summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/math/nq.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/image/src/math/nq.rs
parentInitial commit. (diff)
downloadfirefox-upstream.tar.xz
firefox-upstream.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/image/src/math/nq.rs')
-rw-r--r--third_party/rust/image/src/math/nq.rs409
1 files changed, 409 insertions, 0 deletions
diff --git a/third_party/rust/image/src/math/nq.rs b/third_party/rust/image/src/math/nq.rs
new file mode 100644
index 0000000000..a6a502dffc
--- /dev/null
+++ b/third_party/rust/image/src/math/nq.rs
@@ -0,0 +1,409 @@
+//! NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
+//! See "Kohonen neural networks for optimal colour quantization"
+//! in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
+//! for a discussion of the algorithm.
+//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/>
+
+/* NeuQuant Neural-Net Quantization Algorithm
+ * ------------------------------------------
+ *
+ * Copyright (c) 1994 Anthony Dekker
+ *
+ * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
+ * See "Kohonen neural networks for optimal colour quantization"
+ * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
+ * for a discussion of the algorithm.
+ * See also https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/
+ *
+ * Any party obtaining a copy of these files from the author, directly or
+ * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
+ * world-wide, paid up, royalty-free, nonexclusive right and license to deal
+ * in this software and documentation files (the "Software"), including without
+ * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons who receive
+ * copies from any such party to do so, with the only requirement being
+ * that this copyright notice remain intact.
+ *
+ *
+ * Incorporated bugfixes and alpha channel handling from pngnq
+ * http://pngnq.sourceforge.net
+ *
+ */
+
+use crate::math::utils::clamp;
+use std::cmp::{max, min};
+
+const CHANNELS: usize = 4;
+
+const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle
+
+const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1
+const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits
+
+const GAMMA: f64 = 1024.0;
+const BETA: f64 = 1.0 / GAMMA;
+const BETAGAMMA: f64 = BETA * GAMMA;
+
+// four primes near 500 - assume no image has a length so large
+// that it is divisible by all four primes
+const PRIMES: [usize; 4] = [499, 491, 478, 503];
+
+#[derive(Clone, Copy)]
+struct Quad<T> {
+ r: T,
+ g: T,
+ b: T,
+ a: T,
+}
+
+type Neuron = Quad<f64>;
+type Color = Quad<i32>;
+
+/// Neural network color quantizer
+pub struct NeuQuant {
+ network: Vec<Neuron>,
+ colormap: Vec<Color>,
+ netindex: Vec<usize>,
+ bias: Vec<f64>, // bias and freq arrays for learning
+ freq: Vec<f64>,
+ samplefac: i32,
+ netsize: usize,
+}
+
+impl NeuQuant {
+ /// Creates a new neural network and trains it with the supplied data
+ pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
+ let netsize = colors;
+ let mut this = NeuQuant {
+ network: Vec::with_capacity(netsize),
+ colormap: Vec::with_capacity(netsize),
+ netindex: vec![0; 256],
+ bias: Vec::with_capacity(netsize),
+ freq: Vec::with_capacity(netsize),
+ samplefac,
+ netsize,
+ };
+ this.init(pixels);
+ this
+ }
+
+ /// Initializes the neural network and trains it with the supplied data
+ pub fn init(&mut self, pixels: &[u8]) {
+ self.network.clear();
+ self.colormap.clear();
+ self.bias.clear();
+ self.freq.clear();
+ let freq = (self.netsize as f64).recip();
+ for i in 0..self.netsize {
+ let tmp = (i as f64) * 256.0 / (self.netsize as f64);
+ // Sets alpha values at 0 for dark pixels.
