diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/euclid/src/box2d.rs | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/euclid/src/box2d.rs')
-rw-r--r-- | third_party/rust/euclid/src/box2d.rs | 818 |
1 files changed, 818 insertions, 0 deletions
diff --git a/third_party/rust/euclid/src/box2d.rs b/third_party/rust/euclid/src/box2d.rs new file mode 100644 index 0000000000..d9b90052ca --- /dev/null +++ b/third_party/rust/euclid/src/box2d.rs @@ -0,0 +1,818 @@ +// Copyright 2013 The Servo Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use super::UnknownUnit; +use crate::approxord::{max, min}; +use crate::num::*; +use crate::point::{point2, Point2D}; +use crate::rect::Rect; +use crate::scale::Scale; +use crate::side_offsets::SideOffsets2D; +use crate::size::Size2D; +use crate::vector::{vec2, Vector2D}; + +use num_traits::NumCast; +#[cfg(feature = "serde")] +use serde::{Deserialize, Serialize}; + +use core::borrow::Borrow; +use core::cmp::PartialOrd; +use core::fmt; +use core::hash::{Hash, Hasher}; +use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub}; + +/// A 2d axis aligned rectangle represented by its minimum and maximum coordinates. +/// +/// # Representation +/// +/// This struct is similar to [`Rect`], but stores rectangle as two endpoints +/// instead of origin point and size. Such representation has several advantages over +/// [`Rect`] representation: +/// - Several operations are more efficient with `Box2D`, including [`intersection`], +/// [`union`], and point-in-rect. +/// - The representation is less susceptible to overflow. With [`Rect`], computation +/// of second point can overflow for a large range of values of origin and size. +/// However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates +/// are signed and the resulting size is unsigned. +/// +/// A known disadvantage of `Box2D` is that translating the rectangle requires translating +/// both points, whereas translating [`Rect`] only requires translating one point. +/// +/// # Empty box +/// +/// A box is considered empty (see [`is_empty`]) if any of the following is true: +/// - it's area is empty, +/// - it's area is negative (`min.x > max.x` or `min.y > max.y`), +/// - it contains NaNs. +/// +/// [`Rect`]: struct.Rect.html +/// [`intersection`]: #method.intersection +/// [`is_empty`]: #method.is_empty +/// [`union`]: #method.union +/// [`size`]: #method.size +#[repr(C)] +#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] +#[cfg_attr( + feature = "serde", + serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) +)] +pub struct Box2D<T, U> { + pub min: Point2D<T, U>, + pub max: Point2D<T, U>, +} + +impl<T: Hash, U> Hash for Box2D<T, U> { + fn hash<H: Hasher>(&self, h: &mut H) { + self.min.hash(h); + self.max.hash(h); + } +} + +impl<T: Copy, U> Copy for Box2D<T, U> {} + +impl<T: Clone, U> Clone for Box2D<T, U> { + fn clone(&self) -> Self { + Self::new(self.min.clone(), self.max.clone()) + } +} + +impl<T: PartialEq, U> PartialEq for Box2D<T, U> { + fn eq(&self, other: &Self) -> bool { + self.min.eq(&other.min) && self.max.eq(&other.max) + } +} + +impl<T: Eq, U> Eq for Box2D<T, U> {} + +impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Box2D") + .field(&self.min) + .field(&self.max) + .finish() + } +} + +impl<T, U> Box2D<T, U> { + /// Constructor. + #[inline] + pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self { + Box2D { min, max } + } +} + +impl<T, U> Box2D<T, U> +where + T: PartialOrd, +{ + /// Returns true if the box has a negative area. + /// + /// The common interpretation for a negative box is to consider it empty. It can be obtained + /// by calculating the intersection of two boxes that do not intersect. + #[inline] + pub fn is_negative(&self) -> bool { + self.max.x < self.min.x || self.max.y < self.min.y + } + + /// Returns true if the size is zero, negative or NaN. + #[inline] + pub fn is_empty(&self) -> bool { + !