summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio/src/sync/mpsc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/tokio/src/sync/mpsc
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio/src/sync/mpsc')
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/block.rs387
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/bounded.rs479
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/chan.rs524
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/error.rs146
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/list.rs341
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/mod.rs64
-rw-r--r--third_party/rust/tokio/src/sync/mpsc/unbounded.rs176
7 files changed, 2117 insertions, 0 deletions
diff --git a/third_party/rust/tokio/src/sync/mpsc/block.rs b/third_party/rust/tokio/src/sync/mpsc/block.rs
new file mode 100644
index 0000000000..7bf161967b
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/block.rs
@@ -0,0 +1,387 @@
+use crate::loom::{
+ cell::UnsafeCell,
+ sync::atomic::{AtomicPtr, AtomicUsize},
+ thread,
+};
+
+use std::mem::MaybeUninit;
+use std::ops;
+use std::ptr::{self, NonNull};
+use std::sync::atomic::Ordering::{self, AcqRel, Acquire, Release};
+
+/// A block in a linked list.
+///
+/// Each block in the list can hold up to `BLOCK_CAP` messages.
+pub(crate) struct Block<T> {
+ /// The start index of this block.
+ ///
+ /// Slots in this block have indices in `start_index .. start_index + BLOCK_CAP`.
+ start_index: usize,
+
+ /// The next block in the linked list.
+ next: AtomicPtr<Block<T>>,
+
+ /// Bitfield tracking slots that are ready to have their values consumed.
+ ready_slots: AtomicUsize,
+
+ /// The observed `tail_position` value *after* the block has been passed by
+ /// `block_tail`.
+ observed_tail_position: UnsafeCell<usize>,
+
+ /// Array containing values pushed into the block. Values are stored in a
+ /// continuous array in order to improve cache line behavior when reading.
+ /// The values must be manually dropped.
+ values: Values<T>,
+}
+
+pub(crate) enum Read<T> {
+ Value(T),
+ Closed,
+}
+
+struct Values<T>([UnsafeCell<MaybeUninit<T>>; BLOCK_CAP]);
+
+use super::BLOCK_CAP;
+
+/// Masks an index to get the block identifier
+const BLOCK_MASK: usize = !(BLOCK_CAP - 1);
+
+/// Masks an index to get the value offset in a block.
+const SLOT_MASK: usize = BLOCK_CAP - 1;
+
+/// Flag tracking that a block has gone through the sender's release routine.
+///
+/// When this is set, the receiver may consider freeing the block.
+const RELEASED: usize = 1 << BLOCK_CAP;
+
+/// Flag tracking all senders dropped.
+///
+/// When this flag is set, the send half of the channel has closed.
+const TX_CLOSED: usize = RELEASED << 1;
+
+/// Mask covering all bits used to track slot readiness.
+const READY_MASK: usize = RELEASED - 1;
+
+/// Returns the index of the first slot in the block referenced by `slot_index`.
+#[inline(always)]
+pub(crate) fn start_index(slot_index: usize) -> usize {
+ BLOCK_MASK & slot_index
+}
+
+/// Returns the offset into the block referenced by `slot_index`.
+#[inline(always)]
+pub(crate) fn offset(slot_index: usize) -> usize {
+ SLOT_MASK & slot_index
+}
+
+impl<T> Block<T> {
+ pub(crate) fn new(start_index: usize) -> Block<T> {
+ Block {
+ // The absolute index in the channel of the first slot in the block.
+ start_index,
+
+ // Pointer to the next block in the linked list.
+ next: AtomicPtr::new(ptr::null_mut()),
+
+ ready_slots: AtomicUsize::new(0),
+
+ observed_tail_position: UnsafeCell::new(0),
+
+ // Value storage
+ values: unsafe { Values::uninitialized() },
+ }
+ }
+
+ /// Returns `true` if the block matches the given index
+ pub(crate) fn is_at_index(&self, index: usize) -> bool {
+ debug_assert!(offset(index) == 0);
+ self.start_index == index
+ }
+
+ /// Returns the number of blocks between `self` and the block at the
+ /// specified index.
+ ///
+ /// `start_index` must represent a block *after* `self`.
+ pub(crate) fn distance(&self, other_index: usize) -> usize {
+ debug_assert!(offset(other_index) == 0);
+ other_index.wrapping_sub(self.start_index) / BLOCK_CAP
+ }
+
+ /// Reads the value at the given offset.
+ ///
+ /// Returns `None` if the slot is empty.
+ ///
+ /// # Safety
+ ///
+ /// To maintain safety, the caller must ensure:
+ ///
+ /// * No concurrent access to the slot.
+ pub(crate) unsafe fn read(&self, slot_index: usize) -> Option<Read<T>> {
+ let offset = offset(slot_index);
+
+ let ready_bits = self.ready_slots.load(Acquire);
+
+ if !is_ready(ready_bits, offset) {
+ if is_tx_closed(ready_bits) {
+ return Some(Read::Closed);
+ }
+
+ return None;
+ }
+
+ // Get the value
+ let value = self.values[offset].with(|ptr| ptr::read(ptr));
+
+ Some(Read::Value(value.assume_init()))
+ }
+
+ /// Writes a value to the block at the given offset.
+ ///
+ /// # Safety
+ ///
+ /// To maintain safety, the caller must ensure:
+ ///
+ /// * The slot is empty.
+ /// * No concurrent access to the slot.
+ pub(crate) unsafe fn write(&self, slot_index: usize, value: T) {
+ // Get the offset into the block
+ let slot_offset = offset(slot_index);
+
+ self.values[slot_offset].with_mut(|ptr| {
+ ptr::write(ptr, MaybeUninit::new(value));
+ });
+
+ // Release the value. After this point, the slot ref may no longer
+ // be used. It is possible for the receiver to free the memory at
+ // any point.
+ self.set_ready(slot_offset);
+ }
+
+ /// Signal to the receiver that the sender half of the list is closed.
+ pub(crate) unsafe fn tx_close(&self) {
+ self.ready_slots.fetch_or(TX_CLOSED, Release);
+ }
+
+ /// Resets the block to a blank state. This enables reusing blocks in the
+ /// channel.
