summaryrefslogtreecommitdiffstats
path: root/third_party/rust/rand/src/distributions/mod.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/rand/src/distributions/mod.rs
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/rand/src/distributions/mod.rs')
-rw-r--r--third_party/rust/rand/src/distributions/mod.rs387
1 files changed, 387 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/distributions/mod.rs b/third_party/rust/rand/src/distributions/mod.rs
new file mode 100644
index 0000000000..f43169958e
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/mod.rs
@@ -0,0 +1,387 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Generating random samples from probability distributions
+//!
+//! This module is the home of the [`Distribution`] trait and several of its
+//! implementations. It is the workhorse behind some of the convenient
+//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and
+//! of course [`Rng::sample`].
+//!
+//! Abstractly, a [probability distribution] describes the probability of
+//! occurance of each value in its sample space.
+//!
+//! More concretely, an implementation of `Distribution<T>` for type `X` is an
+//! algorithm for choosing values from the sample space (a subset of `T`)
+//! according to the distribution `X` represents, using an external source of
+//! randomness (an RNG supplied to the `sample` function).
+//!
+//! A type `X` may implement `Distribution<T>` for multiple types `T`.
+//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
+//! but it may have internal parameters set at construction time (for example,
+//! [`Uniform`] allows specification of its sample space as a range within `T`).
+//!
+//!
+//! # The `Standard` distribution
+//!
+//! The [`Standard`] distribution is important to mention. This is the
+//! distribution used by [`Rng::gen()`] and represents the "default" way to
+//! produce a random value for many different types, including most primitive
+//! types, tuples, arrays, and a few derived types. See the documentation of
+//! [`Standard`] for more details.
+//!
+//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
+//! possible to generate type `T` with [`Rng::gen()`], and by extension also
+//! with the [`random()`] function.
+//!
+//! ## Random characters
+//!
+//! [`Alphanumeric`] is a simple distribution to sample random letters and
+//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
+//! `char`.
+//!
+//!
+//! # Uniform numeric ranges
+//!
+//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
+//! more specialised: it supports fewer target types, but allows the sample
+//! space to be specified as an arbitrary range within its target type `T`.
+//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
+//!
+//! Values may be sampled from this distribution using [`Rng::gen_range`] or
+//! by creating a distribution object with [`Uniform::new`],
+//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
+//! known at compile time it is typically faster to reuse an existing
+//! distribution object than to call [`Rng::gen_range`].
+//!
+//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
+//! although this is less straightforward than for [`Standard`] (see the
+//! documentation in the [`uniform`] module. Doing so enables generation of
+//! values of type `T` with [`Rng::gen_range`].
+//!
+//! ## Open and half-open ranges
+//!
+//! There are surprisingly many ways to uniformly generate random floats. A
+//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
+//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
+//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
+//! [`Standard`] documentation for more details.
+//!
+//! # Non-uniform sampling
+//!
+//! Sampling a simple true/false outcome with a given probability has a name:
+//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
+//!
+//! For weighted sampling from a sequence of discrete values, use the
+//! [`weighted`] module.
+//!
+//! This crate no longer includes other non-uniform distributions; instead
+//! it is recommended that you use either [`rand_distr`] or [`statrs`].
+//!
+//!