(self.max.x > self.min.x && self.max.y > self.min.y) + } + + /// Returns `true` if the two boxes intersect. + #[inline] + pub fn intersects(&self, other: &Self) -> bool { + self.min.x < other.max.x + && self.max.x > other.min.x + && self.min.y < other.max.y + && self.max.y > other.min.y + } + + /// Returns `true` if this box contains the point. Points are considered + /// in the box if they are on the front, left or top faces, but outside if they + /// are on the back, right or bottom faces. + #[inline] + pub fn contains(&self, p: Point2D<T, U>) -> bool { + self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y + } + + /// Returns `true` if this box contains the interior of the other box. Always + /// returns `true` if other is empty, and always returns `false` if other is + /// nonempty but this box is empty. + #[inline] + pub fn contains_box(&self, other: &Self) -> bool { + other.is_empty() + || (self.min.x <= other.min.x + && other.max.x <= self.max.x + && self.min.y <= other.min.y + && other.max.y <= self.max.y) + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + PartialOrd, +{ + #[inline] + pub fn to_non_empty(&self) -> Option<Self> { + if self.is_empty() { + return None; + } + + Some(*self) + } + + /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect. + #[inline] + pub fn intersection(&self, other: &Self) -> Option<Self> { + let b = self.intersection_unchecked(other); + + if b.is_empty() { + return None; + } + + Some(b) + } + + /// Computes the intersection of two boxes without check whether they do intersect. + /// + /// The result is a negative box if the boxes do not intersect. + /// This can be useful for computing the intersection of more than two boxes, as + /// it is possible to chain multiple intersection_unchecked calls and check for + /// empty/negative result at the end. + #[inline] + pub fn intersection_unchecked(&self, other: &Self) -> Self { + Box2D { + min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)), + max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)), + } + } + + #[inline] + pub fn union(&self, other: &Self) -> Self { + Box2D { + min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)), + max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)), + } + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + Add<T, Output = T>, +{ + /// Returns the same box, translated by a vector. + #[inline] + pub fn translate(&self, by: Vector2D<T, U>) -> Self { + Box2D { + min: self.min + by, + max: self.max + by, + } + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + Sub<T, Output = T>, +{ + #[inline] + pub fn size(&self) -> Size2D<T, U> { + (self.max - self.min).to_size() + } + + #[inline] + pub fn width(&self) -> T { + self.max.x - self.min.x + } + + #[inline] + pub fn height(&self) -> T { + self.max.y - self.min.y + } + + #[inline] + pub fn to_rect(&self) -> Rect<T, U> { + Rect { + origin: self.min, + size: self.size(), + } + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + Add<T, Output = T> + Sub<T, Output = T>, +{ + /// Inflates the box by the specified sizes on each side respectively. + #[inline] + #[must_use] + pub fn inflate(&self, width: T, height: T) -> Self { + Box2D { + min: point2(self.min.x - width, self.min.y - height), + max: point2(self.max.x + width, self.max.y + height), + } + } + + /// Calculate the size and position of an inner box. + /// + /// Subtracts the side offsets from all sides. The horizontal, vertical + /// and applicate offsets must not be larger than the original side length. + pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self { + Box2D { + min: self.min + vec2(offsets.left, offsets.top), + max: self.max - vec2(offsets.right, offsets.bottom), + } + } + + /// Calculate the b and position of an outer box. + /// + /// Add the offsets to all sides. The expanded box is returned. + pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self { + Box2D { + min: self.min - vec2(offsets.left, offsets.top), + max: self.max + vec2(offsets.right, offsets.bottom), + } + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + Zero + PartialOrd, +{ + /// Creates a Box2D of the given size, at offset zero. + #[inline] + pub fn from_size(size: Size2D<T, U>) -> Self { + let zero = Point2D::zero(); + let point = size.to_vector().to_point(); + Box2D::from_points(&[zero, point]) + } + + /// Returns the smallest box containing all of the provided points. + pub fn from_points<I>(points: I) -> Self + where + I: IntoIterator, + I::Item: Borrow<Point2D<T, U>>, + { + let mut points = points.into_iter(); + + let (mut min_x, mut min_y) = match points.next() { + Some(first) => first.borrow().to_tuple(), + None => return Box2D::zero(), + }; + + let (mut max_x, mut max_y) = (min_x, min_y); + for point in points { + let p = point.borrow(); + if p.x < min_x { + min_x = p.x + } + if p.x > max_x { + max_x = p.x + } + if p.y < min_y { + min_y = p.y + } + if p.y > max_y { + max_y = p.y + } + } + + Box2D { + min: point2(min_x, min_y), + max: point2(max_x, max_y), + } + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, +{ + /// Linearly interpolate between this box and another box. + #[inline] + pub fn lerp(&self, other: Self, t: T) -> Self { + Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t)) + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + One + Add<Output = T> + Div<Output = T>, +{ + pub fn center(&self) -> Point2D<T, U> { + let two = T::one() + T::one(); + (self.min + self.max.to_vector()) / two + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy + Mul<T, Output = T> + Sub<T, Output = T>, +{ + #[inline] + pub fn area(&self) -> T { + let size = self.size(); + size.width * size.height + } +} + +impl<T, U> Box2D<T, U> +where + T: Zero, +{ + /// Constructor, setting all sides to zero. + pub fn zero() -> Self { + Box2D::new(Point2D::zero(), Point2D::zero()) + } +} + +impl<T: Copy + Mul, U> Mul<T> for Box2D<T, U> { + type Output = Box2D<T::Output, U>; + + #[inline] + fn mul(self, scale: T) -> Self::Output { + Box2D::new(self.min * scale, self.max * scale) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<T> for Box2D<T, U> { + #[inline] + fn mul_assign(&mut self, scale: T) { + *self *= Scale::new(scale); + } +} + +impl<T: Copy + Div, U> Div<T> for Box2D<T, U> { + type Output = Box2D<T::Output, U>; + + #[inline] + fn div(self, scale: T) -> Self::Output { + Box2D::new(self.min / scale, self.max / scale) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<T> for Box2D<T, U> { + #[inline] + fn div_assign(&mut self, scale: T) { + *self /= Scale::new(scale); + } +} + +impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1> { + type Output = Box2D<T::Output, U2>; + + #[inline] + fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { + Box2D::new(self.min * scale, self.max * scale) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Box2D<T, U> { + #[inline] + fn mul_assign(&mut self, scale: Scale<T, U, U>) { + self.min *= scale; + self.max *= scale; + } +} + +impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2> { + type Output = Box2D<T::Output, U1>; + + #[inline] + fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { + Box2D::new(self.min / scale, self.max / scale) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Box2D<T, U> { + #[inline] + fn div_assign(&mut self, scale: Scale<T, U, U>) { + self.min /= scale; + self.max /= scale; + } +} + +impl<T, U> Box2D<T, U> +where + T: Copy, +{ + /// Drop the units, preserving only the numeric value. + #[inline] + pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> { + Box2D::new(self.min.to_untyped(), self.max.to_untyped()) + } + + /// Tag a unitless value with units. + #[inline] + pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U> { + Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max)) + } + + /// Cast the unit + #[inline] + pub fn cast_unit<V>(&self) -> Box2D<T, V> { + Box2D::new(self.min.cast_unit(), self.max.cast_unit()) + } + + #[inline] + pub fn scale<S: Copy>(&self, x: S, y: S) -> Self + where + T: Mul<S, Output = T>, + { + Box2D { + min: point2(self.min.x * x, self.min.y * y), + max: point2(self.max.x * x, self.max.y * y), + } + } +} + +impl<T: NumCast + Copy, U> Box2D<T, U> { + /// Cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using round(), round_in or round_out() before casting. + #[inline] + pub fn cast<NewT: NumCast>(&self) -> Box2D<NewT, U> { + Box2D::new(self.min.cast(), self.max.cast()) + } + + /// Fallible cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using round(), round_in or round_out() before casting. + pub fn try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>> { + match (self.min.try_cast(), self.max.try_cast()) { + (Some(a), Some(b)) => Some(Box2D::new(a, b)), + _ => None, + } + } + + // Convenience functions