+ ///
+ /// # Safety
+ ///
+ /// To maintain safety, the caller must ensure:
+ ///
+ /// * All slots are empty.
+ /// * The caller holds a unique pointer to the block.
+ pub(crate) unsafe fn reclaim(&mut self) {
+ self.start_index = 0;
+ self.next = AtomicPtr::new(ptr::null_mut());
+ self.ready_slots = AtomicUsize::new(0);
+ }
+
+ /// Releases the block to the rx half for freeing.
+ ///
+ /// This function is called by the tx half once it can be guaranteed that no
+ /// more senders will attempt to access the block.
+ ///
+ /// # Safety
+ ///
+ /// To maintain safety, the caller must ensure:
+ ///
+ /// * The block will no longer be accessed by any sender.
+ pub(crate) unsafe fn tx_release(&self, tail_position: usize) {
+ // Track the observed tail_position. Any sender targetting a greater
+ // tail_position is guaranteed to not access this block.
+ self.observed_tail_position
+ .with_mut(|ptr| *ptr = tail_position);
+
+ // Set the released bit, signalling to the receiver that it is safe to
+ // free the block's memory as soon as all slots **prior** to
+ // `observed_tail_position` have been filled.
+ self.ready_slots.fetch_or(RELEASED, Release);
+ }
+
+ /// Mark a slot as ready
+ fn set_ready(&self, slot: usize) {
+ let mask = 1 << slot;
+ self.ready_slots.fetch_or(mask, Release);
+ }
+
+ /// Returns `true` when all slots have their `ready` bits set.
+ ///
+ /// This indicates that the block is in its final state and will no longer
+ /// be mutated.
+ ///
+ /// # Implementation
+ ///
+ /// The implementation walks each slot checking the `ready` flag. It might
+ /// be that it would make more sense to coalesce ready flags as bits in a
+ /// single atomic cell. However, this could have negative impact on cache
+ /// behavior as there would be many more mutations to a single slot.
+ pub(crate) fn is_final(&self) -> bool {
+ self.ready_slots.load(Acquire) & READY_MASK == READY_MASK
+ }
+
+ /// Returns the `observed_tail_position` value, if set
+ pub(crate) fn observed_tail_position(&self) -> Option<usize> {
+ if 0 == RELEASED & self.ready_slots.load(Acquire) {
+ None
+ } else {
+ Some(self.observed_tail_position.with(|ptr| unsafe { *ptr }))
+ }
+ }
+
+ /// Loads the next block
+ pub(crate) fn load_next(&self, ordering: Ordering) -> Option<NonNull<Block<T>>> {
+ let ret = NonNull::new(self.next.load(ordering));
+
+ debug_assert!(unsafe {
+ ret.map(|block| block.as_ref().start_index == self.start_index.wrapping_add(BLOCK_CAP))
+ .unwrap_or(true)
+ });
+
+ ret
+ }
+
+ /// Pushes `block` as the next block in the link.
+ ///
+ /// Returns Ok if successful, otherwise, a pointer to the next block in
+ /// the list is returned.
+ ///
+ /// This requires that the next pointer is null.
+ ///
+ /// # Ordering
+ ///
+ /// This performs a compare-and-swap on `next` using AcqRel ordering.
+ ///
+ /// # Safety
+ ///
+ /// To maintain safety, the caller must ensure:
+ ///
+ /// * `block` is not freed until it has been removed from the list.
+ pub(crate) unsafe fn try_push(
+ &self,
+ block: &mut NonNull<Block<T>>,
+ ordering: Ordering,
+ ) -> Result<(), NonNull<Block<T>>> {
+ block.as_mut().start_index = self.start_index.wrapping_add(BLOCK_CAP);
+
+ let next_ptr = self
+ .next
+ .compare_and_swap(ptr::null_mut(), block.as_ptr(), ordering);
+
+ match NonNull::new(next_ptr) {
+ Some(next_ptr) => Err(next_ptr),
+ None => Ok(()),
+ }
+ }
+
+ /// Grows the `Block` linked list by allocating and appending a new block.
+ ///
+ /// The next block in the linked list is returned. This may or may not be
+ /// the one allocated by the function call.
+ ///
+ /// # Implementation
+ ///
+ /// It is assumed that `self.next` is null. A new block is allocated with
+ /// `start_index` set to be the next block. A compare-and-swap is performed
+ /// with AcqRel memory ordering. If the compare-and-swap is successful, the
+ /// newly allocated block is released to other threads walking the block
+ /// linked list. If the compare-and-swap fails, the current thread acquires
+ /// the next block in the linked list, allowing the current thread to access
+ /// the slots.
+ pub(crate) fn grow(&self) -> NonNull<Block<T>> {
+ // Create the new block. It is assumed that the block will become the
+ // next one after `&self`. If this turns out to not be the case,
+ // `start_index` is updated accordingly.
+ let new_block = Box::new(Block::new(self.start_index + BLOCK_CAP));
+
+ let mut new_block = unsafe { NonNull::new_unchecked(Box::into_raw(new_block)) };
+
+ // Attempt to store the block. The first compare-and-swap attempt is
+ // "unrolled" due to minor differences in logic
+ //
+ // `AcqRel` is used as the ordering **only** when attempting the
+ // compare-and-swap on self.next.
+ //
+ // If the compare-and-swap fails, then the actual value of the cell is
+ // returned from this function and accessed by the caller. Given this,
+ // the memory must be acquired.
+ //
+ // `Release` ensures that the newly allocated block is available to
+ // other threads acquiring the next pointer.
+ let next = NonNull::new(self.next.compare_and_swap(
+ ptr::null_mut(),
+ new_block.as_ptr(),
+ AcqRel,
+ ));
+
+ let next = match next {
+ Some(next) => next,
+ None => {
+ // The compare-and-swap succeeded and the newly allocated block
+ // is successfully pushed.
+ return new_block;
+ }
+ };
+
+ // There already is a next block in the linked list. The newly allocated
+ // block could be dropped and the discovered next block returned;
+ // however, that would be wasteful. Instead, the linked list is walked
+ // by repeatedly attempting to compare-and-swap the pointer into the
+ // `next` register until the compare-and-swap succeed.
