summaryrefslogtreecommitdiffstats
path: root/third_party/rust/parking_lot
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/parking_lot
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/parking_lot')
-rw-r--r--third_party/rust/parking_lot/.cargo-checksum.json1
-rw-r--r--third_party/rust/parking_lot/CHANGELOG.md144
-rw-r--r--third_party/rust/parking_lot/Cargo.toml46
-rw-r--r--third_party/rust/parking_lot/LICENSE-APACHE201
-rw-r--r--third_party/rust/parking_lot/LICENSE-MIT25
-rw-r--r--third_party/rust/parking_lot/README.md151
-rw-r--r--third_party/rust/parking_lot/bors.toml4
-rw-r--r--third_party/rust/parking_lot/src/condvar.rs1057
-rw-r--r--third_party/rust/parking_lot/src/deadlock.rs232
-rw-r--r--third_party/rust/parking_lot/src/elision.rs116
-rw-r--r--third_party/rust/parking_lot/src/fair_mutex.rs278
-rw-r--r--third_party/rust/parking_lot/src/lib.rs57
-rw-r--r--third_party/rust/parking_lot/src/mutex.rs312
-rw-r--r--third_party/rust/parking_lot/src/once.rs458
-rw-r--r--third_party/rust/parking_lot/src/raw_fair_mutex.rs65
-rw-r--r--third_party/rust/parking_lot/src/raw_mutex.rs331
-rw-r--r--third_party/rust/parking_lot/src/raw_rwlock.rs1144
-rw-r--r--third_party/rust/parking_lot/src/remutex.rs149
-rw-r--r--third_party/rust/parking_lot/src/rwlock.rs618
-rw-r--r--third_party/rust/parking_lot/src/util.rs39
-rw-r--r--third_party/rust/parking_lot/tests/issue_203.rs26
21 files changed, 5454 insertions, 0 deletions
diff --git a/third_party/rust/parking_lot/.cargo-checksum.json b/third_party/rust/parking_lot/.cargo-checksum.json
new file mode 100644
index 0000000000..b819e7d4d2
--- /dev/null
+++ b/third_party/rust/parking_lot/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"CHANGELOG.md":"f9559e40e966a870d64367a75e41b233ee1bc1746f6f242501b9462e69b4db12","Cargo.toml":"a7cce7f9fbc2cb0a5c388384073f9b2e820d6b47f314ef0dcccb5613741b8202","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"c9a75f18b9ab2927829a208fc6aa2cf4e63b8420887ba29cdb265d6619ae82d5","README.md":"93e21ceae3fe1b6cf9f6c2ebcbf09211a08b446f849048900d8d7efe52751614","bors.toml":"938b40da0516dd1e18f6ab893d43a3c6a011836124696157568380f3ce784958","src/condvar.rs":"bace2ee6e97eab088833a22a511029fb188e5f6bc9289bfcd5d41e3915de921d","src/deadlock.rs":"7d3ebb5b4f63658435df277bb983e352e4bc651a92c4fd48ae68bf103e452d0d","src/elision.rs":"9aceb0b27fd3cdaf4ef76bda63435a96ec2fdef24be098b9e4edbc39db000765","src/fair_mutex.rs":"d0a032e8207919da04b85f1422dfb14aa2af7aad78843c708d2fe3e0478e401a","src/lib.rs":"d83b9e6c70d2c6167d55dc2c4cf2b02abf4b11bfa092949750bc0cdafd38a45c","src/mutex.rs":"9fff878238ef798bfe2f48b410ca3074914826005a12df4f9b96619b2d3e6409","src/once.rs":"a1c38a5d87077e3d112d57e065ee126a24ab19f04fba9cb1f2cb43bc82caf33c","src/raw_fair_mutex.rs":"316f954d9673ac5b8d6bf4c19f2444800f63daf801c224d986e2d6dac810643c","src/raw_mutex.rs":"a24262800d61b8486ef0cfb1b72ead748c544ca2a551ec48346036ebb4fc385b","src/raw_rwlock.rs":"d0d93b096e68da3213da49d51849baf4ec241552eaa9b791f38314eb36c4e1a9","src/remutex.rs":"7a0de55161cd57497bb52d3aecca69a89eff2e71cdb2d762df53579e0607b489","src/rwlock.rs":"68584dffeb4368839774c0ee987481affc0547c38977a17970514f072a582d61","src/util.rs":"26325483bcd23ab8ceb16bf47541152c5eb0bc394f247795c14698fa7b586692","tests/issue_203.rs":"5fbdf6ec63f391d86457df949678c203a1e81e8aa32d4e10037fa76e768702c0"},"package":"6d7744ac029df22dca6284efe4e898991d28e3085c706c972bcd7da4a27a15eb"} \ No newline at end of file
diff --git a/third_party/rust/parking_lot/CHANGELOG.md b/third_party/rust/parking_lot/CHANGELOG.md
new file mode 100644
index 0000000000..a4734634ef
--- /dev/null
+++ b/third_party/rust/parking_lot/CHANGELOG.md
@@ -0,0 +1,144 @@
+## parking_lot 0.11.1, lock_api 0.4.2 (2020-11-18)
+
+- Fix bounds on Send and Sync impls for lock guards. (#262)
+- Fix incorrect memory ordering in `RwLock`. (#260)
+
+## lock_api 0.4.1 (2020-07-06)
+
+- Add `data_ptr` method to lock types to allow unsafely accessing the inner data
+ without a guard. (#247)
+
+## parking_lot 0.11.0, parking_lot_core 0.8.0, lock_api 0.4.0 (2020-06-23)
+
+- Add `is_locked` method to mutex types. (#235)
+- Make `RawReentrantMutex` public. (#233)
+- Allow lock guard to be sent to another thread with the `send_guard` feature. (#240)
+- Use `Instant` type from the `instant` crate on wasm32-unknown-unknown. (#231)
+- Remove deprecated and unsound `MappedRwLockWriteGuard::downgrade`. (#244)
+- Most methods on the `Raw*` traits have been made unsafe since they assume
+ the current thread holds the lock. (#243)
+
+## parking_lot_core 0.7.2 (2020-04-21)
+
+- Add support for `wasm32-unknown-unknown` under the "nightly" feature. (#226)
+
+## parking_lot 0.10.2 (2020-04-10)
+
+- Update minimum version of `lock_api`.
+
+## parking_lot 0.10.1, parking_lot_core 0.7.1, lock_api 0.3.4 (2020-04-10)
+
+- Add methods to construct `Mutex`, `RwLock`, etc in a `const` context. (#217)
+- Add `FairMutex` which always uses fair unlocking. (#204)
+- Fixed panic with deadlock detection on macOS. (#203)
+- Fixed incorrect synchronization in `create_hashtable`. (#210)
+- Use `llvm_asm!` instead of the deprecated `asm!`. (#223)
+
+## lock_api 0.3.3 (2020-01-04)
+
+- Deprecate unsound `MappedRwLockWriteGuard::downgrade` (#198)
+
+## parking_lot 0.10.0, parking_lot_core 0.7.0, lock_api 0.3.2 (2019-11-25)
+
+- Upgrade smallvec dependency to 1.0 in parking_lot_core.
+- Replace all usage of `mem::uninitialized` with `mem::MaybeUninit`.
+- The minimum required Rust version is bumped to 1.36. Because of the above two changes.
+- Make methods on `WaitTimeoutResult` and `OnceState` take `self` by value instead of reference.
+
+## parking_lot_core 0.6.2 (2019-07-22)
+
+- Fixed compile error on Windows with old cfg_if version. (#164)
+
+## parking_lot_core 0.6.1 (2019-07-17)
+
+- Fixed Android build. (#163)
+
+## parking_lot 0.9.0, parking_lot_core 0.6.0, lock_api 0.3.1 (2019-07-14)
+
+- Re-export lock_api (0.3.1) from parking_lot (#150)
+- Removed (non-dev) dependency on rand crate for fairness mechanism, by
+ including a simple xorshift PRNG in core (#144)
+- Android now uses the futex-based ThreadParker. (#140)
+- Fixed CloudABI ThreadParker. (#140)
+- Fix race condition in lock_api::ReentrantMutex (da16c2c7)
+
+## lock_api 0.3.0 (2019-07-03, _yanked_)
+
+- Use NonZeroUsize in GetThreadId::nonzero_thread_id (#148)
+- Debug assert lock_count in ReentrantMutex (#148)
+- Tag as `unsafe` and document some internal methods (#148)
+- This release was _yanked_ due to a regression in ReentrantMutex (da16c2c7)
+
+## parking_lot 0.8.1 (2019-07-03, _yanked_)
+
+- Re-export lock_api (0.3.0) from parking_lot (#150)
+- This release was _yanked_ from crates.io due to unexpected breakage (#156)
+
+## parking_lot 0.8.0, parking_lot_core 0.5.0, lock_api 0.2.0 (2019-05-04)
+
+- Fix race conditions in deadlock detection.
+- Support for more platforms by adding ThreadParker implementations for
+ Wasm, Redox, SGX and CloudABI.
+- Drop support for older Rust. parking_lot now requires 1.31 and is a
+ Rust 2018 edition crate (#122).
+- Disable the owning_ref feature by default.
+- Fix was_last_thread value in the timeout callback of park() (#129).
+- Support single byte Mutex/Once on stable Rust when compiler is at least
+ version 1.34.
+- Make Condvar::new and Once::new const fns on stable Rust and remove
+ ONCE_INIT (#134).
+- Add optional Serde support (#135).
+
+## parking_lot 0.7.1 (2019-01-01)
+
+- Fixed potential deadlock when upgrading a RwLock.
+- Fixed overflow panic on very long timeouts (#111).
+
+## parking_lot 0.7.0, parking_lot_core 0.4.0 (2018-11-26)
+
+- Return if or how many threads were notified from `Condvar::notify_*`
+
+## parking_lot 0.6.3 (2018-07-18)
+
+- Export `RawMutex`, `RawRwLock` and `RawThreadId`.
+
+## parking_lot 0.6.2 (2018-06-18)
+
+- Enable `lock_api/nightly` feature from `parking_lot/nightly` (#79)
+
+## parking_lot 0.6.1 (2018-06-08)
+
+Added missing typedefs for mapped lock guards:
+
+- `MappedMutexGuard`
+- `MappedReentrantMutexGuard`
+- `MappedRwLockReadGuard`
+- `MappedRwLockWriteGuard`
+
+## parking_lot 0.6.0 (2018-06-08)
+
+This release moves most of the code for type-safe `Mutex` and `RwLock` types
+into a separate crate called `lock_api`. This new crate is compatible with
+`no_std` and provides `Mutex` and `RwLock` type-safe wrapper types from a raw
+mutex type which implements the `RawMutex` or `RawRwLock` trait. The API
+provided by the wrapper types can be extended by implementing more traits on
+the raw mutex type which provide more functionality (e.g. `RawMutexTimed`). See
+the crate documentation for more details.
+
+There are also several major changes:
+
+- The minimum required Rust version is bumped to 1.26.
+- All methods on `MutexGuard` (and other guard types) are no longer inherent
+ methods and must be called as `MutexGuard::method(self)`. This avoids
+ conflicts with methods from the inner type.
+- `MutexGuard` (and other guard types) add the `unlocked` method which
+ temporarily unlocks a mutex, runs the given closure, and then re-locks the
+ mutex.
+- `MutexGuard` (and other guard types) add the `bump` method which gives a
+ chance for other threads to acquire the mutex by temporarily unlocking it and
+ re-locking it. However this is optimized for the common case where there are
+ no threads waiting on the lock, in which case no unlocking is performed.
+- `MutexGuard` (and other guard types) add the `map` method which returns a
+ `MappedMutexGuard` which holds only a subset of the original locked type. The
+ `MappedMutexGuard` type is identical to `MutexGuard` except that it does not
+ support the `unlocked` and `bump` methods, and can't be used with `CondVar`.
diff --git a/third_party/rust/parking_lot/Cargo.toml b/third_party/rust/parking_lot/Cargo.toml
new file mode 100644
index 0000000000..c78888f7b6
--- /dev/null
+++ b/third_party/rust/parking_lot/Cargo.toml
@@ -0,0 +1,46 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies
+#
+# If you believe there's an error in this file please file an
+# issue against the rust-lang/cargo repository. If you're
+# editing this file be aware that the upstream Cargo.toml
+# will likely look very different (and much more reasonable)
+
+[package]
+edition = "2018"
+name = "parking_lot"
+version = "0.11.1"
+authors = ["Amanieu d'Antras <amanieu@gmail.com>"]
+description = "More compact and efficient implementations of the standard synchronization primitives."
+readme = "README.md"
+keywords = ["mutex", "condvar", "rwlock", "once", "thread"]
+categories = ["concurrency"]
+license = "Apache-2.0/MIT"
+repository = "https://github.com/Amanieu/parking_lot"
+[dependencies.instant]
+version = "0.1.4"
+
+[dependencies.lock_api]
+version = "0.4.0"
+
+[dependencies.parking_lot_core]
+version = "0.8.0"
+[dev-dependencies.bincode]
+version = "1.3.0"
+
+[dev-dependencies.rand]
+version = "0.7.3"
+
+[features]
+deadlock_detection = ["parking_lot_core/deadlock_detection"]
+default = []
+nightly = ["parking_lot_core/nightly", "lock_api/nightly"]
+owning_ref = ["lock_api/owning_ref"]
+send_guard = []
+serde = ["lock_api/serde"]
+stdweb = ["instant/stdweb"]
+wasm-bindgen = ["instant/wasm-bindgen"]
diff --git a/third_party/rust/parking_lot/LICENSE-APACHE b/third_party/rust/parking_lot/LICENSE-APACHE
new file mode 100644
index 0000000000..16fe87b06e
--- /dev/null
+++ b/third_party/rust/parking_lot/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/parking_lot/LICENSE-MIT b/third_party/rust/parking_lot/LICENSE-MIT
new file mode 100644
index 0000000000..40b8817a47
--- /dev/null
+++ b/third_party/rust/parking_lot/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2016 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/parking_lot/README.md b/third_party/rust/parking_lot/README.md
new file mode 100644
index 0000000000..d3e5b0b38e
--- /dev/null
+++ b/third_party/rust/parking_lot/README.md
@@ -0,0 +1,151 @@
+parking_lot
+============
+
+![Rust](https://github.com/Amanieu/parking_lot/workflows/Rust/badge.svg)
+[![Crates.io](https://img.shields.io/crates/v/parking_lot.svg)](https://crates.io/crates/parking_lot)
+
+[Documentation (synchronization primitives)](https://docs.rs/parking_lot/)
+
+[Documentation (core parking lot API)](https://docs.rs/parking_lot_core/)
+
+[Documentation (type-safe lock API)](https://docs.rs/lock_api/)
+
+This library provides implementations of `Mutex`, `RwLock`, `Condvar` and
+`Once` that are smaller, faster and more flexible than those in the Rust
+standard library, as well as a `ReentrantMutex` type which supports recursive
+locking. It also exposes a low-level API for creating your own efficient
+synchronization primitives.
+
+When tested on x86_64 Linux, `parking_lot::Mutex` was found to be 1.5x
+faster than `std::sync::Mutex` when uncontended, and up to 5x faster when
+contended from multiple threads. The numbers for `RwLock` vary depending on
+the number of reader and writer threads, but are almost always faster than
+the standard library `RwLock`, and even up to 50x faster in some cases.
+
+## Features
+
+The primitives provided by this library have several advantages over those
+in the Rust standard library:
+
+1. `Mutex` and `Once` only require 1 byte of storage space, while `Condvar`
+ and `RwLock` only require 1 word of storage space. On the other hand the
+ standard library primitives require a dynamically allocated `Box` to hold
+ OS-specific synchronization primitives. The small size of `Mutex` in
+ particular encourages the use of fine-grained locks to increase
+ parallelism.
+2. Since they consist of just a single atomic variable, have constant
+ initializers and don't need destructors, these primitives can be used as
+ `static` global variables. The standard library primitives require
+ dynamic initialization and thus need to be lazily initialized with
+ `lazy_static!`.
+3. Uncontended lock acquisition and release is done through fast inline
+ paths which only require a single atomic operation.
+4. Microcontention (a contended lock with a short critical section) is
+ efficiently handled by spinning a few times while trying to acquire a
+ lock.
+5. The locks are adaptive and will suspend a thread after a few failed spin
+ attempts. This makes the locks suitable for both long and short critical
+ sections.
+6. `Condvar`, `RwLock` and `Once` work on Windows XP, unlike the standard
+ library versions of those types.
+7. `RwLock` takes advantage of hardware lock elision on processors that
+ support it, which can lead to huge performance wins with many readers.
+8. `RwLock` uses a task-fair locking policy, which avoids reader and writer
+ starvation, whereas the standard library version makes no guarantees.
+9. `Condvar` is guaranteed not to produce spurious wakeups. A thread will
+ only be woken up if it timed out or it was woken up by a notification.
+10. `Condvar::notify_all` will only wake up a single thread and requeue the
+ rest to wait on the associated `Mutex`. This avoids a thundering herd
+ problem where all threads try to acquire the lock at the same time.
+11. `RwLock` supports atomically downgrading a write lock into a read lock.
+12. `Mutex` and `RwLock` allow raw unlocking without a RAII guard object.
+13. `Mutex<()>` and `RwLock<()>` allow raw locking without a RAII guard
+ object.
+14. `Mutex` and `RwLock` support [eventual fairness](https://trac.webkit.org/changeset/203350)
+ which allows them to be fair on average without sacrificing performance.
+15. A `ReentrantMutex` type which supports recursive locking.
+16. An *experimental* deadlock detector that works for `Mutex`,
+ `RwLock` and `ReentrantMutex`. This feature is disabled by default and
+ can be enabled via the `deadlock_detection` feature.
+17. `RwLock` supports atomically upgrading an "upgradable" read lock into a
+ write lock.
+18. Optional support for [serde](https://docs.serde.rs/serde/). Enable via the
+ feature `serde`. **NOTE!** this support is for `Mutex`, `ReentrantMutex`,
+ and `RwLock` only; `Condvar` and `Once` are not currently supported.
+19. Lock guards can be sent to other threads when the `send_guard` feature is
+ enabled.
+
+## The parking lot
+
+To keep these primitives small, all thread queuing and suspending
+functionality is offloaded to the *parking lot*. The idea behind this is
+based on the Webkit [`WTF::ParkingLot`](https://webkit.org/blog/6161/locking-in-webkit/)
+class, which essentially consists of a hash table mapping of lock addresses
+to queues of parked (sleeping) threads. The Webkit parking lot was itself
+inspired by Linux [futexes](http://man7.org/linux/man-pages/man2/futex.2.html),
+but it is more powerful since it allows invoking callbacks while holding a queue
+lock.
+
+## Nightly vs stable
+
+There are a few restrictions when using this library on stable Rust:
+
+- You will have to use the `const_*` functions (e.g. `const_mutex(val)`) to
+ statically initialize the locking primitives. Using e.g. `Mutex::new(val)`
+ does not work on stable Rust yet.
+- `RwLock` will not be able to take advantage of hardware lock elision for
+ readers, which improves performance when there are multiple readers.
+- The `wasm32-unknown-unknown` target is only supported on nightly and requires
+ `-C target-feature=+atomics` in `RUSTFLAGS`.
+
+To enable nightly-only functionality, you need to enable the `nightly` feature
+in Cargo (see below).
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+parking_lot = "0.11"
+```
+
+To enable nightly-only features, add this to your `Cargo.toml` instead:
+
+```toml
+[dependencies]
+parking_lot = { version = "0.11", features = ["nightly"] }
+```
+
+The experimental deadlock detector can be enabled with the
+`deadlock_detection` Cargo feature.
+
+To allow sending `MutexGuard`s and `RwLock*Guard`s to other threads, enable the
+`send_guard` option.
+
+Note that the `deadlock_detection` and `send_guard` features are incompatible
+and cannot be used together.