+//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+//! [`Alphanumeric`]: distributions::Alphanumeric
+//! [`Bernoulli`]: distributions::Bernoulli
+//! [`Open01`]: distributions::Open01
+//! [`OpenClosed01`]: distributions::OpenClosed01
+//! [`Standard`]: distributions::Standard
+//! [`Uniform`]: distributions::Uniform
+//! [`Uniform::new`]: distributions::Uniform::new
+//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive
+//! [`weighted`]: distributions::weighted
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+use core::iter;
+use crate::Rng;
+
+pub use self::other::Alphanumeric;
+#[doc(inline)] pub use self::uniform::Uniform;
+pub use self::float::{OpenClosed01, Open01};
+pub use self::bernoulli::{Bernoulli, BernoulliError};
+#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError};
+
+// The following are all deprecated after being moved to rand_distr
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::unit_circle::UnitCircle;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF,
+ StudentT, Beta};
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal};
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1};
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::pareto::Pareto;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::poisson::Poisson;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::binomial::Binomial;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::cauchy::Cauchy;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::dirichlet::Dirichlet;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::triangular::Triangular;
+#[allow(deprecated)]
+#[cfg(feature="std")] pub use self::weibull::Weibull;
+
+pub mod uniform;
+mod bernoulli;
+#[cfg(feature="alloc")] pub mod weighted;
+#[cfg(feature="std")] mod unit_sphere;
+#[cfg(feature="std")] mod unit_circle;
+#[cfg(feature="std")] mod gamma;
+#[cfg(feature="std")] mod normal;
+#[cfg(feature="std")] mod exponential;
+#[cfg(feature="std")] mod pareto;
+#[cfg(feature="std")] mod poisson;
+#[cfg(feature="std")] mod binomial;
+#[cfg(feature="std")] mod cauchy;
+#[cfg(feature="std")] mod dirichlet;
+#[cfg(feature="std")] mod triangular;
+#[cfg(feature="std")] mod weibull;
+
+mod float;
+#[doc(hidden)] pub mod hidden_export {
+ pub use super::float::IntoFloat; // used by rand_distr
+}
+mod integer;
+mod other;
+mod utils;
+#[cfg(feature="std")] mod ziggurat_tables;
+
+/// Types (distributions) that can be used to create a random instance of `T`.
+///
+/// It is possible to sample from a distribution through both the
+/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
+/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
+/// produces an iterator that samples from the distribution.
+///
+/// All implementations are expected to be immutable; this has the significant
+/// advantage of not needing to consider thread safety, and for most
+/// distributions efficient state-less sampling algorithms are available.
+///
+/// Implementations are typically expected to be portable with reproducible
+/// results when used with a PRNG with fixed seed; see the
+/// [portability chapter](https://rust-random.github.io/book/portability.html)
+/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
+/// type requires different sampling on 32-bit and 64-bit machines.
+///
+/// [`sample_iter`]: Distribution::method.sample_iter
+pub trait Distribution<T> {
+ /// Generate a random value of `T`, using `rng` as the source of randomness.
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
+
+ /// Create an iterator that generates random values of `T`, using `rng` as
+ /// the source of randomness.
+ ///
+ /// Note that this function takes `self` by value. This works since
+ /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
+ /// however borrowing is not automatic hence `distr.sample_iter(...)` may
+ /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
+ /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::thread_rng;
+ /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
+ ///
+ /// let rng = thread_rng();
+ ///
+ /// // Vec of 16 x f32:
+ /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect();
+ ///
+ /// // String:
+ /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect();
+ ///
+ /// // Dice-rolling:
+ /// let die_range = Uniform::new_inclusive(1, 6);
+ /// let mut roll_die = die_range.sample_iter(rng);
+ /// while roll_die.next().unwrap() != 6 {
+ /// println!("Not a 6; rolling again!");
+ /// }
+ /// ```
+ fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
+ where R: Rng, Self: Sized
+ {
+ DistIter {
+ distr: self,
+ rng,
+ phantom: ::core::marker::PhantomData,
+ }
+ }
+}
+
+impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
+ (*self).sample(rng)
+ }
+}
+
+
+/// An iterator that generates random values of `T` with distribution `D`,
+/// using `R` as the source of randomness.
+///
+/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
+/// See its documentation for more.
+///
+/// [`sample_iter`]: Distribution::sample_iter
+#[derive(Debug)]
+pub struct DistIter<D, R, T> {
+ distr: D,
+ rng: R,
+ phantom: ::core::marker::PhantomData<T>,
+}
+
+impl<D, R, T> Iterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng
+{
+ type Item = T;
+
+ #[inline(always)]
+ fn next(&mut self) -> Option<T> {
+ // Here, self.rng may be a reference, but we must take &mut anyway.