+ //
+ // Care is taken to update new_block's start_index field as appropriate.
+
+ let mut curr = next;
+
+ // TODO: Should this iteration be capped?
+ loop {
+ let actual = unsafe { curr.as_ref().try_push(&mut new_block, AcqRel) };
+
+ curr = match actual {
+ Ok(_) => {
+ return next;
+ }
+ Err(curr) => curr,
+ };
+
+ // When running outside of loom, this calls `spin_loop_hint`.
+ thread::yield_now();
+ }
+ }
+}
+
+/// Returns `true` if the specificed slot has a value ready to be consumed.
+fn is_ready(bits: usize, slot: usize) -> bool {
+ let mask = 1 << slot;
+ mask == mask & bits
+}
+
+/// Returns `true` if the closed flag has been set.
+fn is_tx_closed(bits: usize) -> bool {
+ TX_CLOSED == bits & TX_CLOSED
+}
+
+impl<T> Values<T> {
+ unsafe fn uninitialized() -> Values<T> {
+ let mut vals = MaybeUninit::uninit();
+
+ // When fuzzing, `UnsafeCell` needs to be initialized.
+ if_loom! {
+ let p = vals.as_mut_ptr() as *mut UnsafeCell<MaybeUninit<T>>;
+ for i in 0..BLOCK_CAP {
+ p.add(i)
+ .write(UnsafeCell::new(MaybeUninit::uninit()));
+ }
+ }
+
+ Values(vals.assume_init())
+ }
+}
+
+impl<T> ops::Index<usize> for Values<T> {
+ type Output = UnsafeCell<MaybeUninit<T>>;
+
+ fn index(&self, index: usize) -> &Self::Output {
+ self.0.index(index)
+ }
+}
diff --git a/third_party/rust/tokio/src/sync/mpsc/bounded.rs b/third_party/rust/tokio/src/sync/mpsc/bounded.rs
new file mode 100644
index 0000000000..afca8c524d
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/bounded.rs
@@ -0,0 +1,479 @@
+use crate::sync::mpsc::chan;
+use crate::sync::mpsc::error::{ClosedError, SendError, TryRecvError, TrySendError};
+use crate::sync::semaphore_ll as semaphore;
+
+cfg_time! {
+ use crate::sync::mpsc::error::SendTimeoutError;
+ use crate::time::Duration;
+}
+
+use std::fmt;
+use std::task::{Context, Poll};
+
+/// Send values to the associated `Receiver`.
+///
+/// Instances are created by the [`channel`](channel) function.
+pub struct Sender<T> {
+ chan: chan::Tx<T, Semaphore>,
+}
+
+impl<T> Clone for Sender<T> {
+ fn clone(&self) -> Self {
+ Sender {
+ chan: self.chan.clone(),
+ }
+ }
+}
+
+impl<T> fmt::Debug for Sender<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Sender")
+ .field("chan", &self.chan)
+ .finish()
+ }
+}
+
+/// Receive values from the associated `Sender`.
+///
+/// Instances are created by the [`channel`](channel) function.
+pub struct Receiver<T> {
+ /// The channel receiver
+ chan: chan::Rx<T, Semaphore>,
+}
+
+impl<T> fmt::Debug for Receiver<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Receiver")
+ .field("chan", &self.chan)
+ .finish()
+ }
+}
+
+/// Creates a bounded mpsc channel for communicating between asynchronous tasks,
+/// returning the sender/receiver halves.
+///
+/// All data sent on `Sender` will become available on `Receiver` in the same
+/// order as it was sent.
+///
+/// The `Sender` can be cloned to `send` to the same channel from multiple code
+/// locations. Only one `Receiver` is supported.
+///
+/// If the `Receiver` is disconnected while trying to `send`, the `send` method
+/// will return a `SendError`. Similarly, if `Sender` is disconnected while
+/// trying to `recv`, the `recv` method will return a `RecvError`.
+///
+/// # Examples
+///
+/// ```rust
+/// use tokio::sync::mpsc;
+///
+/// #[tokio::main]
+/// async fn main() {
+/// let (mut tx, mut rx) = mpsc::channel(100);
+///
+/// tokio::spawn(async move {
+/// for i in 0..10 {
+/// if let Err(_) = tx.send(i).await {
+/// println!("receiver dropped");
+/// return;
+/// }
+/// }
+/// });
+///
+/// while let Some(i) = rx.recv().await {
+/// println!("got = {}", i);
+/// }
+/// }
+/// ```
+pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
+ assert!(buffer > 0, "mpsc bounded channel requires buffer > 0");
+ let semaphore = (semaphore::Semaphore::new(buffer), buffer);
+ let (tx, rx) = chan::channel(semaphore);
+
+ let tx = Sender::new(tx);
+ let rx = Receiver::new(rx);
+
+ (tx, rx)
+}
+
+/// Channel semaphore is a tuple of the semaphore implementation and a `usize`
+/// representing the channel bound.
+type Semaphore = (semaphore::Semaphore, usize);
+
+impl<T> Receiver<T> {
+ pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> Receiver<T> {
+ Receiver { chan }
+ }
+
+ /// Receives the next value for this receiver.
+ ///
+ /// `None` is returned when all `Sender` halves have dropped, indicating
+ /// that no further values can be sent on the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (mut tx, mut rx) = mpsc::channel(100);
+ ///
+ /// tokio::spawn(async move {
+ /// tx.send("hello").await.unwrap();
+ /// });
+ ///
+ /// assert_eq!(Some("hello"), rx.recv().await);
+ /// assert_eq!(None, rx.recv().await);
+ /// }
+ /// ```
+ ///
+ /// Values are buffered:
+ ///
+ /// ```
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (mut tx, mut rx) = mpsc::channel(100);
+ ///
+ /// tx.send("hello").await.unwrap();
+ /// tx.send("world").await.unwrap();
+ ///
+ /// assert_eq!(Some("hello"), rx.recv().await);
+ /// assert_eq!(Some("world"), rx.recv().await);
+ /// }
+ /// ```
+ pub async fn recv(&mut self) -> Option<T> {
+ use crate::future::poll_fn;
+
+ poll_fn(|cx| self.poll_recv(cx)).await
+ }
+
+ #[doc(hidden)] // TODO: document
+ pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
+ self.chan.recv(cx)
+ }
+
+ /// Attempts to return a pending value on this receiver without blocking.