+
+The core parking lot API is provided by the `parking_lot_core` crate. It is
+separate from the synchronization primitives in the `parking_lot` crate so that
+changes to the core API do not cause breaking changes for users of `parking_lot`.
+
+## Minimum Rust version
+
+The current minimum required Rust version is 1.36. Any change to this is
+considered a breaking change and will require a major version bump.
+
+## License
+
+Licensed under either of
+
+ * Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
+ * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
+
+at your option.
+
+### Contribution
+
+Unless you explicitly state otherwise, any contribution intentionally submitted
+for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any
+additional terms or conditions.
diff --git a/third_party/rust/parking_lot/bors.toml b/third_party/rust/parking_lot/bors.toml
new file mode 100644
index 0000000000..44056dbf4e
--- /dev/null
+++ b/third_party/rust/parking_lot/bors.toml
@@ -0,0 +1,4 @@
+status = [
+ "build_tier_one",
+ "build_other_platforms",
+]
diff --git a/third_party/rust/parking_lot/src/condvar.rs b/third_party/rust/parking_lot/src/condvar.rs
new file mode 100644
index 0000000000..534b8aff8b
--- /dev/null
+++ b/third_party/rust/parking_lot/src/condvar.rs
@@ -0,0 +1,1057 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::mutex::MutexGuard;
+use crate::raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL};
+use crate::{deadlock, util};
+use core::{
+ fmt, ptr,
+ sync::atomic::{AtomicPtr, Ordering},
+};
+use instant::Instant;
+use lock_api::RawMutex as RawMutex_;
+use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN};
+use std::time::Duration;
+
+/// A type indicating whether a timed wait on a condition variable returned
+/// due to a time out or not.
+#[derive(Debug, PartialEq, Eq, Copy, Clone)]
+pub struct WaitTimeoutResult(bool);
+
+impl WaitTimeoutResult {
+ /// Returns whether the wait was known to have timed out.
+ #[inline]
+ pub fn timed_out(self) -> bool {
+ self.0
+ }
+}
+
+/// A Condition Variable
+///
+/// Condition variables represent the ability to block a thread such that it
+/// consumes no CPU time while waiting for an event to occur. Condition
+/// variables are typically associated with a boolean predicate (a condition)
+/// and a mutex. The predicate is always verified inside of the mutex before
+/// determining that thread must block.
+///
+/// Note that this module places one additional restriction over the system
+/// condition variables: each condvar can be used with only one mutex at a
+/// time. Any attempt to use multiple mutexes on the same condition variable
+/// simultaneously will result in a runtime panic. However it is possible to
+/// switch to a different mutex if there are no threads currently waiting on
+/// the condition variable.
+///
+/// # Differences from the standard library `Condvar`
+///
+/// - No spurious wakeups: A wait will only return a non-timeout result if it
+/// was woken up by `notify_one` or `notify_all`.
+/// - `Condvar::notify_all` will only wake up a single thread, the rest are
+/// requeued to wait for the `Mutex` to be unlocked by the thread that was
+/// woken up.
+/// - Only requires 1 word of space, whereas the standard library boxes the
+/// `Condvar` due to platform limitations.
+/// - Can be statically constructed (requires the `const_fn` nightly feature).
+/// - Does not require any drop glue when dropped.
+/// - Inline fast path for the uncontended case.
+///
+/// # Examples
+///
+/// ```
+/// use parking_lot::{Mutex, Condvar};
+/// use std::sync::Arc;
+/// use std::thread;
+///
+/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+/// let pair2 = pair.clone();
+///
+/// // Inside of our lock, spawn a new thread, and then wait for it to start
+/// thread::spawn(move|| {
+/// let &(ref lock, ref cvar) = &*pair2;
+/// let mut started = lock.lock();
+/// *started = true;
+/// cvar.notify_one();
+/// });
+///
+/// // wait for the thread to start up
+/// let &(ref lock, ref cvar) = &*pair;
+/// let mut started = lock.lock();
+/// if !*started {
+/// cvar.wait(&mut started);
+/// }
+/// // Note that we used an if instead of a while loop above. This is only
+/// // possible because parking_lot's Condvar will never spuriously wake up.
+/// // This means that wait() will only return after notify_one or notify_all is
+/// // called.
+/// ```
+pub struct Condvar {
+ state: AtomicPtr<RawMutex>,
+}
+
+impl Condvar {
+ /// Creates a new condition variable which is ready to be waited on and
+ /// notified.
+ #[inline]
+ pub const fn new() -> Condvar {
+ Condvar {
+ state: AtomicPtr::new(ptr::null_mut()),
+ }
+ }
+
+ /// Wakes up one blocked thread on this condvar.
+ ///
+ /// Returns whether a thread was woken up.
+ ///
+ /// If there is a blocked thread on this condition variable, then it will
+ /// be woken up from its call to `wait` or `wait_timeout`. Calls to
+ /// `notify_one` are not buffered in any way.
+ ///
+ /// To wake up all threads, see `notify_all()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use parking_lot::Condvar;
+ ///
+ /// let condvar = Condvar::new();
+ ///
+ /// // do something with condvar, share it with other threads
+ ///
+ /// if !condvar.notify_one() {
+ /// println!("Nobody was listening for this.");
+ /// }
+ /// ```
+ #[inline]
+ pub fn notify_one(&self) -> bool {
+ // Nothing to do if there are no waiting threads
+ let state = self.state.load(Ordering::Relaxed);
+ if state.is_null() {
+ return false;
+ }
+
+ self.notify_one_slow(state)
+ }
+
+ #[cold]
+ fn notify_one_slow(&self, mutex: *mut RawMutex) -> bool {
+ unsafe {
+ // Unpark one thread and requeue the rest onto the mutex
+ let from = self as *const _ as usize;
+ let to = mutex as usize;
+ let validate = || {
+ // Make sure that our atomic state still points to the same
+ // mutex. If not then it means that all threads on the current
+ // mutex were woken up and a new waiting thread switched to a
+ // different mutex. In that case we can get away with doing
+ // nothing.
+ if self.state.load(Ordering::Relaxed) != mutex {
+ return RequeueOp::Abort;
+ }
+
+ // Unpark one thread if the mutex is unlocked, otherwise just
+ // requeue everything to the mutex. This is safe to do here
+ // since unlocking the mutex when the parked bit is set requires
+ // locking the queue. There is the possibility of a race if the
+ // mutex gets locked after we check, but that doesn't matter in
+ // this case.
+ if (*mutex).mark_parked_if_locked() {
+ RequeueOp::RequeueOne
+ } else {
+ RequeueOp::UnparkOne
+ }
+ };
+ let callback = |_op, result: UnparkResult| {
+ // Clear our state if there are no more waiting threads
+ if !result.have_more_threads {
+ self.state.store(ptr::null_mut(), Ordering::Relaxed);
+ }
+ TOKEN_NORMAL
+ };
+ let res = parking_lot_core::unpark_requeue(from, to, validate, callback);
+
+ res.unparked_threads + res.requeued_threads != 0
+ }
+ }
+
+ /// Wakes up all blocked threads on this condvar.
+ ///
+ /// Returns the number of threads woken up.
+ ///
+ /// This method will ensure that any current waiters on the condition
+ /// variable are awoken. Calls to `notify_all()` are not buffered in any
+ /// way.
+ ///
+ /// To wake up only one thread, see `notify_one()`.
+ #[inline]
+ pub fn notify_all(&self) -> usize {
+ // Nothing to do if there are no waiting threads
+ let state = self.state.load(Ordering::Relaxed);
+ if state.is_null() {
+ return 0;
+ }
+
+ self.notify_all_slow(state)
+ }
+
+ #[cold]
+ fn notify_all_slow(&self, mutex: *mut RawMutex) -> usize {
+ unsafe {
+ // Unpark one thread and requeue the rest onto the mutex
+ let from = self as *const _ as usize;
+ let to = mutex as usize;
+ let validate = || {
+ // Make sure that our atomic state still points to the same
+ // mutex. If not then it means that all threads on the current
+ // mutex were woken up and a new waiting thread switched to a
+ // different mutex. In that case we can get away with doing
+ // nothing.
+ if self.state.load(Ordering::Relaxed) != mutex {
+ return RequeueOp::Abort;
+ }
+
+ // Clear our state since we are going to unpark or requeue all
+ // threads.
+ self.state.store(ptr::null_mut(), Ordering::Relaxed);
+
+ // Unpark one thread if the mutex is unlocked, otherwise just
+ // requeue everything to the mutex. This is safe to do here
+ // since unlocking the mutex when the parked bit is set requires
+ // locking the queue. There is the possibility of a race if the
+ // mutex gets locked after we check, but that doesn't matter in
+ // this case.
+ if (*mutex).mark_parked_if_locked() {
+ RequeueOp::RequeueAll
+ } else {
+ RequeueOp::UnparkOneRequeueRest
+ }
+ };
+ let callback = |op, result: UnparkResult| {
+ // If we requeued threads to the mutex, mark it as having
+ // parked threads. The RequeueAll case is already handled above.
+ if op == RequeueOp::UnparkOneRequeueRest && result.requeued_threads != 0 {
+ (*mutex).mark_parked();
+ }
+ TOKEN_NORMAL
+ };
+ let res = parking_lot_core::unpark_requeue(from, to, validate, callback);
+
+ res.unparked_threads + res.requeued_threads
+ }
+ }
+
+ /// Blocks the current thread until this condition variable receives a
+ /// notification.
+ ///
+ /// This function will atomically unlock the mutex specified (represented by
+ /// `mutex_guard`) and block the current thread. This means that any calls
+ /// to `notify_*()` which happen logically after the mutex is unlocked are
+ /// candidates to wake this thread up. When this function call returns, the
+ /// lock specified will have been re-acquired.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if another thread is waiting on the `Condvar`
+ /// with a different `Mutex` object.
+ #[inline]
+ pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<'_, T>) {
+ self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None);
+ }
+
+ /// Waits on this condition variable for a notification, timing out after
+ /// the specified time instant.
+ ///
+ /// The semantics of this function are equivalent to `wait()` except that
+ /// the thread will be blocked roughly until `timeout` is reached. This
+ /// method should not be used for precise timing due to anomalies such as
+ /// preemption or platform differences that may not cause the maximum
+ /// amount of time waited to be precisely `timeout`.
+ ///
+ /// Note that the best effort is made to ensure that the time waited is
+ /// measured with a monotonic clock, and not affected by the changes made to
+ /// the system time.
+ ///
+ /// The returned `WaitTimeoutResult` value indicates if the timeout is
+ /// known to have elapsed.
+ ///
+ /// Like `wait`, the lock specified will be re-acquired when this function
+ /// returns, regardless of whether the timeout elapsed or not.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if another thread is waiting on the `Condvar`
+ /// with a different `Mutex` object.
+ #[inline]
+ pub fn wait_until<T: ?Sized>(
+ &self,
+ mutex_guard: &mut MutexGuard<'_, T>,
+ timeout: Instant,
+ ) -> WaitTimeoutResult {
+ self.wait_until_internal(
+ unsafe { MutexGuard::mutex(mutex_guard).raw() },
+ Some(timeout),
+ )
+ }
+
+ // This is a non-generic function to reduce the monomorphization cost of
+ // using `wait_until`.
+ fn wait_until_internal(&self, mutex: &RawMutex, timeout: Option<Instant>) -> WaitTimeoutResult {
+ unsafe {
+ let result;
+ let mut bad_mutex = false;
+ let mut requeued = false;
+ {
+ let addr = self as *const _ as usize;
+ let lock_addr = mutex as *const _ as *mut _;
+ let validate = || {
+ // Ensure we don't use two different mutexes with the same
+ // Condvar at the same time. This is done while locked to
+ // avoid races with notify_one
+ let state = self.state.load(Ordering::Relaxed);
+ if state.is_null() {
+ self.state.store(lock_addr, Ordering::Relaxed);
+ } else if state != lock_addr {
+ bad_mutex = true;
+ return false;
+ }
+ true
+ };
+ let before_sleep = || {
+ // Unlock the mutex before sleeping...
+ mutex.unlock();
+ };
+ let timed_out = |k, was_last_thread| {
+ // If we were requeued to a mutex, then we did not time out.
+ // We'll just park ourselves on the mutex again when we try
+ // to lock it later.
+ requeued = k != addr;
+
+ // If we were the last thread on the queue then we need to
+ // clear our state. This is normally done by the
+ // notify_{one,all} functions when not timing out.
+ if !requeued && was_last_thread {
+ self.state.store(ptr::null_mut(), Ordering::Relaxed);
+ }
+ };
+ result = parking_lot_core::park(
+ addr,
+ validate,
+ before_sleep,
+ timed_out,
+ DEFAULT_PARK_TOKEN,
+ timeout,
+ );
+ }
+
+ // Panic if we tried to use multiple mutexes with a Condvar. Note
+ // that at this point the MutexGuard is still locked. It will be
+ // unlocked by the unwinding logic.
+ if bad_mutex {
+ panic!("attempted to use a condition variable with more than one mutex");
+ }
+
+ // ... and re-lock it once we are done sleeping
+ if result == ParkResult::Unparked(TOKEN_HANDOFF) {
+ deadlock::acquire_resource(mutex as *const _ as usize);
+ } else {
+ mutex.lock();
+ }
+
+ WaitTimeoutResult(!(result.is_unparked() || requeued))
+ }
+ }
+
+ /// Waits on this condition variable for a notification, timing out after a
+ /// specified duration.
+ ///
+ /// The semantics of this function are equivalent to `wait()` except that
+ /// the thread will be blocked for roughly no longer than `timeout`. This
+ /// method should not be used for precise timing due to anomalies such as
+ /// preemption or platform differences that may not cause the maximum
+ /// amount of time waited to be precisely `timeout`.
+ ///
+ /// Note that the best effort is made to ensure that the time waited is
+ /// measured with a monotonic clock, and not affected by the changes made to
+ /// the system time.
+ ///
+ /// The returned `WaitTimeoutResult` value indicates if the timeout is
+ /// known to have elapsed.
+ ///
+ /// Like `wait`, the lock specified will be re-acquired when this function
+ /// returns, regardless of whether the timeout elapsed or not.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the given `timeout` is so large that it can't be added to the current time.
+ /// This panic is not possible if the crate is built with the `nightly` feature, then a too
+ /// large `timeout` becomes equivalent to just calling `wait`.
+ #[inline]
+ pub fn wait_for<T: ?Sized>(
+ &self,
+ mutex_guard: &mut MutexGuard<'_, T>,
+ timeout: Duration,
+ ) -> WaitTimeoutResult {
+ let deadline = util::to_deadline(timeout);
+ self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, deadline)
+ }
+}
+
+impl Default for Condvar {
+ #[inline]
+ fn default() -> Condvar {
+ Condvar::new()
+ }
+}
+
+impl fmt::Debug for Condvar {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Condvar { .. }")
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::{Condvar, Mutex, MutexGuard};
+ use instant::Instant;
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+ use std::time::Duration;
+
+ #[test]
+ fn smoke() {
+ let c = Condvar::new();
+ c.notify_one();
+ c.notify_all();
+ }
+
+ #[test]
+ fn notify_one() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ let mut g = m.lock();
+ let _t = thread::spawn(move || {
+ let _g = m2.lock();
+ c2.notify_one();
+ });
+ c.wait(&mut g);
+ }
+
+ #[test]
+ fn notify_all() {
+ const N: usize = 10;
+
+ let data = Arc::new((Mutex::new(0), Condvar::new()));
+ let (tx, rx) = channel();
+ for _ in 0..N {
+ let data = data.clone();
+ let tx = tx.clone();
+ thread::spawn(move || {
+ let &(ref lock, ref cond) = &*data;
+ let mut cnt = lock.lock();
+ *cnt += 1;
+ if *cnt == N {
+ tx.send(()).unwrap();
+ }
+ while *cnt != 0 {
+ cond.wait(&mut cnt);
+ }
+ tx.send(()).unwrap();
+ });
+ }
+ drop(tx);
+
+ let &(ref lock, ref cond) = &*data;
+ rx.recv().unwrap();
+ let mut cnt = lock.lock();
+ *cnt = 0;
+ cond.notify_all();
+ drop(cnt);
+
+ for _ in 0..N {
+ rx.recv().unwrap();
+ }
+ }
+
+ #[test]
+ fn notify_one_return_true() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ let mut g = m.lock();
+ let _t = thread::spawn(move || {
+ let _g = m2.lock();
+ assert!(c2.notify_one());
+ });
+ c.wait(&mut g);
+ }
+
+ #[test]
+ fn notify_one_return_false() {
+ let m = Arc::new(Mutex::new(()));
+ let c = Arc::new(Condvar::new());
+
+ let _t = thread::spawn(move || {
+ let _g = m.lock();
+ assert!(!c.notify_one());
+ });
+ }
+
+ #[test]
+ fn notify_all_return() {
+ const N: usize = 10;
+
+ let data = Arc::new((Mutex::new(0), Condvar::new()));
+ let (tx, rx) = channel();
+ for _ in 0..N {
+ let data = data.clone();
+ let tx = tx.clone();
+ thread::spawn(move || {
+ let &(ref lock, ref cond) = &*data;
+ let mut cnt = lock.lock();
+ *cnt += 1;
+ if *cnt == N {
+ tx.send(()).unwrap();
+ }
+ while *cnt != 0 {
+ cond.wait(&mut cnt);
+ }
+ tx.send(()).unwrap();
+ });
+ }
+ drop(tx);
+
+ let &(ref lock, ref cond) = &*data;
+ rx.recv().unwrap();
+ let mut cnt = lock.lock();
+ *cnt = 0;
+ assert_eq!(cond.notify_all(), N);
+ drop(cnt);
+
+ for _ in 0..N {
+ rx.recv().unwrap();
+ }
+
+ assert_eq!(cond.notify_all(), 0);
+ }
+
+ #[test]
+ fn wait_for() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ let mut g = m.lock();
+ let no_timeout = c.wait_for(&mut g, Duration::from_millis(1));
+ assert!(no_timeout.timed_out());
+
+ let _t = thread::spawn(move || {
+ let _g = m2.lock();
+ c2.notify_one();
+ });
+ // Non-nightly panics on too large timeouts. Nightly treats it as indefinite wait.
+ let very_long_timeout = if cfg!(feature = "nightly") {
+ Duration::from_secs(u64::max_value())
+ } else {
+ Duration::from_millis(u32::max_value() as u64)
+ };
+
+ let timeout_res = c.wait_for(&mut g, very_long_timeout);
+ assert!(!timeout_res.timed_out());
+
+ drop(g);
+ }
+
+ #[test]
+ fn wait_until() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ let mut g = m.lock();
+ let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1));
+ assert!(no_timeout.timed_out());
+ let _t = thread::spawn(move || {
+ let _g = m2.lock();
+ c2.notify_one();
+ });
+ let timeout_res = c.wait_until(
+ &mut g,
+ Instant::now() + Duration::from_millis(u32::max_value() as u64),
+ );
+ assert!(!timeout_res.timed_out());
+ drop(g);
+ }
+
+ #[test]
+ #[should_panic]
+ fn two_mutexes() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let m3 = Arc::new(Mutex::new(()));
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ // Make sure we don't leave the child thread dangling
+ struct PanicGuard<'a>(&'a Condvar);
+ impl<'a> Drop for PanicGuard<'a> {
+ fn drop(&mut self) {
+ self.0.notify_one();
+ }
+ }
+
+ let (tx, rx) = channel();
+ let g = m.lock();
+ let _t = thread::spawn(move || {
+ let mut g = m2.lock();
+ tx.send(()).unwrap();
+ c2.wait(&mut g);
+ });
+ drop(g);
+ rx.recv().unwrap();
+ let _g = m.lock();
+ let _guard = PanicGuard(&*c);
+ c.wait(&mut m3.lock());
+ }
+
+ #[test]
+ fn two_mutexes_disjoint() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let m3 = Arc::new(Mutex::new(()));
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+
+ let mut g = m.lock();
+ let _t = thread::spawn(move || {
+ let _g = m2.lock();
+ c2.notify_one();
+ });
+ c.wait(&mut g);
+ drop(g);
+
+ let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1));
+ }
+
+ #[test]
+ fn test_debug_condvar() {
+ let c = Condvar::new();
+ assert_eq!(format!("{:?}", c), "Condvar { .. }");
+ }
+
+ #[test]
+ fn test_condvar_requeue() {
+ let m = Arc::new(Mutex::new(()));
+ let m2 = m.clone();
+ let c = Arc::new(Condvar::new());
+ let c2 = c.clone();
+ let t = thread::spawn(move || {
+ let mut g = m2.lock();
+ c2.wait(&mut g);
+ });
+
+ let mut g = m.lock();
+ while !c.notify_one() {
+ // Wait for the thread to get into wait()
+ MutexGuard::bump(&mut g);
+ // Yield, so the other thread gets a chance to do something.
