are multiples of 3. It'd be too bad if `LEN` was divisible by 3.
+ // In order to protect from such cases, we simply choose a large prime number for `LEN`.
+ const LEN: usize = 97;
+
+ const L: Lock = Lock {
+ state: AtomicUsize::new(0),
+ };
+ static LOCKS: [Lock; LEN] = [
+ L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
+ L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
+ L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
+ L, L, L, L, L, L, L,
+ ];
+
+ // If the modulus is a constant number, the compiler will use crazy math to transform this into
+ // a sequence of cheap arithmetic operations rather than using the slow modulo instruction.
+ &LOCKS[addr % LEN]
+}
+
+/// An atomic `()`.
+///
+/// All operations are noops.
+struct AtomicUnit;
+
+impl AtomicUnit {
+ #[inline]
+ fn load(&self, _order: Ordering) {}
+
+ #[inline]
+ fn store(&self, _val: (), _order: Ordering) {}
+
+ #[inline]
+ fn swap(&self, _val: (), _order: Ordering) {}
+
+ #[inline]
+ fn compare_exchange_weak(
+ &self,
+ _current: (),
+ _new: (),
+ _success: Ordering,
+ _failure: Ordering,
+ ) -> Result<(), ()> {
+ Ok(())
+ }
+}
+
+macro_rules! atomic {
+ // If values of type `$t` can be transmuted into values of the primitive atomic type `$atomic`,
+ // declares variable `$a` of type `$atomic` and executes `$atomic_op`, breaking out of the loop.
+ (@check, $t:ty, $atomic:ty, $a:ident, $atomic_op:expr) => {
+ if can_transmute::<$t, $atomic>() {
+ let $a: &$atomic;
+ break $atomic_op;
+ }
+ };
+
+ // If values of type `$t` can be transmuted into values of a primitive atomic type, declares
+ // variable `$a` of that type and executes `$atomic_op`. Otherwise, just executes
+ // `$fallback_op`.
+ ($t:ty, $a:ident, $atomic_op:expr, $fallback_op:expr) => {
+ loop {
+ atomic!(@check, $t, AtomicUnit, $a, $atomic_op);
+ atomic!(@check, $t, atomic::AtomicUsize, $a, $atomic_op);
+
+ #[cfg(feature = "nightly")]
+ {
+ #[cfg(target_has_atomic = "8")]
+ atomic!(@check, $t, atomic::AtomicU8, $a, $atomic_op);
+ #[cfg(target_has_atomic = "16")]
+ atomic!(@check, $t, atomic::AtomicU16, $a, $atomic_op);
+ #[cfg(target_has_atomic = "32")]
+ atomic!(@check, $t, atomic::AtomicU32, $a, $atomic_op);
+ #[cfg(target_has_atomic = "64")]
+ atomic!(@check, $t, atomic::AtomicU64, $a, $atomic_op);
+ }
+
+ break $fallback_op;
+ }
+ };
+}
+
+/// Returns `true` if operations on `AtomicCell<T>` are lock-free.
+fn atomic_is_lock_free<T>() -> bool {
+ atomic! { T, _a, true, false }
+}
+
+/// Atomically reads data from `src`.
+///
+/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
+/// global lock otherwise.
+unsafe fn atomic_load<T>(src: *mut T) -> T
+where
+ T: Copy,
+{
+ atomic! {
+ T, a,
+ {
+ a = &*(src as *const _ as *const _);
+ mem::transmute_copy(&a.load(Ordering::SeqCst))
+ },
+ {
+ let lock = lock(src as usize);
+
+ // Try doing an optimistic read first.
+ if let Some(stamp) = lock.optimistic_read() {
+ // We need a volatile read here because other threads might concurrently modify the
+ // value. In theory, data races are *always* UB, even if we use volatile reads and
+ // discard the data when a data race is detected. The proper solution would be to
+ // do atomic reads and atomic writes, but we can't atomically read and write all
+ // kinds of data since `AtomicU8` is not available on stable Rust yet.
+ let val = ptr::read_volatile(src);
+
+ if lock.validate_read(stamp) {
+ return val;
+ }
+ }
+
+ // Grab a regular write lock so that writers don't starve this load.
+ let guard = lock.write();
+ let val = ptr::read(src);
+ // The value hasn't been changed. Drop the guard without incrementing the stamp.
+ guard.abort();
+ val
+ }
+ }
+}
+
+/// Atomically writes `val` to `dst`.
+///
+/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
+/// global lock otherwise.
+unsafe fn atomic_store<T>(dst: *mut T, val: T) {
+ atomic! {
+ T, a,
+ {
+ a = &*(dst as *const _ as *const _);
+ let res = a.store(mem::transmute_copy(&val), Ordering::SeqCst);
+ mem::forget(val);
+ res
+ },
+ {
+ let _guard = lock(dst as usize).write();
+ ptr::write(dst, val)
+ }
+ }
+}
+
+/// Atomically swaps data at `dst` with `val`.
+///
+/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
+/// global lock otherwise.
+unsafe fn atomic_swap<T>(dst: *mut T, val: T) -> T {
+ atomic! {
+ T, a,
+ {
+ a = &*(dst as *const _ as *const _);
+ let res = mem::transmute_copy(&a.swap(mem::transmute_copy(&val), Ordering::SeqCst));
+ mem::forget(val);
+ res
+ },
+ {
+ let _guard = lock(dst as usize).write();
+ ptr::replace(dst, val)
+ }
+ }
+}
+
+/// Atomically compares data at `dst` to `current` and, if equal byte-for-byte, exchanges data at
+/// `dst` with `new`.
+///
+/// Returns the old value on success, or the current value at `dst` on failure.
+///
+/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
+/// global lock otherwise.
+unsafe fn atomic_compare_exchange_weak<T>(dst: *mut T, current: T, new: T) -> Result<T, T>
+where
+ T: Copy,
+{
+ atomic! {
+ T, a,
+ {
+ a = &*(dst as *const _ as *const _);
+ let res = a.compare_exchange_weak(
+ mem::transmute_copy(&current),
+ mem::transmute_copy(&new),
+ Ordering::SeqCst,
+ Ordering::SeqCst,
+ );
+ match res {
+ Ok(v) => Ok(mem::transmute_copy(&v)),
+ Err(v) => Err(mem::transmute_copy(&v)),
+ }
+ },
+ {
+ let guard = lock(dst as usize).write();
+
+ if byte_eq(&*dst, &current) {
+ Ok(ptr::replace(dst, new))
+ } else {
+ let val = ptr::read(dst);
+ // The value hasn't been changed. Drop the guard without incrementing the stamp.
+ guard.abort();
+ Err(val)
+ }
+ }
+ }
+}