+ ///
+ /// This method will never block the caller in order to wait for data to
+ /// become available. Instead, this will always return immediately with
+ /// a possible option of pending data on the channel.
+ ///
+ /// This is useful for a flavor of "optimistic check" before deciding to
+ /// block on a receiver.
+ ///
+ /// Compared with recv, this function has two failure cases instead of
+ /// one (one for disconnection, one for an empty buffer).
+ pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
+ self.chan.try_recv()
+ }
+
+ /// Closes the receiving half of a channel, without dropping it.
+ ///
+ /// This prevents any further messages from being sent on the channel while
+ /// still enabling the receiver to drain messages that are buffered.
+ pub fn close(&mut self) {
+ self.chan.close();
+ }
+}
+
+impl<T> Unpin for Receiver<T> {}
+
+cfg_stream! {
+ impl<T> crate::stream::Stream for Receiver<T> {
+ type Item = T;
+
+ fn poll_next(mut self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T>> {
+ self.poll_recv(cx)
+ }
+ }
+}
+
+impl<T> Sender<T> {
+ pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> Sender<T> {
+ Sender { chan }
+ }
+
+ /// Sends a value, waiting until there is capacity.
+ ///
+ /// A successful send occurs when it is determined that the other end of the
+ /// channel has not hung up already. An unsuccessful send would be one where
+ /// the corresponding receiver has already been closed. Note that a return
+ /// value of `Err` means that the data will never be received, but a return
+ /// value of `Ok` does not mean that the data will be received. It is
+ /// possible for the corresponding receiver to hang up immediately after
+ /// this function returns `Ok`.
+ ///
+ /// # Errors
+ ///
+ /// If the receive half of the channel is closed, either due to [`close`]
+ /// being called or the [`Receiver`] handle dropping, the function returns
+ /// an error. The error includes the value passed to `send`.
+ ///
+ /// [`close`]: Receiver::close
+ /// [`Receiver`]: Receiver
+ ///
+ /// # Examples
+ ///
+ /// In the following example, each call to `send` will block until the
+ /// previously sent value was received.
+ ///
+ /// ```rust
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (mut tx, mut rx) = mpsc::channel(1);
+ ///
+ /// tokio::spawn(async move {
+ /// for i in 0..10 {
+ /// if let Err(_) = tx.send(i).await {
+ /// println!("receiver dropped");
+ /// return;
+ /// }
+ /// }
+ /// });
+ ///
+ /// while let Some(i) = rx.recv().await {
+ /// println!("got = {}", i);
+ /// }
+ /// }
+ /// ```
+ pub async fn send(&mut self, value: T) -> Result<(), SendError<T>> {
+ use crate::future::poll_fn;
+
+ if poll_fn(|cx| self.poll_ready(cx)).await.is_err() {
+ return Err(SendError(value));
+ }
+
+ match self.try_send(value) {
+ Ok(()) => Ok(()),
+ Err(TrySendError::Full(_)) => unreachable!(),
+ Err(TrySendError::Closed(value)) => Err(SendError(value)),
+ }
+ }
+
+ /// Attempts to immediately send a message on this `Sender`
+ ///
+ /// This method differs from [`send`] by returning immediately if the channel's
+ /// buffer is full or no receiver is waiting to acquire some data. Compared
+ /// with [`send`], this function has two failure cases instead of one (one for
+ /// disconnection, one for a full buffer).
+ ///
+ /// This function may be paired with [`poll_ready`] in order to wait for
+ /// channel capacity before trying to send a value.
+ ///
+ /// # Errors
+ ///
+ /// If the channel capacity has been reached, i.e., the channel has `n`
+ /// buffered values where `n` is the argument passed to [`channel`], then an
+ /// error is returned.
+ ///
+ /// If the receive half of the channel is closed, either due to [`close`]
+ /// being called or the [`Receiver`] handle dropping, the function returns
+ /// an error. The error includes the value passed to `send`.
+ ///
+ /// [`send`]: Sender::send
+ /// [`poll_ready`]: Sender::poll_ready
+ /// [`channel`]: channel
+ /// [`close`]: Receiver::close
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// // Create a channel with buffer size 1
+ /// let (mut tx1, mut rx) = mpsc::channel(1);
+ /// let mut tx2 = tx1.clone();
+ ///
+ /// tokio::spawn(async move {
+ /// tx1.send(1).await.unwrap();
+ /// tx1.send(2).await.unwrap();
+ /// // task waits until the receiver receives a value.
+ /// });
+ ///
+ /// tokio::spawn(async move {
+ /// // This will return an error and send
+ /// // no message if the buffer is full
+ /// let _ = tx2.try_send(3);
+ /// });
+ ///
+ /// let mut msg;
+ /// msg = rx.recv().await.unwrap();
+ /// println!("message {} received", msg);
+ ///
+ /// msg = rx.recv().await.unwrap();
+ /// println!("message {} received", msg);
+ ///
+ /// // Third message may have never been sent
+ /// match rx.recv().await {
+ /// Some(msg) => println!("message {} received", msg),
+ /// None => println!("the third message was never sent"),
+ /// }
+ /// }
+ /// ```
+ pub fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
+ self.chan.try_send(message)?;
+ Ok(())
+ }
+
+ /// Sends a value, waiting until there is capacity, but only for a limited time.
+ ///
+ /// Shares the same success and error conditions as [`send`], adding one more
+ /// condition for an unsuccessful send, which is when the provided timeout has
+ /// elapsed, and there is no capacity available.
+ ///
+ /// [`send`]: Sender::send
+ ///
+ /// # Errors
+ ///
+ /// If the receive half of the channel is closed, either due to [`close`]
+ /// being called or the [`Receiver`] having been dropped,
+ /// the function returns an error. The error includes the value passed to `send`.