+ // (At least Miri needs this, because it doesn't preempt threads.)
+ thread::yield_now();
+ }
+ // The thread should have been requeued to the mutex, which we wake up now.
+ drop(g);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_issue_129() {
+ let locks = Arc::new((Mutex::new(()), Condvar::new()));
+
+ let (tx, rx) = channel();
+ for _ in 0..4 {
+ let locks = locks.clone();
+ let tx = tx.clone();
+ thread::spawn(move || {
+ let mut guard = locks.0.lock();
+ locks.1.wait(&mut guard);
+ locks.1.wait_for(&mut guard, Duration::from_millis(1));
+ locks.1.notify_one();
+ tx.send(()).unwrap();
+ });
+ }
+
+ thread::sleep(Duration::from_millis(100));
+ locks.1.notify_one();
+
+ for _ in 0..4 {
+ assert_eq!(rx.recv_timeout(Duration::from_millis(500)), Ok(()));
+ }
+ }
+}
+
+/// This module contains an integration test that is heavily inspired from WebKit's own integration
+/// tests for it's own Condvar.
+#[cfg(test)]
+mod webkit_queue_test {
+ use crate::{Condvar, Mutex, MutexGuard};
+ use std::{collections::VecDeque, sync::Arc, thread, time::Duration};
+
+ #[derive(Clone, Copy)]
+ enum Timeout {
+ Bounded(Duration),
+ Forever,
+ }
+
+ #[derive(Clone, Copy)]
+ enum NotifyStyle {
+ One,
+ All,
+ }
+
+ struct Queue {
+ items: VecDeque<usize>,
+ should_continue: bool,
+ }
+
+ impl Queue {
+ fn new() -> Self {
+ Self {
+ items: VecDeque::new(),
+ should_continue: true,
+ }
+ }
+ }
+
+ fn wait<T: ?Sized>(
+ condition: &Condvar,
+ lock: &mut MutexGuard<'_, T>,
+ predicate: impl Fn(&mut MutexGuard<'_, T>) -> bool,
+ timeout: &Timeout,
+ ) {
+ while !predicate(lock) {
+ match timeout {
+ Timeout::Forever => condition.wait(lock),
+ Timeout::Bounded(bound) => {
+ condition.wait_for(lock, *bound);
+ }
+ }
+ }
+ }
+
+ fn notify(style: NotifyStyle, condition: &Condvar, should_notify: bool) {
+ match style {
+ NotifyStyle::One => {
+ condition.notify_one();
+ }
+ NotifyStyle::All => {
+ if should_notify {
+ condition.notify_all();
+ }
+ }
+ }
+ }
+
+ fn run_queue_test(
+ num_producers: usize,
+ num_consumers: usize,
+ max_queue_size: usize,
+ messages_per_producer: usize,
+ notify_style: NotifyStyle,
+ timeout: Timeout,
+ delay: Duration,
+ ) {
+ let input_queue = Arc::new(Mutex::new(Queue::new()));
+ let empty_condition = Arc::new(Condvar::new());
+ let full_condition = Arc::new(Condvar::new());
+
+ let output_vec = Arc::new(Mutex::new(vec![]));
+
+ let consumers = (0..num_consumers)
+ .map(|_| {
+ consumer_thread(
+ input_queue.clone(),
+ empty_condition.clone(),
+ full_condition.clone(),
+ timeout,
+ notify_style,
+ output_vec.clone(),
+ max_queue_size,
+ )
+ })
+ .collect::<Vec<_>>();
+ let producers = (0..num_producers)
+ .map(|_| {
+ producer_thread(
+ messages_per_producer,
+ input_queue.clone(),
+ empty_condition.clone(),
+ full_condition.clone(),
+ timeout,
+ notify_style,
+ max_queue_size,
+ )
+ })
+ .collect::<Vec<_>>();
+
+ thread::sleep(delay);
+
+ for producer in producers.into_iter() {
+ producer.join().expect("Producer thread panicked");
+ }
+
+ {
+ let mut input_queue = input_queue.lock();
+ input_queue.should_continue = false;
+ }
+ empty_condition.notify_all();
+
+ for consumer in consumers.into_iter() {
+ consumer.join().expect("Consumer thread panicked");
+ }
+
+ let mut output_vec = output_vec.lock();
+ assert_eq!(output_vec.len(), num_producers * messages_per_producer);
+ output_vec.sort();
+ for msg_idx in 0..messages_per_producer {
+ for producer_idx in 0..num_producers {
+ assert_eq!(msg_idx, output_vec[msg_idx * num_producers + producer_idx]);
+ }
+ }
+ }
+
+ fn consumer_thread(
+ input_queue: Arc<Mutex<Queue>>,
+ empty_condition: Arc<Condvar>,
+ full_condition: Arc<Condvar>,
+ timeout: Timeout,
+ notify_style: NotifyStyle,
+ output_queue: Arc<Mutex<Vec<usize>>>,
+ max_queue_size: usize,
+ ) -> thread::JoinHandle<()> {
+ thread::spawn(move || loop {
+ let (should_notify, result) = {
+ let mut queue = input_queue.lock();
+ wait(
+ &*empty_condition,
+ &mut queue,
+ |state| -> bool { !state.items.is_empty() || !state.should_continue },
+ &timeout,
+ );
+ if queue.items.is_empty() && !queue.should_continue {
+ return;
+ }
+ let should_notify = queue.items.len() == max_queue_size;
+ let result = queue.items.pop_front();
+ std::mem::drop(queue);
+ (should_notify, result)
+ };
+ notify(notify_style, &*full_condition, should_notify);
+
+ if let Some(result) = result {
+ output_queue.lock().push(result);
+ }
+ })
+ }
+
+ fn producer_thread(
+ num_messages: usize,
+ queue: Arc<Mutex<Queue>>,
+ empty_condition: Arc<Condvar>,
+ full_condition: Arc<Condvar>,
+ timeout: Timeout,
+ notify_style: NotifyStyle,
+ max_queue_size: usize,
+ ) -> thread::JoinHandle<()> {
+ thread::spawn(move || {
+ for message in 0..num_messages {
+ let should_notify = {
+ let mut queue = queue.lock();
+ wait(
+ &*full_condition,
+ &mut queue,
+ |state| state.items.len() < max_queue_size,
+ &timeout,
+ );
+ let should_notify = queue.items.is_empty();
+ queue.items.push_back(message);
+ std::mem::drop(queue);
+ should_notify
+ };
+ notify(notify_style, &*empty_condition, should_notify);
+ }
+ })
+ }
+
+ macro_rules! run_queue_tests {
+ ( $( $name:ident(
+ num_producers: $num_producers:expr,
+ num_consumers: $num_consumers:expr,
+ max_queue_size: $max_queue_size:expr,
+ messages_per_producer: $messages_per_producer:expr,
+ notification_style: $notification_style:expr,
+ timeout: $timeout:expr,
+ delay_seconds: $delay_seconds:expr);
+ )* ) => {
+ $(#[test]
+ fn $name() {
+ let delay = Duration::from_secs($delay_seconds);
+ run_queue_test(
+ $num_producers,
+ $num_consumers,
+ $max_queue_size,
+ $messages_per_producer,
+ $notification_style,
+ $timeout,
+ delay,
+ );
+ })*
+ };
+ }
+
+ run_queue_tests! {
+ sanity_check_queue(
+ num_producers: 1,
+ num_consumers: 1,
+ max_queue_size: 1,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Bounded(Duration::from_secs(1)),
+ delay_seconds: 0
+ );
+ sanity_check_queue_timeout(
+ num_producers: 1,
+ num_consumers: 1,
+ max_queue_size: 1,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ new_test_without_timeout_5(
+ num_producers: 1,
+ num_consumers: 5,
+ max_queue_size: 1,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ one_producer_one_consumer_one_slot(
+ num_producers: 1,
+ num_consumers: 1,
+ max_queue_size: 1,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ one_producer_one_consumer_one_slot_timeout(
+ num_producers: 1,
+ num_consumers: 1,
+ max_queue_size: 1,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 1
+ );
+ one_producer_one_consumer_hundred_slots(
+ num_producers: 1,
+ num_consumers: 1,
+ max_queue_size: 100,
+ messages_per_producer: 1_000_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_one_consumer_one_slot(
+ num_producers: 10,
+ num_consumers: 1,
+ max_queue_size: 1,
+ messages_per_producer: 10000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_one_consumer_hundred_slots_notify_all(
+ num_producers: 10,
+ num_consumers: 1,
+ max_queue_size: 100,
+ messages_per_producer: 10000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_one_consumer_hundred_slots_notify_one(
+ num_producers: 10,
+ num_consumers: 1,
+ max_queue_size: 100,
+ messages_per_producer: 10000,
+ notification_style: NotifyStyle::One,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ one_producer_ten_consumers_one_slot(
+ num_producers: 1,
+ num_consumers: 10,
+ max_queue_size: 1,
+ messages_per_producer: 10000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ one_producer_ten_consumers_hundred_slots_notify_all(
+ num_producers: 1,
+ num_consumers: 10,
+ max_queue_size: 100,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ one_producer_ten_consumers_hundred_slots_notify_one(
+ num_producers: 1,
+ num_consumers: 10,
+ max_queue_size: 100,
+ messages_per_producer: 100_000,
+ notification_style: NotifyStyle::One,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_ten_consumers_one_slot(
+ num_producers: 10,
+ num_consumers: 10,
+ max_queue_size: 1,
+ messages_per_producer: 50000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_ten_consumers_hundred_slots_notify_all(
+ num_producers: 10,
+ num_consumers: 10,
+ max_queue_size: 100,
+ messages_per_producer: 50000,
+ notification_style: NotifyStyle::All,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ ten_producers_ten_consumers_hundred_slots_notify_one(
+ num_producers: 10,
+ num_consumers: 10,
+ max_queue_size: 100,
+ messages_per_producer: 50000,
+ notification_style: NotifyStyle::One,
+ timeout: Timeout::Forever,
+ delay_seconds: 0
+ );
+ }
+}
diff --git a/third_party/rust/parking_lot/src/deadlock.rs b/third_party/rust/parking_lot/src/deadlock.rs
new file mode 100644
index 0000000000..0fab7228c9
--- /dev/null
+++ b/third_party/rust/parking_lot/src/deadlock.rs
@@ -0,0 +1,232 @@
+//! \[Experimental\] Deadlock detection
+//!
+//! This feature is optional and can be enabled via the `deadlock_detection` feature flag.
+//!
+//! # Example
+//!
+//! ```
+//! #[cfg(feature = "deadlock_detection")]
+//! { // only for #[cfg]
+//! use std::thread;
+//! use std::time::Duration;
+//! use parking_lot::deadlock;
+//!
+//! // Create a background thread which checks for deadlocks every 10s
+//! thread::spawn(move || {
+//! loop {
+//! thread::sleep(Duration::from_secs(10));
+//! let deadlocks = deadlock::check_deadlock();
+//! if deadlocks.is_empty() {
+//! continue;
+//! }
+//!
+//! println!("{} deadlocks detected", deadlocks.len());
+//! for (i, threads) in deadlocks.iter().enumerate() {
+//! println!("Deadlock #{}", i);
+//! for t in threads {
+//! println!("Thread Id {:#?}", t.thread_id());
+//! println!("{:#?}", t.backtrace());
+//! }
+//! }
+//! }
+//! });
+//! } // only for #[cfg]
+//! ```
+
+#[cfg(feature = "deadlock_detection")]
+pub use parking_lot_core::deadlock::check_deadlock;
+pub(crate) use parking_lot_core::deadlock::{acquire_resource, release_resource};
+
+#[cfg(test)]
+#[cfg(feature = "deadlock_detection")]
+mod tests {
+ use crate::{Mutex, ReentrantMutex, RwLock};
+ use std::sync::{Arc, Barrier};
+ use std::thread::{self, sleep};
+ use std::time::Duration;
+
+ // We need to serialize these tests since deadlock detection uses global state
+ static DEADLOCK_DETECTION_LOCK: Mutex<()> = crate::const_mutex(());
+
+ fn check_deadlock() -> bool {
+ use parking_lot_core::deadlock::check_deadlock;
+ !check_deadlock().is_empty()
+ }
+
+ #[test]
+ fn test_mutex_deadlock() {
+ let _guard = DEADLOCK_DETECTION_LOCK.lock();
+
+ let m1: Arc<Mutex<()>> = Default::default();
+ let m2: Arc<Mutex<()>> = Default::default();
+ let m3: Arc<Mutex<()>> = Default::default();
+ let b = Arc::new(Barrier::new(4));
+
+ let m1_ = m1.clone();
+ let m2_ = m2.clone();
+ let m3_ = m3.clone();
+ let b1 = b.clone();
+ let b2 = b.clone();
+ let b3 = b.clone();
+
+ assert!(!check_deadlock());
+
+ let _t1 = thread::spawn(move || {
+ let _g = m1.lock();
+ b1.wait();
+ let _ = m2_.lock();
+ });
+
+ let _t2 = thread::spawn(move || {
+ let _g = m2.lock();
+ b2.wait();
+ let _ = m3_.lock();
+ });
+
+ let _t3 = thread::spawn(move || {
+ let _g = m3.lock();
+ b3.wait();
+ let _ = m1_.lock();
+ });
+
+ assert!(!check_deadlock());
+
+ b.wait();
+ sleep(Duration::from_millis(50));
+ assert!(check_deadlock());
+
+ assert!(!check_deadlock());
+ }
+
+ #[test]
+ fn test_mutex_deadlock_reentrant() {
+ let _guard = DEADLOCK_DETECTION_LOCK.lock();
+
+ let m1: Arc<Mutex<()>> = Default::default();
+
+ assert!(!check_deadlock());
+
+ let _t1 = thread::spawn(move || {
+ let _g = m1.lock();
+ let _ = m1.lock();
+ });
+
+ sleep(Duration::from_millis(50));
+ assert!(check_deadlock());
+
+ assert!(!check_deadlock());
+ }
+
+ #[test]
+ fn test_remutex_deadlock() {
+ let _guard = DEADLOCK_DETECTION_LOCK.lock();
+
+ let m1: Arc<ReentrantMutex<()>> = Default::default();
+ let m2: Arc<ReentrantMutex<()>> = Default::default();
+ let m3: Arc<ReentrantMutex<()>> = Default::default();
+ let b = Arc::new(Barrier::new(4));
+
+ let m1_ = m1.clone();
+ let m2_ = m2.clone();
+ let m3_ = m3.clone();
+ let b1 = b.clone();
+ let b2 = b.clone();
+ let b3 = b.clone();
+
+ assert!(!check_deadlock());
+
+ let _t1 = thread::spawn(move || {
+ let _g = m1.lock();
+ let _g = m1.lock();
+ b1.wait();
+ let _ = m2_.lock();
+ });
+
+ let _t2 = thread::spawn(move || {
+ let _g = m2.lock();
+ let _g = m2.lock();
+ b2.wait();
+ let _ = m3_.lock();
+ });
+
+ let _t3 = thread::spawn(move || {
+ let _g = m3.lock();
+ let _g = m3.lock();
+ b3.wait();
+ let _ = m1_.lock();
+ });
+
+ assert!(!check_deadlock());
+
+ b.wait();
+ sleep(Duration::from_millis(50));
+ assert!(check_deadlock());
+
+ assert!(!check_deadlock());
+ }
+
+ #[test]
+ fn test_rwlock_deadlock() {
+ let _guard = DEADLOCK_DETECTION_LOCK.lock();
+
+ let m1: Arc<RwLock<()>> = Default::default();
+ let m2: Arc<RwLock<()>> = Default::default();
+ let m3: Arc<RwLock<()>> = Default::default();
+ let b = Arc::new(Barrier::new(4));
+
+ let m1_ = m1.clone();
+ let m2_ = m2.clone();
+ let m3_ = m3.clone();
+ let b1 = b.clone();
+ let b2 = b.clone();
+ let b3 = b.clone();
+
+ assert!(!check_deadlock());
+
+ let _t1 = thread::spawn(move || {
+ let _g = m1.read();
+ b1.wait();
+ let _g = m2_.write();
+ });
+
+ let _t2 = thread::spawn(move || {
+ let _g = m2.read();
+ b2.wait();
+ let _g = m3_.write();
+ });
+
+ let _t3 = thread::spawn(move || {
+ let _g = m3.read();
+ b3.wait();
+ let _ = m1_.write();
+ });
+
+ assert!(!check_deadlock());
+
+ b.wait();
+ sleep(Duration::from_millis(50));
+ assert!(check_deadlock());
+
+ assert!(!check_deadlock());
+ }
+
+ #[cfg(rwlock_deadlock_detection_not_supported)]
+ #[test]
+ fn test_rwlock_deadlock_reentrant() {
+ let _guard = DEADLOCK_DETECTION_LOCK.lock();
+
+ let m1: Arc<RwLock<()>> = Default::default();
+
+ assert!(!check_deadlock());
+
+ let _t1 = thread::spawn(move || {
+ let _g = m1.read();
+ let _ = m1.write();
+ });
+
+ sleep(Duration::from_millis(50));
+ assert!(check_deadlock());
+
+ assert!(!check_deadlock());
+ }
+}
diff --git a/third_party/rust/parking_lot/src/elision.rs b/third_party/rust/parking_lot/src/elision.rs
new file mode 100644
index 0000000000..68cfa63c3e
--- /dev/null
+++ b/third_party/rust/parking_lot/src/elision.rs
@@ -0,0 +1,116 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use std::sync::atomic::AtomicUsize;
+
+// Extension trait to add lock elision primitives to atomic types
+pub trait AtomicElisionExt {
+ type IntType;
+
+ // Perform a compare_exchange and start a transaction
+ fn elision_compare_exchange_acquire(
+ &self,
+ current: Self::IntType,
+ new: Self::IntType,
+ ) -> Result<Self::IntType, Self::IntType>;
+
+ // Perform a fetch_sub and end a transaction
+ fn elision_fetch_sub_release(&self, val: Self::IntType) -> Self::IntType;
+}
+
+// Indicates whether the target architecture supports lock elision
+#[inline]
+pub fn have_elision() -> bool {
+ cfg!(all(
+ feature = "nightly",
+ any(target_arch = "x86", target_arch = "x86_64"),
+ ))
+}
+
+// This implementation is never actually called because it is guarded by
+// have_elision().