for common casts + + /// Cast into an `f32` box. + #[inline] + pub fn to_f32(&self) -> Box2D<f32, U> { + self.cast() + } + + /// Cast into an `f64` box. + #[inline] + pub fn to_f64(&self) -> Box2D<f64, U> { + self.cast() + } + + /// Cast into an `usize` box, truncating decimals if any. + /// + /// When casting from floating point boxes, it is worth considering whether + /// to `round()`, `round_in()` or `round_out()` before the cast in order to + /// obtain the desired conversion behavior. + #[inline] + pub fn to_usize(&self) -> Box2D<usize, U> { + self.cast() + } + + /// Cast into an `u32` box, truncating decimals if any. + /// + /// When casting from floating point boxes, it is worth considering whether + /// to `round()`, `round_in()` or `round_out()` before the cast in order to + /// obtain the desired conversion behavior. + #[inline] + pub fn to_u32(&self) -> Box2D<u32, U> { + self.cast() + } + + /// Cast into an `i32` box, truncating decimals if any. + /// + /// When casting from floating point boxes, it is worth considering whether + /// to `round()`, `round_in()` or `round_out()` before the cast in order to + /// obtain the desired conversion behavior. + #[inline] + pub fn to_i32(&self) -> Box2D<i32, U> { + self.cast() + } + + /// Cast into an `i64` box, truncating decimals if any. + /// + /// When casting from floating point boxes, it is worth considering whether + /// to `round()`, `round_in()` or `round_out()` before the cast in order to + /// obtain the desired conversion behavior. + #[inline] + pub fn to_i64(&self) -> Box2D<i64, U> { + self.cast() + } +} + +impl<T, U> Box2D<T, U> +where + T: Round, +{ + /// Return a box with edges rounded to integer coordinates, such that + /// the returned box has the same set of pixel centers as the original + /// one. + /// Values equal to 0.5 round up. + /// Suitable for most places where integral device coordinates + /// are needed, but note that any translation should be applied first to + /// avoid pixel rounding errors. + /// Note that this is *not* rounding to nearest integer if the values are negative. + /// They are always rounding as floor(n + 0.5). + #[must_use] + pub fn round(&self) -> Self { + Box2D::new(self.min.round(), self.max.round()) + } +} + +impl<T, U> Box2D<T, U> +where + T: Floor + Ceil, +{ + /// Return a box with faces/edges rounded to integer coordinates, such that + /// the original box contains the resulting box. + #[must_use] + pub fn round_in(&self) -> Self { + let min = self.min.ceil(); + let max = self.max.floor(); + Box2D { min, max } + } + + /// Return a box with faces/edges rounded to integer coordinates, such that + /// the original box is contained in the resulting box. + #[must_use] + pub fn round_out(&self) -> Self { + let min = self.min.floor(); + let max = self.max.ceil(); + Box2D { min, max } + } +} + +impl<T, U> From<Size2D<T, U>> for Box2D<T, U> +where + T: Copy + Zero + PartialOrd, +{ + fn from(b: Size2D<T, U>) -> Self { + Self::from_size(b) + } +} + +#[cfg(test)] +mod tests { + use crate::default::Box2D; + use crate::side_offsets::SideOffsets2D; + use crate::{point2, size2, vec2, Point2D}; + //use super::*; + + #[test] + fn test_size() { + let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); + assert_eq!(b.size().width, 20.0); + assert_eq!(b.size().height, 20.0); + } + + #[test] + fn test_width_height() { + let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); + assert!(b.width() == 20.0); + assert!(b.height() == 20.0); + } + + #[test] + fn test_center() { + let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); + assert_eq!(b.center(), Point2D::zero()); + } + + #[test] + fn test_area() { + let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); + assert_eq!(b.area(), 400.0); + } + + #[test] + fn test_from_points() { + let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]); + assert_eq!(b.min, point2(50.0, 25.0)); + assert_eq!(b.max, point2(100.0, 160.0)); + } + + #[test] + fn test_round_in() { + let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in(); + assert_eq!(b.min.x, -25.0); + assert_eq!(b.min.y, -40.0); + assert_eq!(b.max.x, 60.0); + assert_eq!(b.max.y, 36.0); + } + + #[test] + fn test_round_out() { + let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out(); + assert_eq!