+ ///
+ /// [`close`]: Receiver::close
+ /// [`Receiver`]: Receiver
+ ///
+ /// # Examples
+ ///
+ /// In the following example, each call to `send_timeout` will block until the
+ /// previously sent value was received, unless the timeout has elapsed.
+ ///
+ /// ```rust
+ /// use tokio::sync::mpsc;
+ /// use tokio::time::{delay_for, Duration};
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (mut tx, mut rx) = mpsc::channel(1);
+ ///
+ /// tokio::spawn(async move {
+ /// for i in 0..10 {
+ /// if let Err(e) = tx.send_timeout(i, Duration::from_millis(100)).await {
+ /// println!("send error: #{:?}", e);
+ /// return;
+ /// }
+ /// }
+ /// });
+ ///
+ /// while let Some(i) = rx.recv().await {
+ /// println!("got = {}", i);
+ /// delay_for(Duration::from_millis(200)).await;
+ /// }
+ /// }
+ /// ```
+ #[cfg(feature = "time")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "time")))]
+ pub async fn send_timeout(
+ &mut self,
+ value: T,
+ timeout: Duration,
+ ) -> Result<(), SendTimeoutError<T>> {
+ use crate::future::poll_fn;
+
+ match crate::time::timeout(timeout, poll_fn(|cx| self.poll_ready(cx))).await {
+ Err(_) => {
+ return Err(SendTimeoutError::Timeout(value));
+ }
+ Ok(Err(_)) => {
+ return Err(SendTimeoutError::Closed(value));
+ }
+ Ok(_) => {}
+ }
+
+ match self.try_send(value) {
+ Ok(()) => Ok(()),
+ Err(TrySendError::Full(_)) => unreachable!(),
+ Err(TrySendError::Closed(value)) => Err(SendTimeoutError::Closed(value)),
+ }
+ }
+
+ /// Returns `Poll::Ready(Ok(()))` when the channel is able to accept another item.
+ ///
+ /// If the channel is full, then `Poll::Pending` is returned and the task is notified when a
+ /// slot becomes available.
+ ///
+ /// Once `poll_ready` returns `Poll::Ready(Ok(()))`, a call to `try_send` will succeed unless
+ /// the channel has since been closed. To provide this guarantee, the channel reserves one slot
+ /// in the channel for the coming send. This reserved slot is not available to other `Sender`
+ /// instances, so you need to be careful to not end up with deadlocks by blocking after calling
+ /// `poll_ready` but before sending an element.
+ ///
+ /// If, after `poll_ready` succeeds, you decide you do not wish to send an item after all, you
+ /// can use [`disarm`](Sender::disarm) to release the reserved slot.
+ ///
+ /// Until an item is sent or [`disarm`](Sender::disarm) is called, repeated calls to
+ /// `poll_ready` will return either `Poll::Ready(Ok(()))` or `Poll::Ready(Err(_))` if channel
+ /// is closed.
+ pub fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), ClosedError>> {
+ self.chan.poll_ready(cx).map_err(|_| ClosedError::new())
+ }
+
+ /// Undo a successful call to `poll_ready`.
+ ///
+ /// Once a call to `poll_ready` returns `Poll::Ready(Ok(()))`, it holds up one slot in the
+ /// channel to make room for the coming send. `disarm` allows you to give up that slot if you
+ /// decide you do not wish to send an item after all. After calling `disarm`, you must call
+ /// `poll_ready` until it returns `Poll::Ready(Ok(()))` before attempting to send again.
+ ///
+ /// Returns `false` if no slot is reserved for this sender (usually because `poll_ready` was
+ /// not previously called, or did not succeed).
+ ///
+ /// # Motivation
+ ///
+ /// Since `poll_ready` takes up one of the finite number of slots in a bounded channel, callers
+ /// need to send an item shortly after `poll_ready` succeeds. If they do not, idle senders may
+ /// take up all the slots of the channel, and prevent active senders from getting any requests
+ /// through. Consider this code that forwards from one channel to another:
+ ///
+ /// ```rust,ignore
+ /// loop {
+ /// ready!(tx.poll_ready(cx))?;
+ /// if let Some(item) = ready!(rx.poll_recv(cx)) {
+ /// tx.try_send(item)?;
+ /// } else {
+ /// break;
+ /// }
+ /// }
+ /// ```
+ ///
+ /// If many such forwarders exist, and they all forward into a single (cloned) `Sender`, then
+ /// any number of forwarders may be waiting for `rx.poll_recv` at the same time. While they do,
+ /// they are effectively each reducing the channel's capacity by 1. If enough of these
+ /// forwarders are idle, forwarders whose `rx` _do_ have elements will be unable to find a spot
+ /// for them through `poll_ready`, and the system will deadlock.