+#[cfg(not(all(feature = "nightly", any(target_arch = "x86", target_arch = "x86_64"))))]
+impl AtomicElisionExt for AtomicUsize {
+ type IntType = usize;
+
+ #[inline]
+ fn elision_compare_exchange_acquire(&self, _: usize, _: usize) -> Result<usize, usize> {
+ unreachable!();
+ }
+
+ #[inline]
+ fn elision_fetch_sub_release(&self, _: usize) -> usize {
+ unreachable!();
+ }
+}
+
+#[cfg(all(feature = "nightly", any(target_arch = "x86", target_arch = "x86_64")))]
+impl AtomicElisionExt for AtomicUsize {
+ type IntType = usize;
+
+ #[cfg(target_pointer_width = "32")]
+ #[inline]
+ fn elision_compare_exchange_acquire(&self, current: usize, new: usize) -> Result<usize, usize> {
+ unsafe {
+ let prev: usize;
+ llvm_asm!("xacquire; lock; cmpxchgl $2, $1"
+ : "={eax}" (prev), "+*m" (self)
+ : "r" (new), "{eax}" (current)
+ : "memory"
+ : "volatile");
+ if prev == current {
+ Ok(prev)
+ } else {
+ Err(prev)
+ }
+ }
+ }
+ #[cfg(target_pointer_width = "64")]
+ #[inline]
+ fn elision_compare_exchange_acquire(&self, current: usize, new: usize) -> Result<usize, usize> {
+ unsafe {
+ let prev: usize;
+ llvm_asm!("xacquire; lock; cmpxchgq $2, $1"
+ : "={rax}" (prev), "+*m" (self)
+ : "r" (new), "{rax}" (current)
+ : "memory"
+ : "volatile");
+ if prev == current {
+ Ok(prev)
+ } else {
+ Err(prev)
+ }
+ }
+ }
+
+ #[cfg(target_pointer_width = "32")]
+ #[inline]
+ fn elision_fetch_sub_release(&self, val: usize) -> usize {
+ unsafe {
+ let prev: usize;
+ llvm_asm!("xrelease; lock; xaddl $2, $1"
+ : "=r" (prev), "+*m" (self)
+ : "0" (val.wrapping_neg())
+ : "memory"
+ : "volatile");
+ prev
+ }
+ }
+ #[cfg(target_pointer_width = "64")]
+ #[inline]
+ fn elision_fetch_sub_release(&self, val: usize) -> usize {
+ unsafe {
+ let prev: usize;
+ llvm_asm!("xrelease; lock; xaddq $2, $1"
+ : "=r" (prev), "+*m" (self)
+ : "0" (val.wrapping_neg())
+ : "memory"
+ : "volatile");
+ prev
+ }
+ }
+}
diff --git a/third_party/rust/parking_lot/src/fair_mutex.rs b/third_party/rust/parking_lot/src/fair_mutex.rs
new file mode 100644
index 0000000000..449c53b051
--- /dev/null
+++ b/third_party/rust/parking_lot/src/fair_mutex.rs
@@ -0,0 +1,278 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::raw_fair_mutex::RawFairMutex;
+use lock_api;
+
+/// A mutual exclusive primitive that is always fair, useful for protecting shared data
+///
+/// This mutex will block threads waiting for the lock to become available. The
+/// mutex can also be statically initialized or created via a `new`
+/// constructor. Each mutex has a type parameter which represents the data that
+/// it is protecting. The data can only be accessed through the RAII guards
+/// returned from `lock` and `try_lock`, which guarantees that the data is only
+/// ever accessed when the mutex is locked.
+///
+/// The regular mutex provided by `parking_lot` uses eventual locking fairness
+/// (after some time it will default to the fair algorithm), but eventual
+/// fairness does not provide the same garantees a always fair method would.
+/// Fair mutexes are generally slower, but sometimes needed. This wrapper was
+/// created to avoid using a unfair protocol when it's forbidden by mistake.
+///
+/// In a fair mutex the lock is provided to whichever thread asked first,
+/// they form a queue and always follow the first-in first-out order. This
+/// means some thread in the queue won't be able to steal the lock and use it fast
+/// to increase throughput, at the cost of latency. Since the response time will grow
+/// for some threads that are waiting for the lock and losing to faster but later ones,
+/// but it may make sending more responses possible.
+///
+/// A fair mutex may not be interesting if threads have different priorities (this is known as
+/// priority inversion).
+///
+/// # Differences from the standard library `Mutex`
+///
+/// - No poisoning, the lock is released normally on panic.
+/// - Only requires 1 byte of space, whereas the standard library boxes the
+/// `FairMutex` due to platform limitations.
+/// - Can be statically constructed (requires the `const_fn` nightly feature).
+/// - Does not require any drop glue when dropped.
+/// - Inline fast path for the uncontended case.
+/// - Efficient handling of micro-contention using adaptive spinning.
+/// - Allows raw locking & unlocking without a guard.
+///
+/// # Examples
+///
+/// ```
+/// use parking_lot::FairMutex;
+/// use std::sync::{Arc, mpsc::channel};
+/// use std::thread;
+///
+/// const N: usize = 10;
+///
+/// // Spawn a few threads to increment a shared variable (non-atomically), and
+/// // let the main thread know once all increments are done.
+/// //
+/// // Here we're using an Arc to share memory among threads, and the data inside
+/// // the Arc is protected with a mutex.
+/// let data = Arc::new(FairMutex::new(0));
+///
+/// let (tx, rx) = channel();
+/// for _ in 0..10 {
+/// let (data, tx) = (Arc::clone(&data), tx.clone());
+/// thread::spawn(move || {
+/// // The shared state can only be accessed once the lock is held.
+/// // Our non-atomic increment is safe because we're the only thread
+/// // which can access the shared state when the lock is held.
+/// let mut data = data.lock();
+/// *data += 1;
+/// if *data == N {
+/// tx.send(()).unwrap();
+/// }
+/// // the lock is unlocked here when `data` goes out of scope.
+/// });
+/// }
+///
+/// rx.recv().unwrap();
+/// ```
+pub type FairMutex<T> = lock_api::Mutex<RawFairMutex, T>;
+
+/// Creates a new fair mutex in an unlocked state ready for use.
+///
+/// This allows creating a fair mutex in a constant context on stable Rust.
+pub const fn const_fair_mutex<T>(val: T) -> FairMutex<T> {
+ FairMutex::const_new(<RawFairMutex as lock_api::RawMutex>::INIT, val)
+}
+
+/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
+/// dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// `Deref` and `DerefMut` implementations.
+pub type FairMutexGuard<'a, T> = lock_api::MutexGuard<'a, RawFairMutex, T>;
+
+/// An RAII mutex guard returned by `FairMutexGuard::map`, which can point to a
+/// subfield of the protected data.
+///
+/// The main difference between `MappedFairMutexGuard` and `FairMutexGuard` is that the
+/// former doesn't support temporarily unlocking and re-locking, since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread.
+pub type MappedFairMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawFairMutex, T>;
+
+#[cfg(test)]
+mod tests {
+ use crate::FairMutex;
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ #[cfg(feature = "serde")]
+ use bincode::{deserialize, serialize};
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let m = FairMutex::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ let m = Arc::new(FairMutex::new(0));
+
+ fn inc(m: &FairMutex<u32>) {
+ for _ in 0..J {
+ *m.lock() += 1;
+ }
+ }
+
+ let (tx, rx) = channel();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ let m2 = m.clone();
+ thread::spawn(move || {
+ inc(&m2);
+ tx2.send(()).unwrap();
+ });
+ let tx2 = tx.clone();
+ let m2 = m.clone();
+ thread::spawn(move || {
+ inc(&m2);
+ tx2.send(()).unwrap();
+ });
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(*m.lock(), J * K * 2);
+ }
+
+ #[test]
+ fn try_lock() {
+ let m = FairMutex::new(());
+ *m.try_lock().unwrap() = ();
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = FairMutex::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = FairMutex::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_get_mut() {
+ let mut m = FairMutex::new(NonCopy(10));
+ *m.get_mut() = NonCopy(20);
+ assert_eq!(m.into_inner(), NonCopy(20));
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(FairMutex::new(1));
+ let arc2 = Arc::new(FairMutex::new(arc));
+ let (tx, rx) = channel();
+ let _t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(FairMutex::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || {
+ struct Unwinder {
+ i: Arc<FairMutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &FairMutex<[i32]> = &FairMutex::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn test_mutexguard_sync() {
+ fn sync<T: Sync>(_: T) {}
+
+ let mutex = FairMutex::new(());
+ sync(mutex.lock());
+ }
+
+ #[test]
+ fn test_mutex_debug() {
+ let mutex = FairMutex::new(vec![0u8, 10]);
+
+ assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
+ let _lock = mutex.lock();
+ assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
+ }
+
+ #[cfg(feature = "serde")]
+ #[test]
+ fn test_serde() {
+ let contents: Vec<u8> = vec![0, 1, 2];
+ let mutex = FairMutex::new(contents.clone());
+
+ let serialized = serialize(&mutex).unwrap();
+ let deserialized: FairMutex<Vec<u8>> = deserialize(&serialized).unwrap();
+
+ assert_eq!(*(mutex.lock()), *(deserialized.lock()));
+ assert_eq!(contents, *(deserialized.lock()));
+ }
+}
diff --git a/third_party/rust/parking_lot/src/lib.rs b/third_party/rust/parking_lot/src/lib.rs
new file mode 100644
index 0000000000..7ff2c79d26
--- /dev/null
+++ b/third_party/rust/parking_lot/src/lib.rs
@@ -0,0 +1,57 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+//! This library provides implementations of `Mutex`, `RwLock`, `Condvar` and
+//! `Once` that are smaller, faster and more flexible than those in the Rust
+//! standard library. It also provides a `ReentrantMutex` type.
+
+#![warn(missing_docs)]
+#![warn(rust_2018_idioms)]
+#![cfg_attr(feature = "nightly", feature(llvm_asm))]
+
+mod condvar;
+mod elision;
+mod fair_mutex;
+mod mutex;
+mod once;
+mod raw_fair_mutex;
+mod raw_mutex;
+mod raw_rwlock;
+mod remutex;
+mod rwlock;
+mod util;
+
+#[cfg(feature = "deadlock_detection")]
+pub mod deadlock;
+#[cfg(not(feature = "deadlock_detection"))]
+mod deadlock;
+
+// If deadlock detection is enabled, we cannot allow lock guards to be sent to
+// other threads.
+#[cfg(all(feature = "send_guard", feature = "deadlock_detection"))]
+compile_error!("the `send_guard` and `deadlock_detection` features cannot be used together");
+#[cfg(feature = "send_guard")]
+type GuardMarker = lock_api::GuardSend;
+#[cfg(not(feature = "send_guard"))]
+type GuardMarker = lock_api::GuardNoSend;
+
+pub use self::condvar::{Condvar, WaitTimeoutResult};
+pub use self::fair_mutex::{const_fair_mutex, FairMutex, FairMutexGuard, MappedFairMutexGuard};
+pub use self::mutex::{const_mutex, MappedMutexGuard, Mutex, MutexGuard};
+pub use self::once::{Once, OnceState};
+pub use self::raw_fair_mutex::RawFairMutex;
+pub use self::raw_mutex::RawMutex;
+pub use self::raw_rwlock::RawRwLock;
+pub use self::remutex::{
+ const_reentrant_mutex, MappedReentrantMutexGuard, RawThreadId, ReentrantMutex,
+ ReentrantMutexGuard,
+};
+pub use self::rwlock::{
+ const_rwlock, MappedRwLockReadGuard, MappedRwLockWriteGuard, RwLock, RwLockReadGuard,
+ RwLockUpgradableReadGuard, RwLockWriteGuard,
+};
+pub use ::lock_api;
diff --git a/third_party/rust/parking_lot/src/mutex.rs b/third_party/rust/parking_lot/src/mutex.rs
new file mode 100644
index 0000000000..9f63cb9434
--- /dev/null
+++ b/third_party/rust/parking_lot/src/mutex.rs
@@ -0,0 +1,312 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::raw_mutex::RawMutex;
+use lock_api;
+
+/// A mutual exclusion primitive useful for protecting shared data
+///
+/// This mutex will block threads waiting for the lock to become available. The
+/// mutex can also be statically initialized or created via a `new`
+/// constructor. Each mutex has a type parameter which represents the data that
+/// it is protecting. The data can only be accessed through the RAII guards
+/// returned from `lock` and `try_lock`, which guarantees that the data is only
+/// ever accessed when the mutex is locked.
+///
+/// # Fairness
+///
+/// A typical unfair lock can often end up in a situation where a single thread
+/// quickly acquires and releases the same mutex in succession, which can starve
+/// other threads waiting to acquire the mutex. While this improves throughput
+/// because it doesn't force a context switch when a thread tries to re-acquire
+/// a mutex it has just released, this can starve other threads.
+///
+/// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350)
+/// to ensure that the lock will be fair on average without sacrificing
+/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
+/// which will force the lock to go to the next thread waiting for the mutex.
+///
+/// Additionally, any critical section longer than 1ms will always use a fair
+/// unlock, which has a negligible impact on throughput considering the length
+/// of the critical section.
+///
+/// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when
+/// unlocking a mutex instead of simply dropping the `MutexGuard`.
+///
+/// # Differences from the standard library `Mutex`
+///
+/// - No poisoning, the lock is released normally on panic.
+/// - Only requires 1 byte of space, whereas the standard library boxes the
+/// `Mutex` due to platform limitations.
+/// - Can be statically constructed (requires the `const_fn` nightly feature).
+/// - Does not require any drop glue when dropped.
+/// - Inline fast path for the uncontended case.
+/// - Efficient handling of micro-contention using adaptive spinning.
+/// - Allows raw locking & unlocking without a guard.
+/// - Supports eventual fairness so that the mutex is fair on average.
+/// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`.
+///
+/// # Examples
+///
+/// ```
+/// use parking_lot::Mutex;
+/// use std::sync::{Arc, mpsc::channel};
+/// use std::thread;
+///
+/// const N: usize = 10;
+///
+/// // Spawn a few threads to increment a shared variable (non-atomically), and
+/// // let the main thread know once all increments are done.
+/// //
+/// // Here we're using an Arc to share memory among threads, and the data inside
+/// // the Arc is protected with a mutex.
+/// let data = Arc::new(Mutex::new(0));
+///
+/// let (tx, rx) = channel();
+/// for _ in 0..10 {
+/// let (data, tx) = (Arc::clone(&data), tx.clone());
+/// thread::spawn(move || {
+/// // The shared state can only be accessed once the lock is held.
+/// // Our non-atomic increment is safe because we're the only thread
+/// // which can access the shared state when the lock is held.
+/// let mut data = data.lock();
+/// *data += 1;
+/// if *data == N {
+/// tx.send(()).unwrap();
+/// }
+/// // the lock is unlocked here when `data` goes out of scope.
+/// });
+/// }
+///
+/// rx.recv().unwrap();
+/// ```
+pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;
+
+/// Creates a new mutex in an unlocked state ready for use.
+///
+/// This allows creating a mutex in a constant context on stable Rust.
+pub const fn const_mutex<T>(val: T) -> Mutex<T> {
+ Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val)
+}
+
+/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
+/// dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// `Deref` and `DerefMut` implementations.
+pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;
+
+/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
+/// subfield of the protected data.
+///
+/// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
+/// former doesn't support temporarily unlocking and re-locking, since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread.
+pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;
+
+#[cfg(test)]
+mod tests {
+ use crate::{Condvar, Mutex};
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+
+ #[cfg(feature = "serde")]
+ use bincode::{deserialize, serialize};
+
+ struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ unsafe impl<T: Send> Send for Packet<T> {}
+ unsafe impl<T> Sync for Packet<T> {}
+
+ #[test]
+ fn smoke() {
+ let m = Mutex::new(());
+ drop(m.lock());
+ drop(m.lock());
+ }
+
+ #[test]
+ fn lots_and_lots() {
+ const J: u32 = 1000;
+ const K: u32 = 3;
+
+ let m = Arc::new(Mutex::new(0));
+
+ fn inc(m: &Mutex<u32>) {
+ for _ in 0..J {
+ *m.lock() += 1;
+ }
+ }
+
+ let (tx, rx) = channel();
+ for _ in 0..K {
+ let tx2 = tx.clone();
+ let m2 = m.clone();
+ thread::spawn(move || {
+ inc(&m2);
+ tx2.send(()).unwrap();
+ });
+ let tx2 = tx.clone();
+ let m2 = m.clone();
+ thread::spawn(move || {
+ inc(&m2);
+ tx2.send(()).unwrap();
+ });
+ }
+
+ drop(tx);
+ for _ in 0..2 * K {
+ rx.recv().unwrap();
+ }
+ assert_eq!(*m.lock(), J * K * 2);
+ }
+
+ #[test]
+ fn try_lock() {
+ let m = Mutex::new(());
+ *m.try_lock().unwrap() = ();
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = Mutex::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = Mutex::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_get_mut() {
+ let mut m = Mutex::new(NonCopy(10));
+ *m.get_mut() = NonCopy(20);
+ assert_eq!(m.into_inner(), NonCopy(20));
+ }
+
+ #[test]
+ fn test_mutex_arc_condvar() {
+ let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
+ let packet2 = Packet(packet.0.clone());
+ let (tx, rx) = channel();
+ let _t = thread::spawn(move || {
+ // wait until parent gets in
+ rx.recv().unwrap();
+ let &(ref lock, ref cvar) = &*packet2.0;
+ let mut lock = lock.lock();
+ *lock = true;
+ cvar.notify_one();
+ });
+
+ let &(ref lock, ref cvar) = &*packet.0;
+ let mut lock = lock.lock();
+ tx.send(()).unwrap();
+ assert!(!*lock);
+ while !*lock {
+ cvar.wait(&mut lock);
+ }
+ }
+
+ #[test]
+ fn test_mutex_arc_nested() {
+ // Tests nested mutexes and access
+ // to underlying data.
+ let arc = Arc::new(Mutex::new(1));
+ let arc2 = Arc::new(Mutex::new(arc));
+ let (tx, rx) = channel();
+ let _t = thread::spawn(move || {
+ let lock = arc2.lock();
+ let lock2 = lock.lock();
+ assert_eq!(*lock2, 1);
+ tx.send(()).unwrap();
+ });
+ rx.recv().unwrap();
+ }
+
+ #[test]
+ fn test_mutex_arc_access_in_unwind() {
+ let arc = Arc::new(Mutex::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || {
+ struct Unwinder {
+ i: Arc<Mutex<i32>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ *self.i.lock() += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.lock();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_mutex_unsized() {
+ let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
+ {
+ let b = &mut *mutex.lock();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*mutex.lock(), comp);
+ }
+
+ #[test]
+ fn test_mutexguard_sync() {
+ fn sync<T: Sync>(_: T) {}
+
+ let mutex = Mutex::new(());
+ sync(mutex.lock());
+ }
+
+ #[test]
+ fn test_mutex_debug() {
+ let mutex = Mutex::new(vec![0u8, 10]);
+
+ assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
+ let _lock = mutex.lock();
+ assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
+ }
+
+ #[cfg(feature = "serde")]
+ #[test]
+ fn test_serde() {
+ let contents: Vec<u8> = vec![0, 1, 2];
+ let mutex = Mutex::new(contents.clone());
+
+ let serialized = serialize(&mutex).unwrap();
+ let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap();
+
+ assert_eq!(*(mutex.lock()), *(deserialized.lock()));
+ assert_eq!(contents, *(deserialized.lock()));
+ }
+}
diff --git a/third_party/rust/parking_lot/src/once.rs b/third_party/rust/parking_lot/src/once.rs
new file mode 100644
index 0000000000..f458c9c04b
--- /dev/null
+++ b/third_party/rust/parking_lot/src/once.rs
@@ -0,0 +1,458 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::util::UncheckedOptionExt;
+use core::{
+ fmt, mem,
+ sync::atomic::{fence, AtomicU8, Ordering},
+};
+use parking_lot_core::{self, SpinWait, DEFAULT_PARK_TOKEN, DEFAULT_UNPARK_TOKEN};
+
+const DONE_BIT: u8 = 1;
+const POISON_BIT: u8 = 2;
+const LOCKED_BIT: u8 = 4;
+const PARKED_BIT: u8 = 8;
+
+/// Current state of a `Once`.
+#[derive(Copy, Clone, Eq, PartialEq, Debug)]
+pub enum OnceState {
+ /// A closure has not been executed yet
+ New,
+
+ /// A closure was executed but panicked.