+ let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
+ self.network.push(Neuron {
+ r: tmp,
+ g: tmp,
+ b: tmp,
+ a,
+ });
+ self.colormap.push(Color {
+ r: 0,
+ g: 0,
+ b: 0,
+ a: 255,
+ });
+ self.freq.push(freq);
+ self.bias.push(0.0);
+ }
+ self.learn(pixels);
+ self.build_colormap();
+ self.build_netindex();
+ }
+
+ /// Maps the pixel in-place to the best-matching color in the color map
+ #[inline(always)]
+ pub fn map_pixel(&self, pixel: &mut [u8]) {
+ assert_eq!(pixel.len(), 4);
+ match (pixel[0], pixel[1], pixel[2], pixel[3]) {
+ (r, g, b, a) => {
+ let i = self.search_netindex(b, g, r, a);
+ pixel[0] = self.colormap[i].r as u8;
+ pixel[1] = self.colormap[i].g as u8;
+ pixel[2] = self.colormap[i].b as u8;
+ pixel[3] = self.colormap[i].a as u8;
+ }
+ }
+ }
+
+ /// Finds the best-matching index in the color map for `pixel`
+ #[inline(always)]
+ pub fn index_of(&self, pixel: &[u8]) -> usize {
+ assert_eq!(pixel.len(), 4);
+ match (pixel[0], pixel[1], pixel[2], pixel[3]) {
+ (r, g, b, a) => self.search_netindex(b, g, r, a),
+ }
+ }
+
+ /// Move neuron i towards biased (a,b,g,r) by factor alpha
+ fn alter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
+ let n = &mut self.network[i as usize];
+ n.b -= alpha * (n.b - quad.b);
+ n.g -= alpha * (n.g - quad.g);
+ n.r -= alpha * (n.r - quad.r);
+ n.a -= alpha * (n.a - quad.a);
+ }
+
+ /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
+ fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
+ let lo = max(i - rad, 0);
+ let hi = min(i + rad, self.netsize as i32);
+ let mut j = i + 1;
+ let mut k = i - 1;
+ let mut q = 0;
+
+ while (j < hi) || (k > lo) {
+ let rad_sq = f64::from(rad) * f64::from(rad);
+ let alpha = (alpha * (rad_sq - f64::from(q) * f64::from(q))) / rad_sq;
+ q += 1;
+ if j < hi {
+ let p = &mut self.network[j as usize];
+ p.b -= alpha * (p.b - quad.b);
+ p.g -= alpha * (p.g - quad.g);
+ p.r -= alpha * (p.r - quad.r);
+ p.a -= alpha * (p.a - quad.a);
+ j += 1;
+ }
+ if k > lo {
+ let p = &mut self.network[k as usize];
+ p.b -= alpha * (p.b - quad.b);
+ p.g -= alpha * (p.g - quad.g);
+ p.r -= alpha * (p.r - quad.r);
+ p.a -= alpha * (p.a - quad.a);
+ k -= 1;
+ }
+ }
+ }
+
+ /// Search for biased BGR values
+ /// finds closest neuron (min dist) and updates freq
+ /// finds best neuron (min dist-bias) and returns position
+ /// for frequently chosen neurons, freq[i] is high and bias[i] is negative
+ /// bias[i] = gamma*((1/self.netsize)-freq[i])
+ fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
+ use std::f64;
+
+ let mut bestd = f64::MAX;
+ let mut bestbiasd: f64 = bestd;
+ let mut bestpos = -1;
+ let mut bestbiaspos: i32 = bestpos;
+
+ for i in 0..self.netsize {
+ let bestbiasd_biased = bestbiasd + self.bias[i];
+ let mut dist;
+ let n = &self.network[i];
+ dist = (n.b - b).abs();
+ dist += (n.r - r).abs();
+ if dist < bestd || dist < bestbiasd_biased {
+ dist += (n.g - g).abs();
+ dist += (n.a - a).abs();
+ if dist < bestd {
+ bestd = dist;
+ bestpos = i as i32;
+ }
+ let biasdist = dist - self.bias[i];
+ if biasdist < bestbiasd {
+ bestbiasd = biasdist;
+ bestbiaspos = i as i32;
+ }
+ }
+ self.freq[i] -= BETA * self.freq[i];
+ self.bias[i] += BETAGAMMA * self.freq[i];
+ }
+ self.freq[bestpos as usize] += BETA;
+ self.bias[bestpos as usize] -= BETAGAMMA;
+ bestbiaspos
+ }
+
+ /// Main learning loop
+ /// Note: the number of learning cycles is crucial and the parameters are not
+ /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
+ fn learn(&mut self, pixels: &[u8]) {
+ let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32
+ let radiusbiasshift: i32 = 6;
+ let radiusbias: i32 = 1 << radiusbiasshift;
+ let init_bias_radius: i32 = initrad * radiusbias;
+ let mut bias_radius = init_bias_radius;
+ let alphadec = 30 + ((self.samplefac - 1) / 3);
+ let lengthcount = pixels.len() / CHANNELS;