+ ///
+ /// `disarm` solves this problem by allowing you to give up the reserved slot if you find that
+ /// you have to block. We can then fix the code above by writing:
+ ///
+ /// ```rust,ignore
+ /// loop {
+ /// ready!(tx.poll_ready(cx))?;
+ /// let item = rx.poll_recv(cx);
+ /// if let Poll::Ready(Ok(_)) = item {
+ /// // we're going to send the item below, so don't disarm
+ /// } else {
+ /// // give up our send slot, we won't need it for a while
+ /// tx.disarm();
+ /// }
+ /// if let Some(item) = ready!(item) {
+ /// tx.try_send(item)?;
+ /// } else {
+ /// break;
+ /// }
+ /// }
+ /// ```
+ pub fn disarm(&mut self) -> bool {
+ if self.chan.is_ready() {
+ self.chan.disarm();
+ true
+ } else {
+ false
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/sync/mpsc/chan.rs b/third_party/rust/tokio/src/sync/mpsc/chan.rs
new file mode 100644
index 0000000000..3466395788
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/chan.rs
@@ -0,0 +1,524 @@
+use crate::loom::cell::UnsafeCell;
+use crate::loom::future::AtomicWaker;
+use crate::loom::sync::atomic::AtomicUsize;
+use crate::loom::sync::Arc;
+use crate::sync::mpsc::error::{ClosedError, TryRecvError};
+use crate::sync::mpsc::{error, list};
+
+use std::fmt;
+use std::process;
+use std::sync::atomic::Ordering::{AcqRel, Relaxed};
+use std::task::Poll::{Pending, Ready};
+use std::task::{Context, Poll};
+
+/// Channel sender
+pub(crate) struct Tx<T, S: Semaphore> {
+ inner: Arc<Chan<T, S>>,
+ permit: S::Permit,
+}
+
+impl<T, S: Semaphore> fmt::Debug for Tx<T, S>
+where
+ S::Permit: fmt::Debug,
+ S: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Tx")
+ .field("inner", &self.inner)
+ .field("permit", &self.permit)
+ .finish()
+ }
+}
+
+/// Channel receiver
+pub(crate) struct Rx<T, S: Semaphore> {
+ inner: Arc<Chan<T, S>>,
+}
+
+impl<T, S: Semaphore> fmt::Debug for Rx<T, S>
+where
+ S: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Rx").field("inner", &self.inner).finish()
+ }
+}
+
+#[derive(Debug, Eq, PartialEq)]
+pub(crate) enum TrySendError {
+ Closed,
+ Full,
+}
+
+impl<T> From<(T, TrySendError)> for error::SendError<T> {
+ fn from(src: (T, TrySendError)) -> error::SendError<T> {
+ match src.1 {
+ TrySendError::Closed => error::SendError(src.0),
+ TrySendError::Full => unreachable!(),
+ }
+ }
+}
+
+impl<T> From<(T, TrySendError)> for error::TrySendError<T> {
+ fn from(src: (T, TrySendError)) -> error::TrySendError<T> {
+ match src.1 {
+ TrySendError::Closed => error::TrySendError::Closed(src.0),
+ TrySendError::Full => error::TrySendError::Full(src.0),
+ }
+ }
+}
+
+pub(crate) trait Semaphore {
+ type Permit;
+
+ fn new_permit() -> Self::Permit;
+
+ /// The permit is dropped without a value being sent. In this case, the
+ /// permit must be returned to the semaphore.
+ fn drop_permit(&self, permit: &mut Self::Permit);
+
+ fn is_idle(&self) -> bool;
+
+ fn add_permit(&self);
+
+ fn poll_acquire(
+ &self,
+ cx: &mut Context<'_>,
+ permit: &mut Self::Permit,
+ ) -> Poll<Result<(), ClosedError>>;
+
+ fn try_acquire(&self, permit: &mut Self::Permit) -> Result<(), TrySendError>;
+
+ /// A value was sent into the channel and the permit held by `tx` is
+ /// dropped. In this case, the permit should not immeditely be returned to
+ /// the semaphore. Instead, the permit is returnred to the semaphore once
+ /// the sent value is read by the rx handle.
+ fn forget(&self, permit: &mut Self::Permit);
+
+ fn close(&self);
+}
+
+struct Chan<T, S> {
+ /// Handle to the push half of the lock-free list.
+ tx: list::Tx<T>,
+
+ /// Coordinates access to channel's capacity.
+ semaphore: S,
+
+ /// Receiver waker. Notified when a value is pushed into the channel.
+ rx_waker: AtomicWaker,
+
+ /// Tracks the number of outstanding sender handles.
+ ///
+ /// When this drops to zero, the send half of the channel is closed.
+ tx_count: AtomicUsize,
+
+ /// Only accessed by `Rx` handle.
+ rx_fields: UnsafeCell<RxFields<T>>,
+}
+
+impl<T, S> fmt::Debug for Chan<T, S>
+where
+ S: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Chan")
+ .field("tx", &self.tx)
+ .field("semaphore", &self.semaphore)
+ .field("rx_waker", &self.rx_waker)
+ .field("tx_count", &self.tx_count)
+ .field("rx_fields", &"...")
+ .finish()
+ }
+}
+
+/// Fields only accessed by `Rx` handle.
+struct RxFields<T> {
+ /// Channel receiver. This field is only accessed by the `Receiver` type.
+ list: list::Rx<T>,
+
+ /// `true` if `Rx::close` is called.
+ rx_closed: bool,
+}
+
+impl<T> fmt::Debug for RxFields<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("RxFields")
+ .field("list", &self.list)
+ .field("rx_closed", &self.rx_closed)
+ .finish()
+ }
+}
+
+unsafe impl<T: Send, S: Send> Send for Chan<T, S> {}
+unsafe impl<T: Send, S: Sync> Sync for Chan<T, S> {}
+
+pub(crate) fn channel<T, S>(semaphore: S) -> (Tx<T, S>, Rx<T, S>)
+where
+ S: Semaphore,
+{
+ let (tx, rx) = list::channel();
+
+ let chan = Arc::new(Chan {
+ tx,
+ semaphore,
+ rx_waker: AtomicWaker::new(),
+ tx_count: AtomicUsize::new(1),
+ rx_fields: UnsafeCell::new(RxFields {
+ list: rx,
+ rx_closed: false,
+ }),
+ });
+
+ (Tx::new(chan.clone()), Rx::new(chan))
+}
+
+// ===== impl Tx =====
+
+impl<T, S> Tx<T, S>
+where
+ S: Semaphore,
+{
+ fn new(chan: Arc<Chan<T, S>>) -> Tx<T, S> {
+ Tx {
+ inner: chan,
+ permit: S::new_permit(),
+ }
+ }
+
+ pub(crate) fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), ClosedError>> {
+ self.inner.semaphore.poll_acquire(cx, &mut self.permit)
+ }
+
+ pub(crate) fn disarm(&mut self) {
+ // TODO: should this error if not acquired?
+ self.inner.semaphore.drop_permit(&mut self.permit)
+ }
+
+ /// Send a message and notify the receiver.
+ pub(crate) fn try_send(&mut self, value: T) -> Result<(), (T, TrySendError)> {
+ self.inner.try_send(value, &mut self.permit)
+ }
+}
+
+impl<T> Tx<T, (crate::sync::semaphore_ll::Semaphore, usize)> {
+ pub(crate) fn is_ready(&self) -> bool {
+ self.permit.is_acquired()
+ }
+}
+
+impl<T> Tx<T, AtomicUsize> {
+ pub(crate) fn send_unbounded(&self, value: T) -> Result<(), (T, TrySendError)> {
+ self.inner.try_send(value, &mut ())
+ }
+}
+
+impl<T, S> Clone for Tx<T, S>
+where
+ S: Semaphore,
+{
+ fn clone(&self) -> Tx<T, S> {
+ // Using a Relaxed ordering here is sufficient as the caller holds a
+ // strong ref to `self`, preventing a concurrent decrement to zero.