+ Poisoned,
+
+ /// A thread is currently executing a closure.
+ InProgress,
+
+ /// A closure has completed successfully.
+ Done,
+}
+
+impl OnceState {
+ /// Returns whether the associated `Once` has been poisoned.
+ ///
+ /// Once an initialization routine for a `Once` has panicked it will forever
+ /// indicate to future forced initialization routines that it is poisoned.
+ #[inline]
+ pub fn poisoned(self) -> bool {
+ match self {
+ OnceState::Poisoned => true,
+ _ => false,
+ }
+ }
+
+ /// Returns whether the associated `Once` has successfully executed a
+ /// closure.
+ #[inline]
+ pub fn done(self) -> bool {
+ match self {
+ OnceState::Done => true,
+ _ => false,
+ }
+ }
+}
+
+/// A synchronization primitive which can be used to run a one-time
+/// initialization. Useful for one-time initialization for globals, FFI or
+/// related functionality.
+///
+/// # Differences from the standard library `Once`
+///
+/// - Only requires 1 byte of space, instead of 1 word.
+/// - Not required to be `'static`.
+/// - Relaxed memory barriers in the fast path, which can significantly improve
+/// performance on some architectures.
+/// - Efficient handling of micro-contention using adaptive spinning.
+///
+/// # Examples
+///
+/// ```
+/// use parking_lot::Once;
+///
+/// static START: Once = Once::new();
+///
+/// START.call_once(|| {
+/// // run initialization here
+/// });
+/// ```
+pub struct Once(AtomicU8);
+
+impl Once {
+ /// Creates a new `Once` value.
+ #[inline]
+ pub const fn new() -> Once {
+ Once(AtomicU8::new(0))
+ }
+
+ /// Returns the current state of this `Once`.
+ #[inline]
+ pub fn state(&self) -> OnceState {
+ let state = self.0.load(Ordering::Acquire);
+ if state & DONE_BIT != 0 {
+ OnceState::Done
+ } else if state & LOCKED_BIT != 0 {
+ OnceState::InProgress
+ } else if state & POISON_BIT != 0 {
+ OnceState::Poisoned
+ } else {
+ OnceState::New
+ }
+ }
+
+ /// Performs an initialization routine once and only once. The given closure
+ /// will be executed if this is the first time `call_once` has been called,
+ /// and otherwise the routine will *not* be invoked.
+ ///
+ /// This method will block the calling thread if another initialization
+ /// routine is currently running.
+ ///
+ /// When this function returns, it is guaranteed that some initialization
+ /// has run and completed (it may not be the closure specified). It is also
+ /// guaranteed that any memory writes performed by the executed closure can
+ /// be reliably observed by other threads at this point (there is a
+ /// happens-before relation between the closure and code executing after the
+ /// return).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use parking_lot::Once;
+ ///
+ /// static mut VAL: usize = 0;
+ /// static INIT: Once = Once::new();
+ ///
+ /// // Accessing a `static mut` is unsafe much of the time, but if we do so
+ /// // in a synchronized fashion (e.g. write once or read all) then we're
+ /// // good to go!
+ /// //
+ /// // This function will only call `expensive_computation` once, and will
+ /// // otherwise always return the value returned from the first invocation.
+ /// fn get_cached_val() -> usize {
+ /// unsafe {
+ /// INIT.call_once(|| {
+ /// VAL = expensive_computation();
+ /// });
+ /// VAL
+ /// }
+ /// }
+ ///
+ /// fn expensive_computation() -> usize {
+ /// // ...
+ /// # 2
+ /// }
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// The closure `f` will only be executed once if this is called
+ /// concurrently amongst many threads. If that closure panics, however, then
+ /// it will *poison* this `Once` instance, causing all future invocations of
+ /// `call_once` to also panic.
+ #[inline]
+ pub fn call_once<F>(&self, f: F)
+ where
+ F: FnOnce(),
+ {
+ if self.0.load(Ordering::Acquire) == DONE_BIT {
+ return;
+ }
+
+ let mut f = Some(f);
+ self.call_once_slow(false, &mut |_| unsafe { f.take().unchecked_unwrap()() });
+ }
+
+ /// Performs the same function as `call_once` except ignores poisoning.
+ ///
+ /// If this `Once` has been poisoned (some initialization panicked) then
+ /// this function will continue to attempt to call initialization functions
+ /// until one of them doesn't panic.
+ ///
+ /// The closure `f` is yielded a structure which can be used to query the
+ /// state of this `Once` (whether initialization has previously panicked or
+ /// not).
+ #[inline]
+ pub fn call_once_force<F>(&self, f: F)
+ where
+ F: FnOnce(OnceState),
+ {
+ if self.0.load(Ordering::Acquire) == DONE_BIT {
+ return;
+ }
+
+ let mut f = Some(f);
+ self.call_once_slow(true, &mut |state| unsafe {
+ f.take().unchecked_unwrap()(state)
+ });
+ }
+
+ // This is a non-generic function to reduce the monomorphization cost of
+ // using `call_once` (this isn't exactly a trivial or small implementation).
+ //
+ // Additionally, this is tagged with `#[cold]` as it should indeed be cold
+ // and it helps let LLVM know that calls to this function should be off the
+ // fast path. Essentially, this should help generate more straight line code
+ // in LLVM.
+ //
+ // Finally, this takes an `FnMut` instead of a `FnOnce` because there's
+ // currently no way to take an `FnOnce` and call it via virtual dispatch
+ // without some allocation overhead.
+ #[cold]
+ fn call_once_slow(&self, ignore_poison: bool, f: &mut dyn FnMut(OnceState)) {
+ let mut spinwait = SpinWait::new();
+ let mut state = self.0.load(Ordering::Relaxed);
+ loop {
+ // If another thread called the closure, we're done
+ if state & DONE_BIT != 0 {
+ // An acquire fence is needed here since we didn't load the
+ // state with Ordering::Acquire.
+ fence(Ordering::Acquire);
+ return;
+ }
+
+ // If the state has been poisoned and we aren't forcing, then panic
+ if state & POISON_BIT != 0 && !ignore_poison {
+ // Need the fence here as well for the same reason
+ fence(Ordering::Acquire);
+ panic!("Once instance has previously been poisoned");
+ }
+
+ // Grab the lock if it isn't locked, even if there is a queue on it.
+ // We also clear the poison bit since we are going to try running
+ // the closure again.
+ if state & LOCKED_BIT == 0 {
+ match self.0.compare_exchange_weak(
+ state,
+ (state | LOCKED_BIT) & !POISON_BIT,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => break,
+ Err(x) => state = x,
+ }
+ continue;
+ }
+
+ // If there is no queue, try spinning a few times
+ if state & PARKED_BIT == 0 && spinwait.spin() {
+ state = self.0.load(Ordering::Relaxed);
+ continue;
+ }
+
+ // Set the parked bit
+ if state & PARKED_BIT == 0 {
+ if let Err(x) = self.0.compare_exchange_weak(
+ state,
+ state | PARKED_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ state = x;
+ continue;
+ }
+ }
+
+ // Park our thread until we are woken up by the thread that owns the
+ // lock.
+ unsafe {
+ let addr = self as *const _ as usize;
+ let validate = || self.0.load(Ordering::Relaxed) == LOCKED_BIT | PARKED_BIT;
+ let before_sleep = || {};
+ let timed_out = |_, _| unreachable!();
+ parking_lot_core::park(
+ addr,
+ validate,
+ before_sleep,
+ timed_out,
+ DEFAULT_PARK_TOKEN,
+ None,
+ );
+ }
+
+ // Loop back and check if the done bit was set
+ spinwait.reset();
+ state = self.0.load(Ordering::Relaxed);
+ }
+
+ struct PanicGuard<'a>(&'a Once);
+ impl<'a> Drop for PanicGuard<'a> {
+ fn drop(&mut self) {
+ // Mark the state as poisoned, unlock it and unpark all threads.
+ let once = self.0;
+ let state = once.0.swap(POISON_BIT, Ordering::Release);
+ if state & PARKED_BIT != 0 {
+ unsafe {
+ let addr = once as *const _ as usize;
+ parking_lot_core::unpark_all(addr, DEFAULT_UNPARK_TOKEN);
+ }
+ }
+ }
+ }
+
+ // At this point we have the lock, so run the closure. Make sure we
+ // properly clean up if the closure panicks.
+ let guard = PanicGuard(self);
+ let once_state = if state & POISON_BIT != 0 {
+ OnceState::Poisoned
+ } else {
+ OnceState::New
+ };
+ f(once_state);
+ mem::forget(guard);
+
+ // Now unlock the state, set the done bit and unpark all threads
+ let state = self.0.swap(DONE_BIT, Ordering::Release);
+ if state & PARKED_BIT != 0 {
+ unsafe {
+ let addr = self as *const _ as usize;
+ parking_lot_core::unpark_all(addr, DEFAULT_UNPARK_TOKEN);
+ }
+ }
+ }
+}
+
+impl Default for Once {
+ #[inline]
+ fn default() -> Once {
+ Once::new()
+ }
+}
+
+impl fmt::Debug for Once {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Once")
+ .field("state", &self.state())
+ .finish()
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::Once;
+ use std::panic;
+ use std::sync::mpsc::channel;
+ use std::thread;
+
+ #[test]
+ fn smoke_once() {
+ static O: Once = Once::new();
+ let mut a = 0;
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ O.call_once(|| a += 1);
+ assert_eq!(a, 1);
+ }
+
+ #[test]
+ fn stampede_once() {
+ static O: Once = Once::new();
+ static mut RUN: bool = false;
+
+ let (tx, rx) = channel();
+ for _ in 0..10 {
+ let tx = tx.clone();
+ thread::spawn(move || {
+ for _ in 0..4 {
+ thread::yield_now()
+ }
+ unsafe {
+ O.call_once(|| {
+ assert!(!RUN);
+ RUN = true;
+ });
+ assert!(RUN);
+ }
+ tx.send(()).unwrap();
+ });
+ }
+
+ unsafe {
+ O.call_once(|| {
+ assert!(!RUN);
+ RUN = true;
+ });
+ assert!(RUN);
+ }
+
+ for _ in 0..10 {
+ rx.recv().unwrap();
+ }
+ }
+
+ #[test]
+ fn poison_bad() {
+ static O: Once = Once::new();
+
+ // poison the once
+ let t = panic::catch_unwind(|| {
+ O.call_once(|| panic!());
+ });
+ assert!(t.is_err());
+
+ // poisoning propagates
+ let t = panic::catch_unwind(|| {
+ O.call_once(|| {});
+ });
+ assert!(t.is_err());
+
+ // we can subvert poisoning, however
+ let mut called = false;
+ O.call_once_force(|p| {
+ called = true;
+ assert!(p.poisoned())
+ });
+ assert!(called);
+
+ // once any success happens, we stop propagating the poison
+ O.call_once(|| {});
+ }
+
+ #[test]
+ fn wait_for_force_to_finish() {
+ static O: Once = Once::new();
+
+ // poison the once
+ let t = panic::catch_unwind(|| {
+ O.call_once(|| panic!());
+ });
+ assert!(t.is_err());
+
+ // make sure someone's waiting inside the once via a force
+ let (tx1, rx1) = channel();
+ let (tx2, rx2) = channel();
+ let t1 = thread::spawn(move || {
+ O.call_once_force(|p| {
+ assert!(p.poisoned());
+ tx1.send(()).unwrap();
+ rx2.recv().unwrap();
+ });
+ });
+
+ rx1.recv().unwrap();
+
+ // put another waiter on the once
+ let t2 = thread::spawn(|| {
+ let mut called = false;
+ O.call_once(|| {
+ called = true;
+ });
+ assert!(!called);
+ });
+
+ tx2.send(()).unwrap();
+
+ assert!(t1.join().is_ok());
+ assert!(t2.join().is_ok());
+ }
+
+ #[test]
+ fn test_once_debug() {
+ static O: Once = Once::new();
+
+ assert_eq!(format!("{:?}", O), "Once { state: New }");
+ }
+}
diff --git a/third_party/rust/parking_lot/src/raw_fair_mutex.rs b/third_party/rust/parking_lot/src/raw_fair_mutex.rs
new file mode 100644
index 0000000000..0da6828e0e
--- /dev/null
+++ b/third_party/rust/parking_lot/src/raw_fair_mutex.rs
@@ -0,0 +1,65 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::raw_mutex::RawMutex;
+use lock_api::RawMutexFair;
+
+/// Raw fair mutex type backed by the parking lot.
+pub struct RawFairMutex(RawMutex);
+
+unsafe impl lock_api::RawMutex for RawFairMutex {
+ const INIT: Self = RawFairMutex(<RawMutex as lock_api::RawMutex>::INIT);
+
+ type GuardMarker = <RawMutex as lock_api::RawMutex>::GuardMarker;
+
+ #[inline]
+ fn lock(&self) {
+ self.0.lock()
+ }
+
+ #[inline]
+ fn try_lock(&self) -> bool {
+ self.0.try_lock()
+ }
+
+ #[inline]
+ unsafe fn unlock(&self) {
+ self.unlock_fair()
+ }
+
+ #[inline]
+ fn is_locked(&self) -> bool {
+ self.0.is_locked()
+ }
+}
+
+unsafe impl lock_api::RawMutexFair for RawFairMutex {
+ #[inline]
+ unsafe fn unlock_fair(&self) {
+ self.0.unlock_fair()
+ }
+
+ #[inline]
+ unsafe fn bump(&self) {
+ self.0.bump()
+ }
+}
+
+unsafe impl lock_api::RawMutexTimed for RawFairMutex {
+ type Duration = <RawMutex as lock_api::RawMutexTimed>::Duration;
+ type Instant = <RawMutex as lock_api::RawMutexTimed>::Instant;
+
+ #[inline]
+ fn try_lock_until(&self, timeout: Self::Instant) -> bool {
+ self.0.try_lock_until(timeout)
+ }
+
+ #[inline]
+ fn try_lock_for(&self, timeout: Self::Duration) -> bool {
+ self.0.try_lock_for(timeout)
+ }
+}
diff --git a/third_party/rust/parking_lot/src/raw_mutex.rs b/third_party/rust/parking_lot/src/raw_mutex.rs
new file mode 100644
index 0000000000..06667d32db
--- /dev/null
+++ b/third_party/rust/parking_lot/src/raw_mutex.rs
@@ -0,0 +1,331 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::{deadlock, util};
+use core::{
+ sync::atomic::{AtomicU8, Ordering},
+ time::Duration,
+};
+use instant::Instant;
+use lock_api::RawMutex as RawMutex_;
+use parking_lot_core::{self, ParkResult, SpinWait, UnparkResult, UnparkToken, DEFAULT_PARK_TOKEN};
+
+// UnparkToken used to indicate that that the target thread should attempt to
+// lock the mutex again as soon as it is unparked.
+pub(crate) const TOKEN_NORMAL: UnparkToken = UnparkToken(0);
+
+// UnparkToken used to indicate that the mutex is being handed off to the target
+// thread directly without unlocking it.
+pub(crate) const TOKEN_HANDOFF: UnparkToken = UnparkToken(1);
+
+/// This bit is set in the `state` of a `RawMutex` when that mutex is locked by some thread.
+const LOCKED_BIT: u8 = 0b01;
+/// This bit is set in the `state` of a `RawMutex` just before parking a thread. A thread is being
+/// parked if it wants to lock the mutex, but it is currently being held by some other thread.
+const PARKED_BIT: u8 = 0b10;
+
+/// Raw mutex type backed by the parking lot.
+pub struct RawMutex {
+ /// This atomic integer holds the current state of the mutex instance. Only the two lowest bits
+ /// are used. See `LOCKED_BIT` and `PARKED_BIT` for the bitmask for these bits.
+ ///
+ /// # State table:
+ ///
+ /// PARKED_BIT | LOCKED_BIT | Description
+ /// 0 | 0 | The mutex is not locked, nor is anyone waiting for it.
+ /// -----------+------------+------------------------------------------------------------------
+ /// 0 | 1 | The mutex is locked by exactly one thread. No other thread is
+ /// | | waiting for it.
+ /// -----------+------------+------------------------------------------------------------------
+ /// 1 | 0 | The mutex is not locked. One or more thread is parked or about to
+ /// | | park. At least one of the parked threads are just about to be
+ /// | | unparked, or a thread heading for parking might abort the park.
+ /// -----------+------------+------------------------------------------------------------------
+ /// 1 | 1 | The mutex is locked by exactly one thread. One or more thread is
+ /// | | parked or about to park, waiting for the lock to become available.
+ /// | | In this state, PARKED_BIT is only ever cleared when a bucket lock
+ /// | | is held (i.e. in a parking_lot_core callback). This ensures that
+ /// | | we never end up in a situation where there are parked threads but
+ /// | | PARKED_BIT is not set (which would result in those threads
+ /// | | potentially never getting woken up).
+ state: AtomicU8,
+}
+
+unsafe impl lock_api::RawMutex for RawMutex {
+ const INIT: RawMutex = RawMutex {
+ state: AtomicU8::new(0),
+ };
+
+ type GuardMarker = crate::GuardMarker;
+
+ #[inline]
+ fn lock(&self) {
+ if self
+ .state
+ .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_err()
+ {
+ self.lock_slow(None);
+ }
+ unsafe { deadlock::acquire_resource(self as *const _ as usize) };
+ }
+
+ #[inline]
+ fn try_lock(&self) -> bool {
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ if state & LOCKED_BIT != 0 {
+ return false;
+ }
+ match self.state.compare_exchange_weak(
+ state,
+ state | LOCKED_BIT,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => {
+ unsafe { deadlock::acquire_resource(self as *const _ as usize) };
+ return true;
+ }
+ Err(x) => state = x,
+ }
+ }
+ }
+
+ #[inline]
+ unsafe fn unlock(&self) {
+ deadlock::release_resource(self as *const _ as usize);
+ if self
+ .state
+ .compare_exchange(LOCKED_BIT, 0, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ return;
+ }
+ self.unlock_slow(false);
+ }
+
+ #[inline]
+ fn is_locked(&self) -> bool {
+ let state = self.state.load(Ordering::Relaxed);
+ state & LOCKED_BIT != 0
+ }
+}
+
+unsafe impl lock_api::RawMutexFair for RawMutex {
+ #[inline]
+ unsafe fn unlock_fair(&self) {
+ deadlock::release_resource(self as *const _ as usize);
+ if self
+ .state
+ .compare_exchange(LOCKED_BIT, 0, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ return;
+ }
+ self.unlock_slow(true);
+ }
+
+ #[inline]
+ unsafe fn bump(&self) {
+ if self.state.load(Ordering::Relaxed) & PARKED_BIT != 0 {
+ self.bump_slow();
+ }
+ }
+}
+
+unsafe impl lock_api::RawMutexTimed for RawMutex {
+ type Duration = Duration;
+ type Instant = Instant;
+
+ #[inline]
+ fn try_lock_until(&self, timeout: Instant) -> bool {
+ let result = if self
+ .state
+ .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ true
+ } else {
+ self.lock_slow(Some(timeout))
+ };
+ if result {
+ unsafe { deadlock::acquire_resource(self as *const _ as usize) };
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_for(&self, timeout: Duration) -> bool {
+ let result = if self
+ .state
+ .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ true
+ } else {
+ self.lock_slow(util::to_deadline(timeout))
+ };
+ if result {
+ unsafe { deadlock::acquire_resource(self as *const _ as usize) };
+ }
+ result
+ }
+}
+
+impl RawMutex {
+ // Used by Condvar when requeuing threads to us, must be called while
+ // holding the queue lock.
+ #[inline]
+ pub(crate) fn mark_parked_if_locked(&self) -> bool {
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ if state & LOCKED_BIT == 0 {
+ return false;
+ }
+ match self.state.compare_exchange_weak(
+ state,
+ state | PARKED_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ }
+ }
+
+ // Used by Condvar when requeuing threads to us, must be called while
+ // holding the queue lock.