(b.min.x, -26.0); + assert_eq!(b.min.y, -41.0); + assert_eq!(b.max.x, 61.0); + assert_eq!(b.max.y, 37.0); + } + + #[test] + fn test_round() { + let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round(); + assert_eq!(b.min.x, -25.0); + assert_eq!(b.min.y, -40.0); + assert_eq!(b.max.x, 60.0); + assert_eq!(b.max.y, 37.0); + } + + #[test] + fn test_from_size() { + let b = Box2D::from_size(size2(30.0, 40.0)); + assert!(b.min == Point2D::zero()); + assert!(b.size().width == 30.0); + assert!(b.size().height == 40.0); + } + + #[test] + fn test_inner_box() { + let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); + let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); + assert_eq!(b.max.x, 80.0); + assert_eq!(b.max.y, 155.0); + assert_eq!(b.min.x, 60.0); + assert_eq!(b.min.y, 35.0); + } + + #[test] + fn test_outer_box() { + let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); + let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); + assert_eq!(b.max.x, 120.0); + assert_eq!(b.max.y, 165.0); + assert_eq!(b.min.x, 40.0); + assert_eq!(b.min.y, 15.0); + } + + #[test] + fn test_translate() { + let size = size2(15.0, 15.0); + let mut center = (size / 2.0).to_vector().to_point(); + let b = Box2D::from_size(size); + assert_eq!(b.center(), center); + let translation = vec2(10.0, 2.5); + let b = b.translate(translation); + center += translation; + assert_eq!(b.center(), center); + assert_eq!(b.max.x, 25.0); + assert_eq!(b.max.y, 17.5); + assert_eq!(b.min.x, 10.0); + assert_eq!(b.min.y, 2.5); + } + + #[test] + fn test_union() { + let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]); + let b = b1.union(&b2); + assert_eq!(b.max.x, 20.0); + assert_eq!(b.max.y, 20.0); + assert_eq!(b.min.x, -20.0); + assert_eq!(b.min.y, -20.0); + } + + #[test] + fn test_intersects() { + let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); + assert!(b1.intersects(&b2)); + } + + #[test] + fn test_intersection_unchecked() { + let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); + let b = b1.intersection_unchecked(&b2); + assert_eq!(b.max.x, 10.0); + assert_eq!(b.max.y, 20.0); + assert_eq!(b.min.x, -10.0); + assert_eq!(b.min.y, -20.0); + } + + #[test] + fn test_intersection() { + let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); + assert!(b1.intersection(&b2).is_some()); + + let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]); + assert!(b1.intersection(&b2).is_none()); + } + + #[test] + fn test_scale() { + let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]); + let b = b.scale(0.5, 0.5); + assert_eq!(b.max.x, 5.0); + assert_eq!(b.max.y, 5.0); + assert_eq!(b.min.x, -5.0); + assert_eq!(b.min.y, -5.0); + } + + #[test] + fn test_lerp() { + let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]); + let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]); + let b = b1.lerp(b2, 0.5); + assert_eq!(b.center(), Point2D::zero()); + assert_eq!(b.size().width, 10.0); + assert_eq!(b.size().height, 10.0); + } + + #[test] + fn test_contains() { + let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); + assert!(b.contains(point2(-15.3, 10.5))); + } + + #[test] + fn test_contains_box() { + let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); + let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]); + assert!(b1.contains_box(&b2)); + } + + #[test] + fn test_inflate() { + let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); + let b = b.inflate(10.0, 5.0); + assert_eq!(b.size().width, 60.0); + assert_eq!(b.size().height, 50.0); + assert_eq!(b.center(), Point2D::zero()); + } + + #[test] + fn test_is_empty() { + for i in 0..2 { + let mut coords_neg = [-20.0, -20.0]; + let mut coords_pos = [20.0, 20.0]; + coords_neg[i] = 0.0; + coords_pos[i] = 0.0; + let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]); + assert!(b.is_empty()); + } + } + + #[test] + fn test_nan_empty() { + use std::f32::NAN; + assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty()); + assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty()); + assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty()); + assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty()); + } +} |