+ self.inner.tx_count.fetch_add(1, Relaxed);
+
+ Tx {
+ inner: self.inner.clone(),
+ permit: S::new_permit(),
+ }
+ }
+}
+
+impl<T, S> Drop for Tx<T, S>
+where
+ S: Semaphore,
+{
+ fn drop(&mut self) {
+ self.inner.semaphore.drop_permit(&mut self.permit);
+
+ if self.inner.tx_count.fetch_sub(1, AcqRel) != 1 {
+ return;
+ }
+
+ // Close the list, which sends a `Close` message
+ self.inner.tx.close();
+
+ // Notify the receiver
+ self.inner.rx_waker.wake();
+ }
+}
+
+// ===== impl Rx =====
+
+impl<T, S> Rx<T, S>
+where
+ S: Semaphore,
+{
+ fn new(chan: Arc<Chan<T, S>>) -> Rx<T, S> {
+ Rx { inner: chan }
+ }
+
+ pub(crate) fn close(&mut self) {
+ self.inner.rx_fields.with_mut(|rx_fields_ptr| {
+ let rx_fields = unsafe { &mut *rx_fields_ptr };
+
+ if rx_fields.rx_closed {
+ return;
+ }
+
+ rx_fields.rx_closed = true;
+ });
+
+ self.inner.semaphore.close();
+ }
+
+ /// Receive the next value
+ pub(crate) fn recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
+ use super::block::Read::*;
+
+ // Keep track of task budget
+ ready!(crate::coop::poll_proceed(cx));
+
+ self.inner.rx_fields.with_mut(|rx_fields_ptr| {
+ let rx_fields = unsafe { &mut *rx_fields_ptr };
+
+ macro_rules! try_recv {
+ () => {
+ match rx_fields.list.pop(&self.inner.tx) {
+ Some(Value(value)) => {
+ self.inner.semaphore.add_permit();
+ return Ready(Some(value));
+ }
+ Some(Closed) => {
+ // TODO: This check may not be required as it most
+ // likely can only return `true` at this point. A
+ // channel is closed when all tx handles are
+ // dropped. Dropping a tx handle releases memory,
+ // which ensures that if dropping the tx handle is
+ // visible, then all messages sent are also visible.
+ assert!(self.inner.semaphore.is_idle());
+ return Ready(None);
+ }
+ None => {} // fall through
+ }
+ };
+ }
+
+ try_recv!();
+
+ self.inner.rx_waker.register_by_ref(cx.waker());
+
+ // It is possible that a value was pushed between attempting to read
+ // and registering the task, so we have to check the channel a
+ // second time here.
+ try_recv!();
+
+ if rx_fields.rx_closed && self.inner.semaphore.is_idle() {
+ Ready(None)
+ } else {
+ Pending
+ }
+ })
+ }
+
+ /// Receives the next value without blocking
+ pub(crate) fn try_recv(&mut self) -> Result<T, TryRecvError> {
+ use super::block::Read::*;
+ self.inner.rx_fields.with_mut(|rx_fields_ptr| {
+ let rx_fields = unsafe { &mut *rx_fields_ptr };
+ match rx_fields.list.pop(&self.inner.tx) {
+ Some(Value(value)) => {
+ self.inner.semaphore.add_permit();
+ Ok(value)
+ }
+ Some(Closed) => Err(TryRecvError::Closed),
+ None => Err(TryRecvError::Empty),
+ }
+ })
+ }
+}
+
+impl<T, S> Drop for Rx<T, S>
+where
+ S: Semaphore,
+{
+ fn drop(&mut self) {
+ use super::block::Read::Value;
+
+ self.close();
+
+ self.inner.rx_fields.with_mut(|rx_fields_ptr| {
+ let rx_fields = unsafe { &mut *rx_fields_ptr };
+
+ while let Some(Value(_)) = rx_fields.list.pop(&self.inner.tx) {
+ self.inner.semaphore.add_permit();
+ }
+ })
+ }
+}
+
+// ===== impl Chan =====
+
+impl<T, S> Chan<T, S>
+where
+ S: Semaphore,
+{
+ fn try_send(&self, value: T, permit: &mut S::Permit) -> Result<(), (T, TrySendError)> {
+ if let Err(e) = self.semaphore.try_acquire(permit) {
+ return Err((value, e));
+ }
+
+ // Push the value
+ self.tx.push(value);
+
+ // Notify the rx task
+ self.rx_waker.wake();
+
+ // Release the permit
+ self.semaphore.forget(permit);
+
+ Ok(())
+ }
+}
+
+impl<T, S> Drop for Chan<T, S> {
+ fn drop(&mut self) {
+ use super::block::Read::Value;
+
+ // Safety: the only owner of the rx fields is Chan, and eing
+ // inside its own Drop means we're the last ones to touch it.