+ #[inline]
+ pub(crate) fn mark_parked(&self) {
+ self.state.fetch_or(PARKED_BIT, Ordering::Relaxed);
+ }
+
+ #[cold]
+ fn lock_slow(&self, timeout: Option<Instant>) -> bool {
+ let mut spinwait = SpinWait::new();
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ // Grab the lock if it isn't locked, even if there is a queue on it
+ if state & LOCKED_BIT == 0 {
+ match self.state.compare_exchange_weak(
+ state,
+ state | LOCKED_BIT,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ continue;
+ }
+
+ // If there is no queue, try spinning a few times
+ if state & PARKED_BIT == 0 && spinwait.spin() {
+ state = self.state.load(Ordering::Relaxed);
+ continue;
+ }
+
+ // Set the parked bit
+ if state & PARKED_BIT == 0 {
+ if let Err(x) = self.state.compare_exchange_weak(
+ state,
+ state | PARKED_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ state = x;
+ continue;
+ }
+ }
+
+ // Park our thread until we are woken up by an unlock
+ let addr = self as *const _ as usize;
+ let validate = || self.state.load(Ordering::Relaxed) == LOCKED_BIT | PARKED_BIT;
+ let before_sleep = || {};
+ let timed_out = |_, was_last_thread| {
+ // Clear the parked bit if we were the last parked thread
+ if was_last_thread {
+ self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
+ }
+ };
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
+ // * `before_sleep` does not call `park`, nor does it panic.
+ match unsafe {
+ parking_lot_core::park(
+ addr,
+ validate,
+ before_sleep,
+ timed_out,
+ DEFAULT_PARK_TOKEN,
+ timeout,
+ )
+ } {
+ // The thread that unparked us passed the lock on to us
+ // directly without unlocking it.
+ ParkResult::Unparked(TOKEN_HANDOFF) => return true,
+
+ // We were unparked normally, try acquiring the lock again
+ ParkResult::Unparked(_) => (),
+
+ // The validation function failed, try locking again
+ ParkResult::Invalid => (),
+
+ // Timeout expired
+ ParkResult::TimedOut => return false,
+ }
+
+ // Loop back and try locking again
+ spinwait.reset();
+ state = self.state.load(Ordering::Relaxed);
+ }
+ }
+
+ #[cold]
+ fn unlock_slow(&self, force_fair: bool) {
+ // Unpark one thread and leave the parked bit set if there might
+ // still be parked threads on this address.
+ let addr = self as *const _ as usize;
+ let callback = |result: UnparkResult| {
+ // If we are using a fair unlock then we should keep the
+ // mutex locked and hand it off to the unparked thread.
+ if result.unparked_threads != 0 && (force_fair || result.be_fair) {
+ // Clear the parked bit if there are no more parked
+ // threads.
+ if !result.have_more_threads {
+ self.state.store(LOCKED_BIT, Ordering::Relaxed);
+ }
+ return TOKEN_HANDOFF;
+ }
+
+ // Clear the locked bit, and the parked bit as well if there
+ // are no more parked threads.
+ if result.have_more_threads {
+ self.state.store(PARKED_BIT, Ordering::Release);
+ } else {
+ self.state.store(0, Ordering::Release);
+ }
+ TOKEN_NORMAL
+ };
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ parking_lot_core::unpark_one(addr, callback);
+ }
+ }
+
+ #[cold]
+ fn bump_slow(&self) {
+ unsafe { deadlock::release_resource(self as *const _ as usize) };
+ self.unlock_slow(true);
+ self.lock();
+ }
+}
diff --git a/third_party/rust/parking_lot/src/raw_rwlock.rs b/third_party/rust/parking_lot/src/raw_rwlock.rs
new file mode 100644
index 0000000000..75a9812867
--- /dev/null
+++ b/third_party/rust/parking_lot/src/raw_rwlock.rs
@@ -0,0 +1,1144 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::elision::{have_elision, AtomicElisionExt};
+use crate::raw_mutex::{TOKEN_HANDOFF, TOKEN_NORMAL};
+use crate::util;
+use core::{
+ cell::Cell,
+ sync::atomic::{AtomicUsize, Ordering},
+};
+use instant::Instant;
+use lock_api::{RawRwLock as RawRwLock_, RawRwLockUpgrade};
+use parking_lot_core::{
+ self, deadlock, FilterOp, ParkResult, ParkToken, SpinWait, UnparkResult, UnparkToken,
+};
+use std::time::Duration;
+
+// This reader-writer lock implementation is based on Boost's upgrade_mutex:
+// https://github.com/boostorg/thread/blob/fc08c1fe2840baeeee143440fba31ef9e9a813c8/include/boost/thread/v2/shared_mutex.hpp#L432
+//
+// This implementation uses 2 wait queues, one at key [addr] and one at key
+// [addr + 1]. The primary queue is used for all new waiting threads, and the
+// secondary queue is used by the thread which has acquired WRITER_BIT but is
+// waiting for the remaining readers to exit the lock.
+//
+// This implementation is fair between readers and writers since it uses the
+// order in which threads first started queuing to alternate between read phases
+// and write phases. In particular is it not vulnerable to write starvation
+// since readers will block if there is a pending writer.
+
+// There is at least one thread in the main queue.
+const PARKED_BIT: usize = 0b0001;
+// There is a parked thread holding WRITER_BIT. WRITER_BIT must be set.
+const WRITER_PARKED_BIT: usize = 0b0010;
+// A reader is holding an upgradable lock. The reader count must be non-zero and
+// WRITER_BIT must not be set.
+const UPGRADABLE_BIT: usize = 0b0100;
+// If the reader count is zero: a writer is currently holding an exclusive lock.
+// Otherwise: a writer is waiting for the remaining readers to exit the lock.
+const WRITER_BIT: usize = 0b1000;
+// Mask of bits used to count readers.
+const READERS_MASK: usize = !0b1111;
+// Base unit for counting readers.
+const ONE_READER: usize = 0b10000;
+
+// Token indicating what type of lock a queued thread is trying to acquire
+const TOKEN_SHARED: ParkToken = ParkToken(ONE_READER);
+const TOKEN_EXCLUSIVE: ParkToken = ParkToken(WRITER_BIT);
+const TOKEN_UPGRADABLE: ParkToken = ParkToken(ONE_READER | UPGRADABLE_BIT);
+
+/// Raw reader-writer lock type backed by the parking lot.
+pub struct RawRwLock {
+ state: AtomicUsize,
+}
+
+unsafe impl lock_api::RawRwLock for RawRwLock {
+ const INIT: RawRwLock = RawRwLock {
+ state: AtomicUsize::new(0),
+ };
+
+ type GuardMarker = crate::GuardMarker;
+
+ #[inline]
+ fn lock_exclusive(&self) {
+ if self
+ .state
+ .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_err()
+ {
+ let result = self.lock_exclusive_slow(None);
+ debug_assert!(result);
+ }
+ self.deadlock_acquire();
+ }
+
+ #[inline]
+ fn try_lock_exclusive(&self) -> bool {
+ if self
+ .state
+ .compare_exchange(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ self.deadlock_acquire();
+ true
+ } else {
+ false
+ }
+ }
+
+ #[inline]
+ unsafe fn unlock_exclusive(&self) {
+ self.deadlock_release();
+ if self
+ .state
+ .compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ return;
+ }
+ self.unlock_exclusive_slow(false);
+ }
+
+ #[inline]
+ fn lock_shared(&self) {
+ if !self.try_lock_shared_fast(false) {
+ let result = self.lock_shared_slow(false, None);
+ debug_assert!(result);
+ }
+ self.deadlock_acquire();
+ }
+
+ #[inline]
+ fn try_lock_shared(&self) -> bool {
+ let result = if self.try_lock_shared_fast(false) {
+ true
+ } else {
+ self.try_lock_shared_slow(false)
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ unsafe fn unlock_shared(&self) {
+ self.deadlock_release();
+ let state = if have_elision() {
+ self.state.elision_fetch_sub_release(ONE_READER)
+ } else {
+ self.state.fetch_sub(ONE_READER, Ordering::Release)
+ };
+ if state & (READERS_MASK | WRITER_PARKED_BIT) == (ONE_READER | WRITER_PARKED_BIT) {
+ self.unlock_shared_slow();
+ }
+ }
+
+ #[inline]
+ fn is_locked(&self) -> bool {
+ let state = self.state.load(Ordering::Relaxed);
+ state & (WRITER_BIT | READERS_MASK) != 0
+ }
+}
+
+unsafe impl lock_api::RawRwLockFair for RawRwLock {
+ #[inline]
+ unsafe fn unlock_shared_fair(&self) {
+ // Shared unlocking is always fair in this implementation.
+ self.unlock_shared();
+ }
+
+ #[inline]
+ unsafe fn unlock_exclusive_fair(&self) {
+ self.deadlock_release();
+ if self
+ .state
+ .compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ return;
+ }
+ self.unlock_exclusive_slow(true);
+ }
+
+ #[inline]
+ unsafe fn bump_shared(&self) {
+ if self.state.load(Ordering::Relaxed) & (READERS_MASK | WRITER_BIT)
+ == ONE_READER | WRITER_BIT
+ {
+ self.bump_shared_slow();
+ }
+ }
+
+ #[inline]
+ unsafe fn bump_exclusive(&self) {
+ if self.state.load(Ordering::Relaxed) & PARKED_BIT != 0 {
+ self.bump_exclusive_slow();
+ }
+ }
+}
+
+unsafe impl lock_api::RawRwLockDowngrade for RawRwLock {
+ #[inline]
+ unsafe fn downgrade(&self) {
+ let state = self
+ .state
+ .fetch_add(ONE_READER - WRITER_BIT, Ordering::Release);
+
+ // Wake up parked shared and upgradable threads if there are any
+ if state & PARKED_BIT != 0 {
+ self.downgrade_slow();
+ }
+ }
+}
+
+unsafe impl lock_api::RawRwLockTimed for RawRwLock {
+ type Duration = Duration;
+ type Instant = Instant;
+
+ #[inline]
+ fn try_lock_shared_for(&self, timeout: Self::Duration) -> bool {
+ let result = if self.try_lock_shared_fast(false) {
+ true
+ } else {
+ self.lock_shared_slow(false, util::to_deadline(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_shared_until(&self, timeout: Self::Instant) -> bool {
+ let result = if self.try_lock_shared_fast(false) {
+ true
+ } else {
+ self.lock_shared_slow(false, Some(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_exclusive_for(&self, timeout: Duration) -> bool {
+ let result = if self
+ .state
+ .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ true
+ } else {
+ self.lock_exclusive_slow(util::to_deadline(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_exclusive_until(&self, timeout: Instant) -> bool {
+ let result = if self
+ .state
+ .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ {
+ true
+ } else {
+ self.lock_exclusive_slow(Some(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+}
+
+unsafe impl lock_api::RawRwLockRecursive for RawRwLock {
+ #[inline]
+ fn lock_shared_recursive(&self) {
+ if !self.try_lock_shared_fast(true) {
+ let result = self.lock_shared_slow(true, None);
+ debug_assert!(result);
+ }
+ self.deadlock_acquire();
+ }
+
+ #[inline]
+ fn try_lock_shared_recursive(&self) -> bool {
+ let result = if self.try_lock_shared_fast(true) {
+ true
+ } else {
+ self.try_lock_shared_slow(true)
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+}
+
+unsafe impl lock_api::RawRwLockRecursiveTimed for RawRwLock {
+ #[inline]
+ fn try_lock_shared_recursive_for(&self, timeout: Self::Duration) -> bool {
+ let result = if self.try_lock_shared_fast(true) {
+ true
+ } else {
+ self.lock_shared_slow(true, util::to_deadline(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_shared_recursive_until(&self, timeout: Self::Instant) -> bool {
+ let result = if self.try_lock_shared_fast(true) {
+ true
+ } else {
+ self.lock_shared_slow(true, Some(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+}
+
+unsafe impl lock_api::RawRwLockUpgrade for RawRwLock {
+ #[inline]
+ fn lock_upgradable(&self) {
+ if !self.try_lock_upgradable_fast() {
+ let result = self.lock_upgradable_slow(None);
+ debug_assert!(result);
+ }
+ self.deadlock_acquire();
+ }
+
+ #[inline]
+ fn try_lock_upgradable(&self) -> bool {
+ let result = if self.try_lock_upgradable_fast() {
+ true
+ } else {
+ self.try_lock_upgradable_slow()
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ unsafe fn unlock_upgradable(&self) {
+ self.deadlock_release();
+ let state = self.state.load(Ordering::Relaxed);
+ if state & PARKED_BIT == 0 {
+ if self
+ .state
+ .compare_exchange_weak(
+ state,
+ state - (ONE_READER | UPGRADABLE_BIT),
+ Ordering::Release,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ return;
+ }
+ }
+ self.unlock_upgradable_slow(false);
+ }
+
+ #[inline]
+ unsafe fn upgrade(&self) {
+ let state = self.state.fetch_sub(
+ (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
+ Ordering::Relaxed,
+ );
+ if state & READERS_MASK != ONE_READER {
+ let result = self.upgrade_slow(None);
+ debug_assert!(result);
+ }
+ }
+
+ #[inline]
+ unsafe fn try_upgrade(&self) -> bool {
+ if self
+ .state
+ .compare_exchange_weak(
+ ONE_READER | UPGRADABLE_BIT,
+ WRITER_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ true
+ } else {
+ self.try_upgrade_slow()
+ }
+ }
+}
+
+unsafe impl lock_api::RawRwLockUpgradeFair for RawRwLock {
+ #[inline]
+ unsafe fn unlock_upgradable_fair(&self) {
+ self.deadlock_release();
+ let state = self.state.load(Ordering::Relaxed);
+ if state & PARKED_BIT == 0 {
+ if self
+ .state
+ .compare_exchange_weak(
+ state,
+ state - (ONE_READER | UPGRADABLE_BIT),
+ Ordering::Release,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ return;
+ }
+ }
+ self.unlock_upgradable_slow(false);
+ }
+
+ #[inline]
+ unsafe fn bump_upgradable(&self) {
+ if self.state.load(Ordering::Relaxed) == ONE_READER | UPGRADABLE_BIT | PARKED_BIT {
+ self.bump_upgradable_slow();
+ }
+ }
+}
+
+unsafe impl lock_api::RawRwLockUpgradeDowngrade for RawRwLock {
+ #[inline]
+ unsafe fn downgrade_upgradable(&self) {
+ let state = self.state.fetch_sub(UPGRADABLE_BIT, Ordering::Relaxed);
+
+ // Wake up parked upgradable threads if there are any
+ if state & PARKED_BIT != 0 {
+ self.downgrade_slow();
+ }
+ }
+
+ #[inline]
+ unsafe fn downgrade_to_upgradable(&self) {
+ let state = self.state.fetch_add(
+ (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
+ Ordering::Release,
+ );
+
+ // Wake up parked shared threads if there are any
+ if state & PARKED_BIT != 0 {
+ self.downgrade_to_upgradable_slow();
+ }
+ }
+}
+
+unsafe impl lock_api::RawRwLockUpgradeTimed for RawRwLock {
+ #[inline]
+ fn try_lock_upgradable_until(&self, timeout: Instant) -> bool {
+ let result = if self.try_lock_upgradable_fast() {
+ true
+ } else {
+ self.lock_upgradable_slow(Some(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ fn try_lock_upgradable_for(&self, timeout: Duration) -> bool {
+ let result = if self.try_lock_upgradable_fast() {
+ true
+ } else {
+ self.lock_upgradable_slow(util::to_deadline(timeout))
+ };
+ if result {
+ self.deadlock_acquire();
+ }
+ result
+ }
+
+ #[inline]
+ unsafe fn try_upgrade_until(&self, timeout: Instant) -> bool {
+ let state = self.state.fetch_sub(
+ (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
+ Ordering::Relaxed,
+ );
+ if state & READERS_MASK == ONE_READER {
+ true
+ } else {
+ self.upgrade_slow(Some(timeout))
+ }
+ }
+
+ #[inline]
+ unsafe fn try_upgrade_for(&self, timeout: Duration) -> bool {
+ let state = self.state.fetch_sub(
+ (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
+ Ordering::Relaxed,
+ );
+ if state & READERS_MASK == ONE_READER {
+ true
+ } else {
+ self.upgrade_slow(util::to_deadline(timeout))
+ }
+ }
+}
+
+impl RawRwLock {
+ #[inline(always)]
+ fn try_lock_shared_fast(&self, recursive: bool) -> bool {
+ let state = self.state.load(Ordering::Relaxed);
+
+ // We can't allow grabbing a shared lock if there is a writer, even if
+ // the writer is still waiting for the remaining readers to exit.
+ if state & WRITER_BIT != 0 {
+ // To allow recursive locks, we make an exception and allow readers
+ // to skip ahead of a pending writer to avoid deadlocking, at the
+ // cost of breaking the fairness guarantees.
+ if !recursive || state & READERS_MASK == 0 {
+ return false;
+ }
+ }
+
+ // Use hardware lock elision to avoid cache conflicts when multiple
+ // readers try to acquire the lock. We only do this if the lock is
+ // completely empty since elision handles conflicts poorly.
+ if have_elision() && state == 0 {
+ self.state
+ .elision_compare_exchange_acquire(0, ONE_READER)
+ .is_ok()
+ } else if let Some(new_state) = state.checked_add(ONE_READER) {
+ self.state
+ .compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ } else {
+ false
+ }
+ }
+
+ #[cold]
+ fn try_lock_shared_slow(&self, recursive: bool) -> bool {
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ // This mirrors the condition in try_lock_shared_fast
+ if state & WRITER_BIT != 0 {
+ if !recursive || state & READERS_MASK == 0 {
+ return false;
+ }
+ }
+ if have_elision() && state == 0 {
+ match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ } else {
+ match self.state.compare_exchange_weak(
+ state,
+ state
+ .checked_add(ONE_READER)
+ .expect("RwLock reader count overflow"),
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ }
+ }
+ }
+
+ #[inline(always)]
+ fn try_lock_upgradable_fast(&self) -> bool {
+ let state = self.state.load(Ordering::Relaxed);
+
+ // We can't grab an upgradable lock if there is already a writer or
+ // upgradable reader.
+ if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
+ return false;
+ }
+
+ if let Some(new_state) = state.checked_add(ONE_READER | UPGRADABLE_BIT) {
+ self.state
+ .compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ } else {
+ false
+ }
+ }
+
+ #[cold]
+ fn try_lock_upgradable_slow(&self) -> bool {
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ // This mirrors the condition in try_lock_upgradable_fast
+ if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
+ return false;
+ }
+
+ match self.state.compare_exchange_weak(
+ state,
+ state
+ .checked_add(ONE_READER | UPGRADABLE_BIT)
+ .expect("RwLock reader count overflow"),
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ }
+ }
+
+ #[cold]
+ fn lock_exclusive_slow(&self, timeout: Option<Instant>) -> bool {
+ let try_lock = |state: &mut usize| {
+ loop {
+ if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
+ return false;
+ }
+
+ // Grab WRITER_BIT if it isn't set, even if there are parked threads.
+ match self.state.compare_exchange_weak(
+ *state,
+ *state | WRITER_BIT,
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => *state = x,
+ }
+ }
+ };
+
+ // Step 1: grab exclusive ownership of WRITER_BIT
+ let timed_out = !self.lock_common(
+ timeout,
+ TOKEN_EXCLUSIVE,
+ try_lock,
+ WRITER_BIT | UPGRADABLE_BIT,
+ );
+ if timed_out {
+ return false;
+ }
+
+ // Step 2: wait for all remaining readers to exit the lock.
+ self.wait_for_readers(timeout, 0)
+ }
+
+ #[cold]
+ fn unlock_exclusive_slow(&self, force_fair: bool) {
+ // There are threads to unpark. Try to unpark as many as we can.
+ let callback = |mut new_state, result: UnparkResult| {
+ // If we are using a fair unlock then we should keep the
+ // rwlock locked and hand it off to the unparked threads.
