diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/image/src/math/nq.rs | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/image/src/math/nq.rs')
-rw-r--r-- | third_party/rust/image/src/math/nq.rs | 409 |
1 files changed, 409 insertions, 0 deletions
diff --git a/third_party/rust/image/src/math/nq.rs b/third_party/rust/image/src/math/nq.rs new file mode 100644 index 0000000000..a6a502dffc --- /dev/null +++ b/third_party/rust/image/src/math/nq.rs @@ -0,0 +1,409 @@ +//! NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. +//! See "Kohonen neural networks for optimal colour quantization" +//! in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. +//! for a discussion of the algorithm. +//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/> + +/* NeuQuant Neural-Net Quantization Algorithm + * ------------------------------------------ + * + * Copyright (c) 1994 Anthony Dekker + * + * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. + * See "Kohonen neural networks for optimal colour quantization" + * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. + * for a discussion of the algorithm. + * See also https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/ + * + * Any party obtaining a copy of these files from the author, directly or + * indirectly, is granted, free of charge, a full and unrestricted irrevocable, + * world-wide, paid up, royalty-free, nonexclusive right and license to deal + * in this software and documentation files (the "Software"), including without + * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons who receive + * copies from any such party to do so, with the only requirement being + * that this copyright notice remain intact. + * + * + * Incorporated bugfixes and alpha channel handling from pngnq + * http://pngnq.sourceforge.net + * + */ + +use crate::math::utils::clamp; +use std::cmp::{max, min}; + +const CHANNELS: usize = 4; + +const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle + +const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1 +const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits + +const GAMMA: f64 = 1024.0; +const BETA: f64 = 1.0 / GAMMA; +const BETAGAMMA: f64 = BETA * GAMMA; + +// four primes near 500 - assume no image has a length so large +// that it is divisible by all four primes +const PRIMES: [usize; 4] = [499, 491, 478, 503]; + +#[derive(Clone, Copy)] +struct Quad<T> { + r: T, + g: T, + b: T, + a: T, +} + +type Neuron = Quad<f64>; +type Color = Quad<i32>; + +/// Neural network color quantizer +pub struct NeuQuant { + network: Vec<Neuron>, + colormap: Vec<Color>, + netindex: Vec<usize>, + bias: Vec<f64>, // bias and freq arrays for learning + freq: Vec<f64>, + samplefac: i32, + netsize: usize, +} + +impl NeuQuant { + /// Creates a new neural network and trains it with the supplied data + pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self { + let netsize = colors; + let mut this = NeuQuant { + network: Vec::with_capacity(netsize), + colormap: Vec::with_capacity(netsize), + netindex: vec![0; 256], + bias: Vec::with_capacity(netsize), + freq: Vec::with_capacity(netsize), + samplefac, + netsize, + }; + this.init(pixels); + this + } + + /// Initializes the neural network and trains it with the supplied data + pub fn init(&mut self, pixels: &[u8]) { + self.network.clear(); + self.colormap.clear(); + self.bias.clear(); + self.freq.clear(); + let freq = (self.netsize as f64).recip(); + for i in 0..self.netsize { + let tmp = (i as f64) * 256.0 / (self.netsize as f64); + // Sets alpha values at 0 for dark pixels. + let a = if i < 16 { i as f64 * 16.0 } else { 255.0 }; + self.network.push(Neuron { + r: tmp, + g: tmp, + b: tmp, + a, + }); + self.colormap.push(Color { + r: 0, + g: 0, + b: 0, + a: 255, + }); + self.freq.push(freq); + self.bias.push(0.0); + } + self.learn(pixels); + self.build_colormap(); + self.build_netindex(); + } + + /// Maps the pixel in-place to the best-matching color in the color map + #[inline(always)] + pub fn map_pixel(&self, pixel: &mut [u8]) { + assert_eq!