diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/rand/src/distributions/mod.rs | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/rand/src/distributions/mod.rs')
-rw-r--r-- | third_party/rust/rand/src/distributions/mod.rs | 387 |
1 files changed, 387 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/distributions/mod.rs b/third_party/rust/rand/src/distributions/mod.rs new file mode 100644 index 0000000000..f43169958e --- /dev/null +++ b/third_party/rust/rand/src/distributions/mod.rs @@ -0,0 +1,387 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Generating random samples from probability distributions +//! +//! This module is the home of the [`Distribution`] trait and several of its +//! implementations. It is the workhorse behind some of the convenient +//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and +//! of course [`Rng::sample`]. +//! +//! Abstractly, a [probability distribution] describes the probability of +//! occurance of each value in its sample space. +//! +//! More concretely, an implementation of `Distribution<T>` for type `X` is an +//! algorithm for choosing values from the sample space (a subset of `T`) +//! according to the distribution `X` represents, using an external source of +//! randomness (an RNG supplied to the `sample` function). +//! +//! A type `X` may implement `Distribution<T>` for multiple types `T`. +//! Any type implementing [`Distribution`] is stateless (i.e. immutable), +//! but it may have internal parameters set at construction time (for example, +//! [`Uniform`] allows specification of its sample space as a range within `T`). +//! +//! +//! # The `Standard` distribution +//! +//! The [`Standard`] distribution is important to mention. This is the +//! distribution used by [`Rng::gen()`] and represents the "default" way to +//! produce a random value for many different types, including most primitive +//! types, tuples, arrays, and a few derived types. See the documentation of +//! [`Standard`] for more details. +//! +//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it +//! possible to generate type `T` with [`Rng::gen()`], and by extension also +//! with the [`random()`] function. +//! +//! ## Random characters +//! +//! [`Alphanumeric`] is a simple distribution to sample random letters and +//! numbers of the `char` type; in contrast [`Standard`] may sample any valid +//! `char`. +//! +//! +//! # Uniform numeric ranges +//! +//! The [`Uniform`] distribution is more flexible than [`Standard`], but also +//! more specialised: it supports fewer target types, but allows the sample +//! space to be specified as an arbitrary range within its target type `T`. +//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. +//! +//! Values may be sampled from this distribution using [`Rng::gen_range`] or +//! by creating a distribution object with [`Uniform::new`], +//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not +//! known at compile time it is typically faster to reuse an existing +//! distribution object than to call [`Rng::gen_range`]. +//! +//! User types `T` may also implement `Distribution<T>` for [`Uniform`], +//! although this is less straightforward than for [`Standard`] (see the +//! documentation in the [`uniform`] module. Doing so enables generation of +//! values of type `T` with [`Rng::gen_range`]. +//! +//! ## Open and half-open ranges +//! +//! There are surprisingly many ways to uniformly generate random floats. A +//! range between 0 and 1 is standard, but the exact bounds (open vs closed) +//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers +//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of +//! [`Standard`] documentation for more details. +//! +//! # Non-uniform sampling +//! +//! Sampling a simple true/false outcome with a given probability has a name: +//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]). +//! +//! For weighted sampling from a sequence of discrete values, use the +//! [`weighted`] module. +//! +//! This crate no longer includes other non-uniform distributions; instead +//! it is recommended that you use either [`rand_distr`] or [`statrs`]. +//! +//! +//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs + +//! [`Alphanumeric`]: distributions::Alphanumeric +//! [`Bernoulli`]: distributions::Bernoulli +//! [`Open01`]: distributions::Open01 +//! [`OpenClosed01`]: distributions::OpenClosed01 +//! [`Standard`]: distributions::Standard +//! [`Uniform`]: distributions::Uniform +//! [`Uniform::new`]: distributions::Uniform::new +//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive +//! [`weighted`]: distributions::weighted +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs + +use core::iter; +use crate::Rng; + +pub use self::other::Alphanumeric; +#[doc(inline)] pub use self::uniform::Uniform; +pub use self::float::{OpenClosed01, Open01}; +pub use self::bernoulli::{Bernoulli, BernoulliError}; +#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError}; + +// The following are all deprecated after being moved to rand_distr +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::unit_circle::UnitCircle; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF, + StudentT, Beta}; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal}; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1}; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::pareto::Pareto; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::poisson::Poisson; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::binomial::Binomial; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::cauchy::Cauchy; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::dirichlet::Dirichlet; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::triangular::Triangular; +#[allow(deprecated)] +#[cfg(feature="std")] pub use self::weibull::Weibull; + +pub mod uniform; +mod bernoulli; +#[cfg(feature="alloc")] pub mod weighted; +#[cfg(feature="std")] mod unit_sphere; +#[cfg(feature="std")] mod unit_circle; +#[cfg(feature="std")] mod gamma; +#[cfg(feature="std")] mod normal; +#[cfg(feature="std")] mod exponential; +#[cfg(feature="std")] mod pareto; +#[cfg(feature="std")] mod poisson; +#[cfg(feature="std")] mod binomial; +#[cfg(feature="std")] mod cauchy; +#[cfg(feature="std")] mod dirichlet; +#[cfg(feature="std")] mod triangular; +#[cfg(feature="std")] mod weibull; + +mod float; +#[doc(hidden)] pub mod hidden_export { + pub use super::float::IntoFloat; // used by rand_distr +} +mod integer; +mod other; +mod utils; +#[cfg(feature="std")] mod ziggurat_tables; + +/// Types (distributions) that can be used to create a random instance of `T`. +/// +/// It is possible to sample from a distribution through both the +/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and +/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which +/// produces an iterator that samples from the distribution. +/// +/// All implementations are expected to be immutable; this has the significant +/// advantage of not needing to consider thread safety, and for most +/// distributions efficient state-less sampling algorithms are available. +/// +/// Implementations are typically expected to be portable with reproducible +/// results when used with a PRNG with fixed seed; see the +/// [portability chapter](https://rust-random.github.io/book/portability.html) +/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize` +/// type requires different sampling on 32-bit and 64-bit machines. +/// +/// [`sample_iter`]: Distribution::method.sample_iter +pub trait Distribution<T> { + /// Generate a random value of `T`, using `rng` as the source of randomness. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; + + /// Create an iterator that generates random values of `T`, using `rng` as + /// the source of randomness. + /// + /// Note that this function takes `self` by value. This works since + /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, + /// however borrowing is not automatic hence `distr.sample_iter(...)` may + /// need to be replaced with `(&distr).sample_iter(...)` to borrow or + /// `(&*distr).sample_iter(...)` to reborrow an existing reference. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; + /// + /// let rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect(); + /// + /// // String: + /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect(); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = die_range.sample_iter(rng); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> + where R: Rng, Self: Sized + { + DistIter { + distr: self, + rng, + phantom: ::core::marker::PhantomData, + } + } +} + +impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + (*self).sample(rng) + } +} + + +/// An iterator that generates random values of `T` with distribution `D`, +/// using `R` as the source of randomness. +/// +/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. +/// See its documentation for more. +/// +/// [`sample_iter`]: Distribution::sample_iter +#[derive(Debug)] +pub struct DistIter<D, R, T> { + distr: D, + rng: R, + phantom: ::core::marker::PhantomData<T>, +} + +impl<D, R, T> Iterator for DistIter<D, R, T> + where D: Distribution<T>, R: Rng +{ + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + // Here, self.rng may be a reference, but we must take &mut anyway. + // Even if sample could take an R: Rng by value, we would need to do this + // since Rng is not copyable and we cannot enforce that this is "reborrowable". + Some(self.distr.sample(&mut self.rng)) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (usize::max_value(), None) + } +} + +impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> + where D: Distribution<T>, R: Rng {} + +#[cfg(features = "nightly")] +impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> + where D: Distribution<T>, R: Rng {} + + +/// A generic random value distribution, implemented for many primitive types. +/// Usually generates values with a numerically uniform distribution, and with a +/// range appropriate to the type. +/// +/// ## Provided implementations +/// +/// Assuming the provided `Rng` is well-behaved, these implementations +/// generate values with the following ranges and distributions: +/// +/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed +/// over all values of the type. +/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all +/// code points in the range `0...0x10_FFFF`, except for the range +/// `0xD800...0xDFFF` (the surrogate code points). This includes +/// unassigned/reserved code points. +/// * `bool`: Generates `false` or `true`, each with probability 0.5. +/// * Floating point types (`f32` and `f64`): Uniformly distributed in the +/// half-open range `[0, 1)`. See notes below. +/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their +/// normal integer variants. +/// +/// The `Standard` distribution also supports generation of the following +/// compound types where all component types are supported: +/// +/// * Tuples (up to 12 elements): each element is generated sequentially. +/// * Arrays (up to 32 elements): each element is generated sequentially; +/// see also [`Rng::fill`] which supports arbitrary array length for integer +/// types and tends to be faster for `u32` and smaller types. +/// * `Option<T>` first generates a `bool`, and if true generates and returns +/// `Some(value)` where `value: T`, otherwise returning `None`. +/// +/// ## Custom implementations +/// +/// The [`Standard`] distribution may be implemented for user types as follows: +/// +/// ``` +/// # #![allow(dead_code)] +/// use rand::Rng; +/// use rand::distributions::{Distribution, Standard}; +/// +/// struct MyF32 { +/// x: f32, +/// } +/// +/// impl Distribution<MyF32> for Standard { +/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { +/// MyF32 { x: rng.gen() } +/// } +/// } +/// ``` +/// +/// ## Example usage +/// ``` +/// use rand::prelude::*; +/// use rand::distributions::Standard; +/// +/// let val: f32 = StdRng::from_entropy().sample(Standard); +/// println!("f32 from [0, 1): {}", val); +/// ``` +/// +/// # Floating point implementation +/// The floating point implementations for `Standard` generate a random value in +/// the half-open interval `[0, 1)`, i.e. including 0 but not 1. +/// +/// All values that can be generated are of the form `n * ε/2`. For `f32` +/// the 23 most significant random bits of a `u32` are used and for `f64` the +/// 53 most significant bits of a `u64` are used. The conversion uses the +/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`. +/// +/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which +/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from +/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use +/// transmute-based methods which yield 1 bit less precision but may perform +/// faster on some architectures (on modern Intel CPUs all methods have +/// approximately equal performance). +/// +/// [`Uniform`]: uniform::Uniform +#[derive(Clone, Copy, Debug)] +pub struct Standard; + + +#[cfg(all(test, feature = "std"))] +mod tests { + use crate::Rng; + use super::{Distribution, Uniform}; + + #[test] + fn test_distributions_iter() { + use crate::distributions::Open01; + let mut rng = crate::test::rng(210); + let distr = Open01; + let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect(); + println!("{:?}", results); + } + + #[test] + fn test_make_an_iter() { + fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a { + Uniform::new_inclusive(1, 6) + .sample_iter(rng) + .filter(|x| *x != 5) + .take(10) + } + + let mut rng = crate::test::rng(211); + let mut count = 0; + for val in ten_dice_rolls_other_than_five(&mut rng) { + assert!(val >= 1 && val <= 6 && val != 5); + count += 1; + } + assert_eq!(count, 10); + } +} |