+ if result.unparked_threads != 0 && (force_fair || result.be_fair) {
+ if result.have_more_threads {
+ new_state |= PARKED_BIT;
+ }
+ self.state.store(new_state, Ordering::Release);
+ TOKEN_HANDOFF
+ } else {
+ // Clear the parked bit if there are no more parked threads.
+ if result.have_more_threads {
+ self.state.store(PARKED_BIT, Ordering::Release);
+ } else {
+ self.state.store(0, Ordering::Release);
+ }
+ TOKEN_NORMAL
+ }
+ };
+ // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ self.wake_parked_threads(0, callback);
+ }
+ }
+
+ #[cold]
+ fn lock_shared_slow(&self, recursive: bool, timeout: Option<Instant>) -> bool {
+ let try_lock = |state: &mut usize| {
+ let mut spinwait_shared = SpinWait::new();
+ loop {
+ // Use hardware lock elision to avoid cache conflicts when multiple
+ // readers try to acquire the lock. We only do this if the lock is
+ // completely empty since elision handles conflicts poorly.
+ if have_elision() && *state == 0 {
+ match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
+ Ok(_) => return true,
+ Err(x) => *state = x,
+ }
+ }
+
+ // This is the same condition as try_lock_shared_fast
+ if *state & WRITER_BIT != 0 {
+ if !recursive || *state & READERS_MASK == 0 {
+ return false;
+ }
+ }
+
+ if self
+ .state
+ .compare_exchange_weak(
+ *state,
+ state
+ .checked_add(ONE_READER)
+ .expect("RwLock reader count overflow"),
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ return true;
+ }
+
+ // If there is high contention on the reader count then we want
+ // to leave some time between attempts to acquire the lock to
+ // let other threads make progress.
+ spinwait_shared.spin_no_yield();
+ *state = self.state.load(Ordering::Relaxed);
+ }
+ };
+ self.lock_common(timeout, TOKEN_SHARED, try_lock, WRITER_BIT)
+ }
+
+ #[cold]
+ fn unlock_shared_slow(&self) {
+ // At this point WRITER_PARKED_BIT is set and READER_MASK is empty. We
+ // just need to wake up a potentially sleeping pending writer.
+ // Using the 2nd key at addr + 1
+ let addr = self as *const _ as usize + 1;
+ let callback = |_result: UnparkResult| {
+ // Clear the WRITER_PARKED_BIT here since there can only be one
+ // parked writer thread.
+ self.state.fetch_and(!WRITER_PARKED_BIT, Ordering::Relaxed);
+ TOKEN_NORMAL
+ };
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ parking_lot_core::unpark_one(addr, callback);
+ }
+ }
+
+ #[cold]
+ fn lock_upgradable_slow(&self, timeout: Option<Instant>) -> bool {
+ let try_lock = |state: &mut usize| {
+ let mut spinwait_shared = SpinWait::new();
+ loop {
+ if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
+ return false;
+ }
+
+ if self
+ .state
+ .compare_exchange_weak(
+ *state,
+ state
+ .checked_add(ONE_READER | UPGRADABLE_BIT)
+ .expect("RwLock reader count overflow"),
+ Ordering::Acquire,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ return true;
+ }
+
+ // If there is high contention on the reader count then we want
+ // to leave some time between attempts to acquire the lock to
+ // let other threads make progress.
+ spinwait_shared.spin_no_yield();
+ *state = self.state.load(Ordering::Relaxed);
+ }
+ };
+ self.lock_common(
+ timeout,
+ TOKEN_UPGRADABLE,
+ try_lock,
+ WRITER_BIT | UPGRADABLE_BIT,
+ )
+ }
+
+ #[cold]
+ fn unlock_upgradable_slow(&self, force_fair: bool) {
+ // Just release the lock if there are no parked threads.
+ let mut state = self.state.load(Ordering::Relaxed);
+ while state & PARKED_BIT == 0 {
+ match self.state.compare_exchange_weak(
+ state,
+ state - (ONE_READER | UPGRADABLE_BIT),
+ Ordering::Release,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return,
+ Err(x) => state = x,
+ }
+ }
+
+ // There are threads to unpark. Try to unpark as many as we can.
+ let callback = |new_state, result: UnparkResult| {
+ // If we are using a fair unlock then we should keep the
+ // rwlock locked and hand it off to the unparked threads.
+ let mut state = self.state.load(Ordering::Relaxed);
+ if force_fair || result.be_fair {
+ // Fall back to normal unpark on overflow. Panicking is
+ // not allowed in parking_lot callbacks.
+ while let Some(mut new_state) =
+ (state - (ONE_READER | UPGRADABLE_BIT)).checked_add(new_state)
+ {
+ if result.have_more_threads {
+ new_state |= PARKED_BIT;
+ } else {
+ new_state &= !PARKED_BIT;
+ }
+ match self.state.compare_exchange_weak(
+ state,
+ new_state,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return TOKEN_HANDOFF,
+ Err(x) => state = x,
+ }
+ }
+ }
+
+ // Otherwise just release the upgradable lock and update PARKED_BIT.
+ loop {
+ let mut new_state = state - (ONE_READER | UPGRADABLE_BIT);
+ if result.have_more_threads {
+ new_state |= PARKED_BIT;
+ } else {
+ new_state &= !PARKED_BIT;
+ }
+ match self.state.compare_exchange_weak(
+ state,
+ new_state,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return TOKEN_NORMAL,
+ Err(x) => state = x,
+ }
+ }
+ };
+ // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ self.wake_parked_threads(0, callback);
+ }
+ }
+
+ #[cold]
+ fn try_upgrade_slow(&self) -> bool {
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ if state & READERS_MASK != ONE_READER {
+ return false;
+ }
+ match self.state.compare_exchange_weak(
+ state,
+ state - (ONE_READER | UPGRADABLE_BIT) + WRITER_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => return true,
+ Err(x) => state = x,
+ }
+ }
+ }
+
+ #[cold]
+ fn upgrade_slow(&self, timeout: Option<Instant>) -> bool {
+ self.wait_for_readers(timeout, ONE_READER | UPGRADABLE_BIT)
+ }
+
+ #[cold]
+ fn downgrade_slow(&self) {
+ // We only reach this point if PARKED_BIT is set.
+ let callback = |_, result: UnparkResult| {
+ // Clear the parked bit if there no more parked threads
+ if !result.have_more_threads {
+ self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
+ }
+ TOKEN_NORMAL
+ };
+ // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ self.wake_parked_threads(ONE_READER, callback);
+ }
+ }
+
+ #[cold]
+ fn downgrade_to_upgradable_slow(&self) {
+ // We only reach this point if PARKED_BIT is set.
+ let callback = |_, result: UnparkResult| {
+ // Clear the parked bit if there no more parked threads
+ if !result.have_more_threads {
+ self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
+ }
+ TOKEN_NORMAL
+ };
+ // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
+ unsafe {
+ self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
+ }
+ }
+
+ #[cold]
+ unsafe fn bump_shared_slow(&self) {
+ self.unlock_shared();
+ self.lock_shared();
+ }
+
+ #[cold]
+ fn bump_exclusive_slow(&self) {
+ self.deadlock_release();
+ self.unlock_exclusive_slow(true);
+ self.lock_exclusive();
+ }
+
+ #[cold]
+ fn bump_upgradable_slow(&self) {
+ self.deadlock_release();
+ self.unlock_upgradable_slow(true);
+ self.lock_upgradable();
+ }
+
+ /// Common code for waking up parked threads after releasing WRITER_BIT or
+ /// UPGRADABLE_BIT.
+ ///
+ /// # Safety
+ ///
+ /// `callback` must uphold the requirements of the `callback` parameter to
+ /// `parking_lot_core::unpark_filter`. Meaning no panics or calls into any function in
+ /// `parking_lot`.
+ #[inline]
+ unsafe fn wake_parked_threads(
+ &self,
+ new_state: usize,
+ callback: impl FnOnce(usize, UnparkResult) -> UnparkToken,
+ ) {
+ // We must wake up at least one upgrader or writer if there is one,
+ // otherwise they may end up parked indefinitely since unlock_shared
+ // does not call wake_parked_threads.
+ let new_state = Cell::new(new_state);
+ let addr = self as *const _ as usize;
+ let filter = |ParkToken(token)| {
+ let s = new_state.get();
+
+ // If we are waking up a writer, don't wake anything else.
+ if s & WRITER_BIT != 0 {
+ return FilterOp::Stop;
+ }
+
+ // Otherwise wake *all* readers and one upgrader/writer.
+ if token & (UPGRADABLE_BIT | WRITER_BIT) != 0 && s & UPGRADABLE_BIT != 0 {
+ // Skip writers and upgradable readers if we already have
+ // a writer/upgradable reader.
+ FilterOp::Skip
+ } else {
+ new_state.set(s + token);
+ FilterOp::Unpark
+ }
+ };
+ let callback = |result| callback(new_state.get(), result);
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `filter` does not panic or call into any function of `parking_lot`.
+ // * `callback` safety responsibility is on caller
+ parking_lot_core::unpark_filter(addr, filter, callback);
+ }
+
+ // Common code for waiting for readers to exit the lock after acquiring
+ // WRITER_BIT.
+ #[inline]
+ fn wait_for_readers(&self, timeout: Option<Instant>, prev_value: usize) -> bool {
+ // At this point WRITER_BIT is already set, we just need to wait for the
+ // remaining readers to exit the lock.
+ let mut spinwait = SpinWait::new();
+ let mut state = self.state.load(Ordering::Acquire);
+ while state & READERS_MASK != 0 {
+ // Spin a few times to wait for readers to exit
+ if spinwait.spin() {
+ state = self.state.load(Ordering::Acquire);
+ continue;
+ }
+
+ // Set the parked bit
+ if state & WRITER_PARKED_BIT == 0 {
+ if let Err(x) = self.state.compare_exchange_weak(
+ state,
+ state | WRITER_PARKED_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ state = x;
+ continue;
+ }
+ }
+
+ // Park our thread until we are woken up by an unlock
+ // Using the 2nd key at addr + 1
+ let addr = self as *const _ as usize + 1;
+ let validate = || {
+ let state = self.state.load(Ordering::Relaxed);
+ state & READERS_MASK != 0 && state & WRITER_PARKED_BIT != 0
+ };
+ let before_sleep = || {};
+ let timed_out = |_, _| {};
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
+ // * `before_sleep` does not call `park`, nor does it panic.
+ let park_result = unsafe {
+ parking_lot_core::park(
+ addr,
+ validate,
+ before_sleep,
+ timed_out,
+ TOKEN_EXCLUSIVE,
+ timeout,
+ )
+ };
+ match park_result {
+ // We still need to re-check the state if we are unparked
+ // since a previous writer timing-out could have allowed
+ // another reader to sneak in before we parked.
+ ParkResult::Unparked(_) | ParkResult::Invalid => {
+ state = self.state.load(Ordering::Acquire);
+ continue;
+ }
+
+ // Timeout expired
+ ParkResult::TimedOut => {
+ // We need to release WRITER_BIT and revert back to
+ // our previous value. We also wake up any threads that
+ // might be waiting on WRITER_BIT.
+ let state = self.state.fetch_add(
+ prev_value.wrapping_sub(WRITER_BIT | WRITER_PARKED_BIT),
+ Ordering::Relaxed,
+ );
+ if state & PARKED_BIT != 0 {
+ let callback = |_, result: UnparkResult| {
+ // Clear the parked bit if there no more parked threads
+ if !result.have_more_threads {
+ self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
+ }
+ TOKEN_NORMAL
+ };
+ // SAFETY: `callback` does not panic or call any function of `parking_lot`.
+ unsafe {
+ self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
+ }
+ }
+ return false;
+ }
+ }
+ }
+ true
+ }
+
+ /// Common code for acquiring a lock
+ #[inline]
+ fn lock_common(
+ &self,
+ timeout: Option<Instant>,
+ token: ParkToken,
+ mut try_lock: impl FnMut(&mut usize) -> bool,
+ validate_flags: usize,
+ ) -> bool {
+ let mut spinwait = SpinWait::new();
+ let mut state = self.state.load(Ordering::Relaxed);
+ loop {
+ // Attempt to grab the lock
+ if try_lock(&mut state) {
+ return true;
+ }
+
+ // If there are no parked threads, try spinning a few times.
+ if state & (PARKED_BIT | WRITER_PARKED_BIT) == 0 && spinwait.spin() {
+ state = self.state.load(Ordering::Relaxed);
+ continue;
+ }
+
+ // Set the parked bit
+ if state & PARKED_BIT == 0 {
+ if let Err(x) = self.state.compare_exchange_weak(
+ state,
+ state | PARKED_BIT,
+ Ordering::Relaxed,
+ Ordering::Relaxed,
+ ) {
+ state = x;
+ continue;
+ }
+ }
+
+ // Park our thread until we are woken up by an unlock
+ let addr = self as *const _ as usize;
+ let validate = || {
+ let state = self.state.load(Ordering::Relaxed);
+ state & PARKED_BIT != 0 && (state & validate_flags != 0)
+ };
+ let before_sleep = || {};
+ let timed_out = |_, was_last_thread| {
+ // Clear the parked bit if we were the last parked thread
+ if was_last_thread {
+ self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
+ }
+ };
+
+ // SAFETY:
+ // * `addr` is an address we control.
+ // * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
+ // * `before_sleep` does not call `park`, nor does it panic.
+ let park_result = unsafe {
+ parking_lot_core::park(addr, validate, before_sleep, timed_out, token, timeout)
+ };
+ match park_result {
+ // The thread that unparked us passed the lock on to us
+ // directly without unlocking it.
+ ParkResult::Unparked(TOKEN_HANDOFF) => return true,
+
+ // We were unparked normally, try acquiring the lock again
+ ParkResult::Unparked(_) => (),
+
+ // The validation function failed, try locking again
+ ParkResult::Invalid => (),
+
+ // Timeout expired
+ ParkResult::TimedOut => return false,
+ }
+
+ // Loop back and try locking again
+ spinwait.reset();
+ state = self.state.load(Ordering::Relaxed);
+ }
+ }
+
+ #[inline]
+ fn deadlock_acquire(&self) {
+ unsafe { deadlock::acquire_resource(self as *const _ as usize) };
+ unsafe { deadlock::acquire_resource(self as *const _ as usize + 1) };
+ }
+
+ #[inline]
+ fn deadlock_release(&self) {
+ unsafe { deadlock::release_resource(self as *const _ as usize) };
+ unsafe { deadlock::release_resource(self as *const _ as usize + 1) };
+ }
+}
diff --git a/third_party/rust/parking_lot/src/remutex.rs b/third_party/rust/parking_lot/src/remutex.rs
new file mode 100644
index 0000000000..1037923018
--- /dev/null
+++ b/third_party/rust/parking_lot/src/remutex.rs
@@ -0,0 +1,149 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::raw_mutex::RawMutex;
+use core::num::NonZeroUsize;
+use lock_api::{self, GetThreadId};
+
+/// Implementation of the `GetThreadId` trait for `lock_api::ReentrantMutex`.
+pub struct RawThreadId;
+
+unsafe impl GetThreadId for RawThreadId {
+ const INIT: RawThreadId = RawThreadId;
+
+ fn nonzero_thread_id(&self) -> NonZeroUsize {
+ // The address of a thread-local variable is guaranteed to be unique to the
+ // current thread, and is also guaranteed to be non-zero. The variable has to have a
+ // non-zero size to guarantee it has a unique address for each thread.
+ thread_local!(static KEY: u8 = 0);
+ KEY.with(|x| {
+ NonZeroUsize::new(x as *const _ as usize)
+ .expect("thread-local variable address is null")
+ })
+ }
+}
+
+/// A mutex which can be recursively locked by a single thread.
+///
+/// This type is identical to `Mutex` except for the following points:
+///
+/// - Locking multiple times from the same thread will work correctly instead of
+/// deadlocking.
+/// - `ReentrantMutexGuard` does not give mutable references to the locked data.
+/// Use a `RefCell` if you need this.
+///
+/// See [`Mutex`](type.Mutex.html) for more details about the underlying mutex
+/// primitive.
+pub type ReentrantMutex<T> = lock_api::ReentrantMutex<RawMutex, RawThreadId, T>;
+
+/// Creates a new reentrant mutex in an unlocked state ready for use.
+///
+/// This allows creating a reentrant mutex in a constant context on stable Rust.
+pub const fn const_reentrant_mutex<T>(val: T) -> ReentrantMutex<T> {
+ ReentrantMutex::const_new(
+ <RawMutex as lock_api::RawMutex>::INIT,
+ <RawThreadId as lock_api::GetThreadId>::INIT,
+ val,
+ )
+}
+
+/// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure
+/// is dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// `Deref` implementation.
+pub type ReentrantMutexGuard<'a, T> = lock_api::ReentrantMutexGuard<'a, RawMutex, RawThreadId, T>;
+
+/// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a
+/// subfield of the protected data.
+///
+/// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the
+/// former doesn't support temporarily unlocking and re-locking, since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread.
+pub type MappedReentrantMutexGuard<'a, T> =
+ lock_api::MappedReentrantMutexGuard<'a, RawMutex, RawThreadId, T>;
+
+#[cfg(test)]
+mod tests {
+ use crate::ReentrantMutex;
+ use std::cell::RefCell;
+ use std::sync::Arc;
+ use std::thread;
+
+ #[cfg(feature = "serde")]
+ use bincode::{deserialize, serialize};
+
+ #[test]
+ fn smoke() {
+ let m = ReentrantMutex::new(2);
+ {
+ let a = m.lock();
+ {
+ let b = m.lock();
+ {
+ let c = m.lock();
+ assert_eq!(*c, 2);
+ }
+ assert_eq!(*b, 2);
+ }
+ assert_eq!(*a, 2);
+ }
+ }
+
+ #[test]
+ fn is_mutex() {
+ let m = Arc::new(ReentrantMutex::new(RefCell::new(0)));
+ let m2 = m.clone();
+ let lock = m.lock();
+ let child = thread::spawn(move || {
+ let lock = m2.lock();
+ assert_eq!(*lock.borrow(), 4950);
+ });
+ for i in 0..100 {
+ let lock = m.lock();
+ *lock.borrow_mut() += i;
+ }
+ drop(lock);
+ child.join().unwrap();
+ }
+
+ #[test]
+ fn trylock_works() {
+ let m = Arc::new(ReentrantMutex::new(()));
+ let m2 = m.clone();
+ let _lock = m.try_lock();
+ let _lock2 = m.try_lock();
+ thread::spawn(move || {
+ let lock = m2.try_lock();
+ assert!(lock.is_none());
+ })
+ .join()
+ .unwrap();
+ let _lock3 = m.try_lock();
+ }
+
+ #[test]
+ fn test_reentrant_mutex_debug() {
+ let mutex = ReentrantMutex::new(vec![0u8, 10]);
+
+ assert_eq!(format!("{:?}", mutex), "ReentrantMutex { data: [0, 10] }");
+ }
+
+ #[cfg(feature = "serde")]
+ #[test]
+ fn test_serde() {
+ let contents: Vec<u8> = vec![0, 1, 2];
+ let mutex = ReentrantMutex::new(contents.clone());
+
+ let serialized = serialize(&mutex).unwrap();
+ let deserialized: ReentrantMutex<Vec<u8>> = deserialize(&serialized).unwrap();
+
+ assert_eq!(*(mutex.lock()), *(deserialized.lock()));
+ assert_eq!(contents, *(deserialized.lock()));
+ }
+}
diff --git a/third_party/rust/parking_lot/src/rwlock.rs b/third_party/rust/parking_lot/src/rwlock.rs
new file mode 100644
index 0000000000..70e1b1a7c6
--- /dev/null
+++ b/third_party/rust/parking_lot/src/rwlock.rs
@@ -0,0 +1,618 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use crate::raw_rwlock::RawRwLock;
+use lock_api;
+
+/// A reader-writer lock
+///
+/// This type of lock allows a number of readers or at most one writer at any
+/// point in time. The write portion of this lock typically allows modification
+/// of the underlying data (exclusive access) and the read portion of this lock
+/// typically allows for read-only access (shared access).