+ // Even if sample could take an R: Rng by value, we would need to do this
+ // since Rng is not copyable and we cannot enforce that this is "reborrowable".
+ Some(self.distr.sample(&mut self.rng))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (usize::max_value(), None)
+ }
+}
+
+impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
+
+#[cfg(features = "nightly")]
+impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
+
+
+/// A generic random value distribution, implemented for many primitive types.
+/// Usually generates values with a numerically uniform distribution, and with a
+/// range appropriate to the type.
+///
+/// ## Provided implementations
+///
+/// Assuming the provided `Rng` is well-behaved, these implementations
+/// generate values with the following ranges and distributions:
+///
+/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
+/// over all values of the type.
+/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
+/// code points in the range `0...0x10_FFFF`, except for the range
+/// `0xD800...0xDFFF` (the surrogate code points). This includes
+/// unassigned/reserved code points.
+/// * `bool`: Generates `false` or `true`, each with probability 0.5.
+/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
+/// half-open range `[0, 1)`. See notes below.
+/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
+/// normal integer variants.
+///
+/// The `Standard` distribution also supports generation of the following
+/// compound types where all component types are supported:
+///
+/// * Tuples (up to 12 elements): each element is generated sequentially.
+/// * Arrays (up to 32 elements): each element is generated sequentially;
+/// see also [`Rng::fill`] which supports arbitrary array length for integer
+/// types and tends to be faster for `u32` and smaller types.
+/// * `Option<T>` first generates a `bool`, and if true generates and returns
+/// `Some(value)` where `value: T`, otherwise returning `None`.
+///
+/// ## Custom implementations
+///
+/// The [`Standard`] distribution may be implemented for user types as follows:
+///
+/// ```
+/// # #![allow(dead_code)]
+/// use rand::Rng;
+/// use rand::distributions::{Distribution, Standard};
+///
+/// struct MyF32 {
+/// x: f32,
+/// }
+///
+/// impl Distribution<MyF32> for Standard {
+/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
+/// MyF32 { x: rng.gen() }
+/// }
+/// }
+/// ```
+///
+/// ## Example usage
+/// ```
+/// use rand::prelude::*;
+/// use rand::distributions::Standard;
+///
+/// let val: f32 = StdRng::from_entropy().sample(Standard);
+/// println!("f32 from [0, 1): {}", val);
+/// ```
+///
+/// # Floating point implementation
+/// The floating point implementations for `Standard` generate a random value in
+/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
+///
+/// All values that can be generated are of the form `n * ε/2`. For `f32`
+/// the 23 most significant random bits of a `u32` are used and for `f64` the
+/// 53 most significant bits of a `u64` are used. The conversion uses the
+/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
+///
+/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
+/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from
+/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use
+/// transmute-based methods which yield 1 bit less precision but may perform
+/// faster on some architectures (on modern Intel CPUs all methods have
+/// approximately equal performance).
+///
+/// [`Uniform`]: uniform::Uniform
+#[derive(Clone, Copy, Debug)]
+pub struct Standard;
+
+
+#[cfg(all(test, feature = "std"))]
+mod tests {
+ use crate::Rng;
+ use super::{Distribution, Uniform};
+
+ #[test]
+ fn test_distributions_iter() {
+ use crate::distributions::Open01;
+ let mut rng = crate::test::rng(210);
+ let distr = Open01;
+ let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect();
+ println!("{:?}", results);
+ }
+
+ #[test]
+ fn test_make_an_iter() {
+ fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a {
+ Uniform::new_inclusive(1, 6)
+ .sample_iter(rng)
+ .filter(|x| *x != 5)
+ .take(10)
+ }
+
+ let mut rng = crate::test::rng(211);
+ let mut count = 0;
+ for val in ten_dice_rolls_other_than_five(&mut rng) {
+ assert!(val >= 1 && val <= 6 && val != 5);
+ count += 1;
+ }
+ assert_eq!(count, 10);
+ }
+}