(pixel.len(), 4); + match (pixel[0], pixel[1], pixel[2], pixel[3]) { + (r, g, b, a) => { + let i = self.search_netindex(b, g, r, a); + pixel[0] = self.colormap[i].r as u8; + pixel[1] = self.colormap[i].g as u8; + pixel[2] = self.colormap[i].b as u8; + pixel[3] = self.colormap[i].a as u8; + } + } + } + + /// Finds the best-matching index in the color map for `pixel` + #[inline(always)] + pub fn index_of(&self, pixel: &[u8]) -> usize { + assert_eq!(pixel.len(), 4); + match (pixel[0], pixel[1], pixel[2], pixel[3]) { + (r, g, b, a) => self.search_netindex(b, g, r, a), + } + } + + /// Move neuron i towards biased (a,b,g,r) by factor alpha + fn alter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) { + let n = &mut self.network[i as usize]; + n.b -= alpha * (n.b - quad.b); + n.g -= alpha * (n.g - quad.g); + n.r -= alpha * (n.r - quad.r); + n.a -= alpha * (n.a - quad.a); + } + + /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha + fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) { + let lo = max(i - rad, 0); + let hi = min(i + rad, self.netsize as i32); + let mut j = i + 1; + let mut k = i - 1; + let mut q = 0; + + while (j < hi) || (k > lo) { + let rad_sq = f64::from(rad) * f64::from(rad); + let alpha = (alpha * (rad_sq - f64::from(q) * f64::from(q))) / rad_sq; + q += 1; + if j < hi { + let p = &mut self.network[j as usize]; + p.b -= alpha * (p.b - quad.b); + p.g -= alpha * (p.g - quad.g); + p.r -= alpha * (p.r - quad.r); + p.a -= alpha * (p.a - quad.a); + j += 1; + } + if k > lo { + let p = &mut self.network[k as usize]; + p.b -= alpha * (p.b - quad.b); + p.g -= alpha * (p.g - quad.g); + p.r -= alpha * (p.r - quad.r); + p.a -= alpha * (p.a - quad.a); + k -= 1; + } + } + } + + /// Search for biased BGR values + /// finds closest neuron (min dist) and updates freq + /// finds best neuron (min dist-bias) and returns position + /// for frequently chosen neurons, freq[i] is high and bias[i] is negative + /// bias[i] = gamma*((1/self.netsize)-freq[i]) + fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 { + use std::f64; + + let mut bestd = f64::MAX; + let mut bestbiasd: f64 = bestd; + let mut bestpos = -1; + let mut bestbiaspos: i32 = bestpos; + + for i in 0..self.netsize { + let bestbiasd_biased = bestbiasd + self.bias[i]; + let mut dist; + let n = &self.network[i]; + dist = (n.b - b).abs(); + dist += (n.r - r).abs(); + if dist < bestd || dist < bestbiasd_biased { + dist += (n.g - g).abs(); + dist += (n.a - a).abs(); + if dist < bestd { + bestd = dist; + bestpos = i as i32; + } + let biasdist = dist - self.bias[i]; + if biasdist < bestbiasd { + bestbiasd = biasdist; + bestbiaspos = i as i32; + } + } + self.freq[i] -= BETA * self.freq[i]; + self.bias[i] += BETAGAMMA * self.freq[i]; + } + self.freq[bestpos as usize] += BETA; + self.bias[bestpos as usize] -= BETAGAMMA; + bestbiaspos + } + + /// Main learning loop + /// Note: the number of learning cycles is crucial and the parameters are not + /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine + fn learn(&mut self, pixels: &[u8]) { + let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32 + let radiusbiasshift: i32 = 6; + let radiusbias: i32 = 1 << radiusbiasshift; + let init_bias_radius: i32 = initrad * radiusbias; + let mut bias_radius = init_bias_radius; + let alphadec = 30 + ((self.samplefac - 1) / 3); + let lengthcount = pixels.len() / CHANNELS; + let samplepixels = lengthcount / self.samplefac as usize; + // learning cycles + let n_cycles = match self.netsize >> 1 { + n if n <= 100 => 100, + n => n, + }; + let delta = match samplepixels / n_cycles { + 0 => 1, + n => n, + }; + let mut alpha = INIT_ALPHA; + + let mut rad = bias_radius >> radiusbiasshift; + if rad <= 1 { + rad = 0 + }; + + let mut pos = 0; + let step = *PRIMES + .iter() + .find(|&&prime| lengthcount % prime != 0) + .unwrap_or(&PRIMES[3]); + + let mut i = 0; + while i < samplepixels { + let (r, g, b, a) = { + let p = &pixels[CHANNELS * pos..][..CHANNELS]; + ( + f64::from(p[0]), + f64::from(p[1]), + f64::from(p[2]), + f64::from(p[3]), + ) + }; + + let j = self.contest(b, g, r, a); + + let alpha_ = (1.0 * f64::from(alpha)) / f64::from(INIT_ALPHA); + self.alter_single(alpha_, j, Quad { b, g, r, a }); + if rad > 0 { + self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a }) + }; + + pos += step; + while pos >= lengthcount { + pos -= lengthcount + } + + i += 1; + if i % delta == 0 { + alpha -= alpha / alphadec; + bias_radius -= bias_radius / RADIUS_DEC; + rad = bias_radius >> radiusbiasshift; + if rad <= 1 { + rad = 0 + }; + } + } + } + + /// initializes the color map + fn build_colormap(&mut self) { + for i in 0usize..self.netsize { + self.colormap[i].b = clamp(self.network[i].b.round() as i32, 0, 255); + self.colormap[i].g = clamp(self.network[i].g.round() as i32, 0, 255); + self.colormap[i].r = clamp(self.network[i].r.round() as i32, 0, 255); + self.colormap[i].a = clamp(self.network[i].a.round() as i32, 0, 255); + } + } + + /// Insertion sort of network and building of netindex[0..255] + fn build_netindex(&mut self) { + let mut previouscol = 0; + let mut startpos = 0; + + for i in 0..self.netsize { + let mut p = self.colormap[i]; + let mut q; + let mut smallpos = i; + let mut smallval = p.g as usize; // index on g + // find smallest in i..netsize-1 + for j in (i + 1)..self.netsize { + q = self.colormap[j]; + if (q.g as usize) < smallval { + // index on g + smallpos = j; + smallval = q.g as usize; // index on g + } + } + q = self.colormap[smallpos]; + // swap p (i) and q (smallpos) entries + if i != smallpos { + ::std::mem::swap(&mut p, &mut q); + self.colormap[i] = p; + self.colormap[smallpos] = q; + } + // smallval entry is now in position i + if smallval != previouscol { + self.netindex[previouscol] = (startpos + i) >> 1; + for j in (previouscol + 1)..smallval { + self.netindex[j] = i + } + previouscol = smallval; + startpos = i; + } + } + let max_netpos = self.netsize - 1; + self.netindex[previouscol] = (startpos + max_netpos) >> 1; + for j in (previouscol + 1)..256 { + self.netindex[j] = max_netpos + } // really 256 + } + + /// Search for best matching color + fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize { + let mut bestd = 1 << 30; // ~ 1_000_000 + let mut best = 0; + // start at netindex[g] and work outwards + let mut i = self.netindex[g as usize]; + let mut j = if i > 0 { i - 1 } else { 0 }; + + while (i < self.netsize) || (j > 0) { + if i < self.netsize { + let p = self.colormap[i]; + let mut e = p.g - i32::from(g); + let mut dist = e * e; // index key + if dist >= bestd { + break; + } else { + e = p.b - i32::from(b); + dist += e * e; + if dist < bestd { + e = p.r - i32::from(r); + dist += e * e; + if dist < bestd { + e = p.a - i32::from(a); + dist += e * e; + if dist < bestd { + bestd = dist; + best = i; + } + } + } + i += 1; + } + } + if j > 0 { + let p = self.colormap[j]; + let mut e = p.g - i32::from(g); + let mut dist = e * e; // index key + if dist >= bestd { + break; + } else { + e = p.b - i32::from(b); + dist += e * e; + if dist < bestd { + e = p.r - i32::from(r); + dist += e * e; + if dist < bestd { + e = p.a - i32::from(a); + dist += e * e; + if dist < bestd { + bestd = dist; + best = j; + } + } + } + j -= 1; + } + } + } + best + } +} |