+///
+/// This lock uses a task-fair locking policy which avoids both reader and
+/// writer starvation. This means that readers trying to acquire the lock will
+/// block even if the lock is unlocked when there are writers waiting to acquire
+/// the lock. Because of this, attempts to recursively acquire a read lock
+/// within a single thread may result in a deadlock.
+///
+/// The type parameter `T` represents the data that this lock protects. It is
+/// required that `T` satisfies `Send` to be shared across threads and `Sync` to
+/// allow concurrent access through readers. The RAII guards returned from the
+/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
+/// to allow access to the contained of the lock.
+///
+/// # Fairness
+///
+/// A typical unfair lock can often end up in a situation where a single thread
+/// quickly acquires and releases the same lock in succession, which can starve
+/// other threads waiting to acquire the rwlock. While this improves throughput
+/// because it doesn't force a context switch when a thread tries to re-acquire
+/// a rwlock it has just released, this can starve other threads.
+///
+/// This rwlock uses [eventual fairness](https://trac.webkit.org/changeset/203350)
+/// to ensure that the lock will be fair on average without sacrificing
+/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
+/// which will force the lock to go to the next thread waiting for the rwlock.
+///
+/// Additionally, any critical section longer than 1ms will always use a fair
+/// unlock, which has a negligible impact on throughput considering the length
+/// of the critical section.
+///
+/// You can also force a fair unlock by calling `RwLockReadGuard::unlock_fair`
+/// or `RwLockWriteGuard::unlock_fair` when unlocking a mutex instead of simply
+/// dropping the guard.
+///
+/// # Differences from the standard library `RwLock`
+///
+/// - Supports atomically downgrading a write lock into a read lock.
+/// - Task-fair locking policy instead of an unspecified platform default.
+/// - No poisoning, the lock is released normally on panic.
+/// - Only requires 1 word of space, whereas the standard library boxes the
+/// `RwLock` due to platform limitations.
+/// - Can be statically constructed (requires the `const_fn` nightly feature).
+/// - Does not require any drop glue when dropped.
+/// - Inline fast path for the uncontended case.
+/// - Efficient handling of micro-contention using adaptive spinning.
+/// - Allows raw locking & unlocking without a guard.
+/// - Supports eventual fairness so that the rwlock is fair on average.
+/// - Optionally allows making the rwlock fair by calling
+/// `RwLockReadGuard::unlock_fair` and `RwLockWriteGuard::unlock_fair`.
+///
+/// # Examples
+///
+/// ```
+/// use parking_lot::RwLock;
+///
+/// let lock = RwLock::new(5);
+///
+/// // many reader locks can be held at once
+/// {
+/// let r1 = lock.read();
+/// let r2 = lock.read();
+/// assert_eq!(*r1, 5);
+/// assert_eq!(*r2, 5);
+/// } // read locks are dropped at this point
+///
+/// // only one write lock may be held, however
+/// {
+/// let mut w = lock.write();
+/// *w += 1;
+/// assert_eq!(*w, 6);
+/// } // write lock is dropped here
+/// ```
+pub type RwLock<T> = lock_api::RwLock<RawRwLock, T>;
+
+/// Creates a new instance of an `RwLock<T>` which is unlocked.
+///
+/// This allows creating a `RwLock<T>` in a constant context on stable Rust.
+pub const fn const_rwlock<T>(val: T) -> RwLock<T> {
+ RwLock::const_new(<RawRwLock as lock_api::RawRwLock>::INIT, val)
+}
+
+/// RAII structure used to release the shared read access of a lock when
+/// dropped.
+pub type RwLockReadGuard<'a, T> = lock_api::RwLockReadGuard<'a, RawRwLock, T>;
+
+/// RAII structure used to release the exclusive write access of a lock when
+/// dropped.
+pub type RwLockWriteGuard<'a, T> = lock_api::RwLockWriteGuard<'a, RawRwLock, T>;
+
+/// An RAII read lock guard returned by `RwLockReadGuard::map`, which can point to a
+/// subfield of the protected data.
+///
+/// The main difference between `MappedRwLockReadGuard` and `RwLockReadGuard` is that the
+/// former doesn't support temporarily unlocking and re-locking, since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread.
+pub type MappedRwLockReadGuard<'a, T> = lock_api::MappedRwLockReadGuard<'a, RawRwLock, T>;
+
+/// An RAII write lock guard returned by `RwLockWriteGuard::map`, which can point to a
+/// subfield of the protected data.
+///
+/// The main difference between `MappedRwLockWriteGuard` and `RwLockWriteGuard` is that the
+/// former doesn't support temporarily unlocking and re-locking, since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread.
+pub type MappedRwLockWriteGuard<'a, T> = lock_api::MappedRwLockWriteGuard<'a, RawRwLock, T>;
+
+/// RAII structure used to release the upgradable read access of a lock when
+/// dropped.
+pub type RwLockUpgradableReadGuard<'a, T> = lock_api::RwLockUpgradableReadGuard<'a, RawRwLock, T>;
+
+#[cfg(test)]
+mod tests {
+ use crate::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard};
+ use rand::Rng;
+ use std::sync::atomic::{AtomicUsize, Ordering};
+ use std::sync::mpsc::channel;
+ use std::sync::Arc;
+ use std::thread;
+ use std::time::Duration;
+
+ #[cfg(feature = "serde")]
+ use bincode::{deserialize, serialize};
+
+ #[derive(Eq, PartialEq, Debug)]
+ struct NonCopy(i32);
+
+ #[test]
+ fn smoke() {
+ let l = RwLock::new(());
+ drop(l.read());
+ drop(l.write());
+ drop(l.upgradable_read());
+ drop((l.read(), l.read()));
+ drop((l.read(), l.upgradable_read()));
+ drop(l.write());
+ }
+
+ #[test]
+ fn frob() {
+ const N: u32 = 10;
+ const M: u32 = 1000;
+
+ let r = Arc::new(RwLock::new(()));
+
+ let (tx, rx) = channel::<()>();
+ for _ in 0..N {
+ let tx = tx.clone();
+ let r = r.clone();
+ thread::spawn(move || {
+ let mut rng = rand::thread_rng();
+ for _ in 0..M {
+ if rng.gen_bool(1.0 / N as f64) {
+ drop(r.write());
+ } else {
+ drop(r.read());
+ }
+ }
+ drop(tx);
+ });
+ }
+ drop(tx);
+ let _ = rx.recv();
+ }
+
+ #[test]
+ fn test_rw_arc_no_poison_wr() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _: Result<(), _> = thread::spawn(move || {
+ let _lock = arc2.write();
+ panic!();
+ })
+ .join();
+ let lock = arc.read();
+ assert_eq!(*lock, 1);
+ }
+
+ #[test]
+ fn test_rw_arc_no_poison_ww() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _: Result<(), _> = thread::spawn(move || {
+ let _lock = arc2.write();
+ panic!();
+ })
+ .join();
+ let lock = arc.write();
+ assert_eq!(*lock, 1);
+ }
+
+ #[test]
+ fn test_rw_arc_no_poison_rr() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _: Result<(), _> = thread::spawn(move || {
+ let _lock = arc2.read();
+ panic!();
+ })
+ .join();
+ let lock = arc.read();
+ assert_eq!(*lock, 1);
+ }
+
+ #[test]
+ fn test_rw_arc_no_poison_rw() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _: Result<(), _> = thread::spawn(move || {
+ let _lock = arc2.read();
+ panic!()
+ })
+ .join();
+ let lock = arc.write();
+ assert_eq!(*lock, 1);
+ }
+
+ #[test]
+ fn test_ruw_arc() {
+ let arc = Arc::new(RwLock::new(0));
+ let arc2 = arc.clone();
+ let (tx, rx) = channel();
+
+ thread::spawn(move || {
+ for _ in 0..10 {
+ let mut lock = arc2.write();
+ let tmp = *lock;
+ *lock = -1;
+ thread::yield_now();
+ *lock = tmp + 1;
+ }
+ tx.send(()).unwrap();
+ });
+
+ let mut children = Vec::new();
+
+ // Upgradable readers try to catch the writer in the act and also
+ // try to touch the value
+ for _ in 0..5 {
+ let arc3 = arc.clone();
+ children.push(thread::spawn(move || {
+ let lock = arc3.upgradable_read();
+ let tmp = *lock;
+ assert!(tmp >= 0);
+ thread::yield_now();
+ let mut lock = RwLockUpgradableReadGuard::upgrade(lock);
+ assert_eq!(tmp, *lock);
+ *lock = -1;
+ thread::yield_now();
+ *lock = tmp + 1;
+ }));
+ }
+
+ // Readers try to catch the writers in the act
+ for _ in 0..5 {
+ let arc4 = arc.clone();
+ children.push(thread::spawn(move || {
+ let lock = arc4.read();
+ assert!(*lock >= 0);
+ }));
+ }
+
+ // Wait for children to pass their asserts
+ for r in children {
+ assert!(r.join().is_ok());
+ }
+
+ // Wait for writer to finish
+ rx.recv().unwrap();
+ let lock = arc.read();
+ assert_eq!(*lock, 15);
+ }
+
+ #[test]
+ fn test_rw_arc() {
+ let arc = Arc::new(RwLock::new(0));
+ let arc2 = arc.clone();
+ let (tx, rx) = channel();
+
+ thread::spawn(move || {
+ let mut lock = arc2.write();
+ for _ in 0..10 {
+ let tmp = *lock;
+ *lock = -1;
+ thread::yield_now();
+ *lock = tmp + 1;
+ }
+ tx.send(()).unwrap();
+ });
+
+ // Readers try to catch the writer in the act
+ let mut children = Vec::new();
+ for _ in 0..5 {
+ let arc3 = arc.clone();
+ children.push(thread::spawn(move || {
+ let lock = arc3.read();
+ assert!(*lock >= 0);
+ }));
+ }
+
+ // Wait for children to pass their asserts
+ for r in children {
+ assert!(r.join().is_ok());
+ }
+
+ // Wait for writer to finish
+ rx.recv().unwrap();
+ let lock = arc.read();
+ assert_eq!(*lock, 10);
+ }
+
+ #[test]
+ fn test_rw_arc_access_in_unwind() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let _ = thread::spawn(move || {
+ struct Unwinder {
+ i: Arc<RwLock<isize>>,
+ }
+ impl Drop for Unwinder {
+ fn drop(&mut self) {
+ let mut lock = self.i.write();
+ *lock += 1;
+ }
+ }
+ let _u = Unwinder { i: arc2 };
+ panic!();
+ })
+ .join();
+ let lock = arc.read();
+ assert_eq!(*lock, 2);
+ }
+
+ #[test]
+ fn test_rwlock_unsized() {
+ let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
+ {
+ let b = &mut *rw.write();
+ b[0] = 4;
+ b[2] = 5;
+ }
+ let comp: &[i32] = &[4, 2, 5];
+ assert_eq!(&*rw.read(), comp);
+ }
+
+ #[test]
+ fn test_rwlock_try_read() {
+ let lock = RwLock::new(0isize);
+ {
+ let read_guard = lock.read();
+
+ let read_result = lock.try_read();
+ assert!(
+ read_result.is_some(),
+ "try_read should succeed while read_guard is in scope"
+ );
+
+ drop(read_guard);
+ }
+ {
+ let upgrade_guard = lock.upgradable_read();
+
+ let read_result = lock.try_read();
+ assert!(
+ read_result.is_some(),
+ "try_read should succeed while upgrade_guard is in scope"
+ );
+
+ drop(upgrade_guard);
+ }
+ {
+ let write_guard = lock.write();
+
+ let read_result = lock.try_read();
+ assert!(
+ read_result.is_none(),
+ "try_read should fail while write_guard is in scope"
+ );
+
+ drop(write_guard);
+ }
+ }
+
+ #[test]
+ fn test_rwlock_try_write() {
+ let lock = RwLock::new(0isize);
+ {
+ let read_guard = lock.read();
+
+ let write_result = lock.try_write();
+ assert!(
+ write_result.is_none(),
+ "try_write should fail while read_guard is in scope"
+ );
+
+ drop(read_guard);
+ }
+ {
+ let upgrade_guard = lock.upgradable_read();
+
+ let write_result = lock.try_write();
+ assert!(
+ write_result.is_none(),
+ "try_write should fail while upgrade_guard is in scope"
+ );
+
+ drop(upgrade_guard);
+ }
+ {
+ let write_guard = lock.write();
+
+ let write_result = lock.try_write();
+ assert!(
+ write_result.is_none(),
+ "try_write should fail while write_guard is in scope"
+ );
+
+ drop(write_guard);
+ }
+ }
+
+ #[test]
+ fn test_rwlock_try_upgrade() {
+ let lock = RwLock::new(0isize);
+ {
+ let read_guard = lock.read();
+
+ let upgrade_result = lock.try_upgradable_read();
+ assert!(
+ upgrade_result.is_some(),
+ "try_upgradable_read should succeed while read_guard is in scope"
+ );
+
+ drop(read_guard);
+ }
+ {
+ let upgrade_guard = lock.upgradable_read();
+
+ let upgrade_result = lock.try_upgradable_read();
+ assert!(
+ upgrade_result.is_none(),
+ "try_upgradable_read should fail while upgrade_guard is in scope"
+ );
+
+ drop(upgrade_guard);
+ }
+ {
+ let write_guard = lock.write();
+
+ let upgrade_result = lock.try_upgradable_read();
+ assert!(
+ upgrade_result.is_none(),
+ "try_upgradable should fail while write_guard is in scope"
+ );
+
+ drop(write_guard);
+ }
+ }
+
+ #[test]
+ fn test_into_inner() {
+ let m = RwLock::new(NonCopy(10));
+ assert_eq!(m.into_inner(), NonCopy(10));
+ }
+
+ #[test]
+ fn test_into_inner_drop() {
+ struct Foo(Arc<AtomicUsize>);
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ self.0.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ let num_drops = Arc::new(AtomicUsize::new(0));
+ let m = RwLock::new(Foo(num_drops.clone()));
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ {
+ let _inner = m.into_inner();
+ assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+ }
+ assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+ }
+
+ #[test]
+ fn test_get_mut() {
+ let mut m = RwLock::new(NonCopy(10));
+ *m.get_mut() = NonCopy(20);
+ assert_eq!(m.into_inner(), NonCopy(20));
+ }
+
+ #[test]
+ fn test_rwlockguard_sync() {
+ fn sync<T: Sync>(_: T) {}
+
+ let rwlock = RwLock::new(());
+ sync(rwlock.read());
+ sync(rwlock.write());
+ }
+
+ #[test]
+ fn test_rwlock_downgrade() {
+ let x = Arc::new(RwLock::new(0));
+ let mut handles = Vec::new();
+ for _ in 0..8 {
+ let x = x.clone();
+ handles.push(thread::spawn(move || {
+ for _ in 0..100 {
+ let mut writer = x.write();
+ *writer += 1;
+ let cur_val = *writer;
+ let reader = RwLockWriteGuard::downgrade(writer);
+ assert_eq!(cur_val, *reader);
+ }
+ }));
+ }
+ for handle in handles {
+ handle.join().unwrap()
+ }
+ assert_eq!(*x.read(), 800);
+ }
+
+ #[test]
+ fn test_rwlock_recursive() {
+ let arc = Arc::new(RwLock::new(1));
+ let arc2 = arc.clone();
+ let lock1 = arc.read();
+ let t = thread::spawn(move || {
+ let _lock = arc2.write();
+ });
+
+ if cfg!(not(all(target_env = "sgx", target_vendor = "fortanix"))) {
+ thread::sleep(Duration::from_millis(100));
+ } else {
+ // FIXME: https://github.com/fortanix/rust-sgx/issues/31
+ for _ in 0..100 {
+ thread::yield_now();
+ }
+ }
+
+ // A normal read would block here since there is a pending writer
+ let lock2 = arc.read_recursive();
+
+ // Unblock the thread and join it.
+ drop(lock1);
+ drop(lock2);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_rwlock_debug() {
+ let x = RwLock::new(vec![0u8, 10]);
+
+ assert_eq!(format!("{:?}", x), "RwLock { data: [0, 10] }");
+ let _lock = x.write();
+ assert_eq!(format!("{:?}", x), "RwLock { data: <locked> }");
+ }
+
+ #[test]
+ fn test_clone() {
+ let rwlock = RwLock::new(Arc::new(1));
+ let a = rwlock.read_recursive();
+ let b = a.clone();
+ assert_eq!(Arc::strong_count(&b), 2);
+ }
+
+ #[cfg(feature = "serde")]
+ #[test]
+ fn test_serde() {
+ let contents: Vec<u8> = vec![0, 1, 2];
+ let mutex = RwLock::new(contents.clone());
+
+ let serialized = serialize(&mutex).unwrap();
+ let deserialized: RwLock<Vec<u8>> = deserialize(&serialized).unwrap();
+
+ assert_eq!(*(mutex.read()), *(deserialized.read()));
+ assert_eq!(contents, *(deserialized.read()));
+ }
+
+ #[test]
+ fn test_issue_203() {
+ struct Bar(RwLock<()>);
+
+ impl Drop for Bar {
+ fn drop(&mut self) {
+ let _n = self.0.write();
+ }
+ }
+
+ thread_local! {
+ static B: Bar = Bar(RwLock::new(()));
+ }
+
+ thread::spawn(|| {
+ B.with(|_| ());
+
+ let a = RwLock::new(());
+ let _a = a.read();
+ })
+ .join()
+ .unwrap();
+ }
+}
diff --git a/third_party/rust/parking_lot/src/util.rs b/third_party/rust/parking_lot/src/util.rs
new file mode 100644
index 0000000000..19cc2c2129
--- /dev/null
+++ b/third_party/rust/parking_lot/src/util.rs
@@ -0,0 +1,39 @@
+// Copyright 2016 Amanieu d'Antras
+//
+// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
+// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
+// http://opensource.org/licenses/MIT>, at your option. This file may not be
+// copied, modified, or distributed except according to those terms.
+
+use instant::Instant;
+use std::time::Duration;
+
+// Option::unchecked_unwrap
+pub trait UncheckedOptionExt<T> {
+ unsafe fn unchecked_unwrap(self) -> T;
+}
+
+impl<T> UncheckedOptionExt<T> for Option<T> {
+ #[inline]
+ unsafe fn unchecked_unwrap(self) -> T {
+ match self {
+ Some(x) => x,
+ None => unreachable(),
+ }
+ }
+}
+
+// hint::unreachable_unchecked() in release mode
+#[inline]
+unsafe fn unreachable() -> ! {
+ if cfg!(debug_assertions) {
+ unreachable!();
+ } else {
+ core::hint::unreachable_unchecked()
+ }
+}
+
+#[inline]
+pub fn to_deadline(timeout: Duration) -> Option<Instant> {
+ Instant::now().checked_add(timeout)
+}
diff --git a/third_party/rust/parking_lot/tests/issue_203.rs b/third_party/rust/parking_lot/tests/issue_203.rs
new file mode 100644
index 0000000000..a77a95f8ae
--- /dev/null
+++ b/third_party/rust/parking_lot/tests/issue_203.rs
@@ -0,0 +1,26 @@
+use parking_lot::RwLock;
+use std::thread;
+
+struct Bar(RwLock<()>);
+
+impl Drop for Bar {
+ fn drop(&mut self) {
+ let _n = self.0.write();
+ }
+}
+
+thread_local! {
+ static B: Bar = Bar(RwLock::new(()));
+}
+
+#[test]
+fn main() {
+ thread::spawn(|| {
+ B.with(|_| ());
+
+ let a = RwLock::new(());
+ let _a = a.read();
+ })
+ .join()
+ .unwrap();
+}