+ let samplepixels = lengthcount / self.samplefac as usize;
+ // learning cycles
+ let n_cycles = match self.netsize >> 1 {
+ n if n <= 100 => 100,
+ n => n,
+ };
+ let delta = match samplepixels / n_cycles {
+ 0 => 1,
+ n => n,
+ };
+ let mut alpha = INIT_ALPHA;
+
+ let mut rad = bias_radius >> radiusbiasshift;
+ if rad <= 1 {
+ rad = 0
+ };
+
+ let mut pos = 0;
+ let step = *PRIMES
+ .iter()
+ .find(|&&prime| lengthcount % prime != 0)
+ .unwrap_or(&PRIMES[3]);
+
+ let mut i = 0;
+ while i < samplepixels {
+ let (r, g, b, a) = {
+ let p = &pixels[CHANNELS * pos..][..CHANNELS];
+ (
+ f64::from(p[0]),
+ f64::from(p[1]),
+ f64::from(p[2]),
+ f64::from(p[3]),
+ )
+ };
+
+ let j = self.contest(b, g, r, a);
+
+ let alpha_ = (1.0 * f64::from(alpha)) / f64::from(INIT_ALPHA);
+ self.alter_single(alpha_, j, Quad { b, g, r, a });
+ if rad > 0 {
+ self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a })
+ };
+
+ pos += step;
+ while pos >= lengthcount {
+ pos -= lengthcount
+ }
+
+ i += 1;
+ if i % delta == 0 {
+ alpha -= alpha / alphadec;
+ bias_radius -= bias_radius / RADIUS_DEC;
+ rad = bias_radius >> radiusbiasshift;
+ if rad <= 1 {
+ rad = 0
+ };
+ }
+ }
+ }
+
+ /// initializes the color map
+ fn build_colormap(&mut self) {
+ for i in 0usize..self.netsize {
+ self.colormap[i].b = clamp(self.network[i].b.round() as i32, 0, 255);
+ self.colormap[i].g = clamp(self.network[i].g.round() as i32, 0, 255);
+ self.colormap[i].r = clamp(self.network[i].r.round() as i32, 0, 255);
+ self.colormap[i].a = clamp(self.network[i].a.round() as i32, 0, 255);
+ }
+ }
+
+ /// Insertion sort of network and building of netindex[0..255]
+ fn build_netindex(&mut self) {
+ let mut previouscol = 0;
+ let mut startpos = 0;
+
+ for i in 0..self.netsize {
+ let mut p = self.colormap[i];
+ let mut q;
+ let mut smallpos = i;
+ let mut smallval = p.g as usize; // index on g
+ // find smallest in i..netsize-1
+ for j in (i + 1)..self.netsize {
+ q = self.colormap[j];
+ if (q.g as usize) < smallval {
+ // index on g
+ smallpos = j;
+ smallval = q.g as usize; // index on g
+ }
+ }
+ q = self.colormap[smallpos];
+ // swap p (i) and q (smallpos) entries
+ if i != smallpos {
+ ::std::mem::swap(&mut p, &mut q);
+ self.colormap[i] = p;
+ self.colormap[smallpos] = q;
+ }
+ // smallval entry is now in position i
+ if smallval != previouscol {
+ self.netindex[previouscol] = (startpos + i) >> 1;
+ for j in (previouscol + 1)..smallval {
+ self.netindex[j] = i
+ }
+ previouscol = smallval;
+ startpos = i;
+ }
+ }
+ let max_netpos = self.netsize - 1;
+ self.netindex[previouscol] = (startpos + max_netpos) >> 1;
+ for j in (previouscol + 1)..256 {
+ self.netindex[j] = max_netpos
+ } // really 256
+ }
+
+ /// Search for best matching color
+ fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
+ let mut bestd = 1 << 30; // ~ 1_000_000
+ let mut best = 0;
+ // start at netindex[g] and work outwards
+ let mut i = self.netindex[g as usize];
+ let mut j = if i > 0 { i - 1 } else { 0 };
+
+ while (i < self.netsize) || (j > 0) {
+ if i < self.netsize {
+ let p = self.colormap[i];
+ let mut e = p.g - i32::from(g);
+ let mut dist = e * e; // index key
+ if dist >= bestd {
+ break;
+ } else {
+ e = p.b - i32::from(b);
+ dist += e * e;
+ if dist < bestd {
+ e = p.r - i32::from(r);
+ dist += e * e;
+ if dist < bestd {
+ e = p.a - i32::from(a);
+ dist += e * e;
+ if dist < bestd {
+ bestd = dist;
+ best = i;
+ }
+ }
+ }
+ i += 1;
+ }
+ }
+ if j > 0 {
+ let p = self.colormap[j];
+ let mut e = p.g - i32::from(g);
+ let mut dist = e * e; // index key
+ if dist >= bestd {
+ break;
+ } else {
+ e = p.b - i32::from(b);
+ dist += e * e;
+ if dist < bestd {
+ e = p.r - i32::from(r);
+ dist += e * e;
+ if dist < bestd {
+ e = p.a - i32::from(a);
+ dist += e * e;
+ if dist < bestd {
+ bestd = dist;
+ best = j;
+ }
+ }
+ }
+ j -= 1;
+ }
+ }
+ }
+ best
+ }
+}