+ self.rx_fields.with_mut(|rx_fields_ptr| {
+ let rx_fields = unsafe { &mut *rx_fields_ptr };
+
+ while let Some(Value(_)) = rx_fields.list.pop(&self.tx) {}
+ unsafe { rx_fields.list.free_blocks() };
+ });
+ }
+}
+
+use crate::sync::semaphore_ll::TryAcquireError;
+
+impl From<TryAcquireError> for TrySendError {
+ fn from(src: TryAcquireError) -> TrySendError {
+ if src.is_closed() {
+ TrySendError::Closed
+ } else if src.is_no_permits() {
+ TrySendError::Full
+ } else {
+ unreachable!();
+ }
+ }
+}
+
+// ===== impl Semaphore for (::Semaphore, capacity) =====
+
+use crate::sync::semaphore_ll::Permit;
+
+impl Semaphore for (crate::sync::semaphore_ll::Semaphore, usize) {
+ type Permit = Permit;
+
+ fn new_permit() -> Permit {
+ Permit::new()
+ }
+
+ fn drop_permit(&self, permit: &mut Permit) {
+ permit.release(1, &self.0);
+ }
+
+ fn add_permit(&self) {
+ self.0.add_permits(1)
+ }
+
+ fn is_idle(&self) -> bool {
+ self.0.available_permits() == self.1
+ }
+
+ fn poll_acquire(
+ &self,
+ cx: &mut Context<'_>,
+ permit: &mut Permit,
+ ) -> Poll<Result<(), ClosedError>> {
+ // Keep track of task budget
+ ready!(crate::coop::poll_proceed(cx));
+
+ permit
+ .poll_acquire(cx, 1, &self.0)
+ .map_err(|_| ClosedError::new())
+ }
+
+ fn try_acquire(&self, permit: &mut Permit) -> Result<(), TrySendError> {
+ permit.try_acquire(1, &self.0)?;
+ Ok(())
+ }
+
+ fn forget(&self, permit: &mut Self::Permit) {
+ permit.forget(1);
+ }
+
+ fn close(&self) {
+ self.0.close();
+ }
+}
+
+// ===== impl Semaphore for AtomicUsize =====
+
+use std::sync::atomic::Ordering::{Acquire, Release};
+use std::usize;
+
+impl Semaphore for AtomicUsize {
+ type Permit = ();
+
+ fn new_permit() {}
+
+ fn drop_permit(&self, _permit: &mut ()) {}
+
+ fn add_permit(&self) {
+ let prev = self.fetch_sub(2, Release);
+
+ if prev >> 1 == 0 {
+ // Something went wrong
+ process::abort();
+ }
+ }
+
+ fn is_idle(&self) -> bool {
+ self.load(Acquire) >> 1 == 0
+ }
+
+ fn poll_acquire(
+ &self,
+ _cx: &mut Context<'_>,
+ permit: &mut (),
+ ) -> Poll<Result<(), ClosedError>> {
+ Ready(self.try_acquire(permit).map_err(|_| ClosedError::new()))
+ }
+
+ fn try_acquire(&self, _permit: &mut ()) -> Result<(), TrySendError> {
+ let mut curr = self.load(Acquire);
+
+ loop {
+ if curr & 1 == 1 {
+ return Err(TrySendError::Closed);
+ }
+
+ if curr == usize::MAX ^ 1 {
+ // Overflowed the ref count. There is no safe way to recover, so
+ // abort the process. In practice, this should never happen.
+ process::abort()
+ }
+
+ match self.compare_exchange(curr, curr + 2, AcqRel, Acquire) {
+ Ok(_) => return Ok(()),
+ Err(actual) => {
+ curr = actual;
+ }
+ }
+ }
+ }
+
+ fn forget(&self, _permit: &mut ()) {}
+
+ fn close(&self) {
+ self.fetch_or(1, Release);
+ }
+}
diff --git a/third_party/rust/tokio/src/sync/mpsc/error.rs b/third_party/rust/tokio/src/sync/mpsc/error.rs
new file mode 100644
index 0000000000..72c42aa53e
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/error.rs
@@ -0,0 +1,146 @@
+//! Channel error types
+
+use std::error::Error;
+use std::fmt;
+
+/// Error returned by the `Sender`.
+#[derive(Debug)]
+pub struct SendError<T>(pub T);
+
+impl<T> fmt::Display for SendError<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "channel closed")
+ }
+}
+
+impl<T: fmt::Debug> std::error::Error for SendError<T> {}
+
+// ===== TrySendError =====
+
+/// This enumeration is the list of the possible error outcomes for the
+/// [try_send](super::Sender::try_send) method.
+#[derive(Debug)]
+pub enum TrySendError<T> {
+ /// The data could not be sent on the channel because the channel is
+ /// currently full and sending would require blocking.
+ Full(T),
+
+ /// The receive half of the channel was explicitly closed or has been
+ /// dropped.
+ Closed(T),
+}
+
+impl<T: fmt::Debug> Error for TrySendError<T> {}
+
+impl<T> fmt::Display for TrySendError<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ fmt,
+ "{}",
+ match self {
+ TrySendError::Full(..) => "no available capacity",
+ TrySendError::Closed(..) => "channel closed",
+ }
+ )
+ }
+}
+
+impl<T> From<SendError<T>> for TrySendError<T> {
+ fn from(src: SendError<T>) -> TrySendError<T> {
+ TrySendError::Closed(src.0)
+ }
+}
+
+// ===== RecvError =====
+
+/// Error returned by `Receiver`.
+#[derive(Debug)]
+pub struct RecvError(());
+
+impl fmt::Display for RecvError {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "channel closed")
+ }
+}
+
+impl Error for RecvError {}
+
+// ===== TryRecvError =====
+
+/// This enumeration is the list of the possible reasons that try_recv
+/// could not return data when called.
+#[derive(Debug, PartialEq)]
+pub enum TryRecvError {
+ /// This channel is currently empty, but the Sender(s) have not yet
+ /// disconnected, so data may yet become available.
+ Empty,
+ /// The channel's sending half has been closed, and there will
+ /// never be any more data received on it.
+ Closed,
+}
+
+impl fmt::Display for TryRecvError {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ fmt,
+ "{}",
+ match self {
+ TryRecvError::Empty => "channel empty",
+ TryRecvError::Closed => "channel closed",
+ }
+ )
+ }
+}
+
+impl Error for TryRecvError {}
+
+// ===== ClosedError =====
+
+/// Error returned by [`Sender::poll_ready`](super::Sender::poll_ready).
+#[derive(Debug)]
+pub struct ClosedError(());
+
+impl ClosedError {
+ pub(crate) fn new() -> ClosedError {
+ ClosedError(())
+ }
+}
+
+impl fmt::Display for ClosedError {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "channel closed")
+ }
+}
+
+impl Error for ClosedError {}
+
+cfg_time! {
+ // ===== SendTimeoutError =====
+
+ #[derive(Debug)]
+ /// Error returned by [`Sender::send_timeout`](super::Sender::send_timeout)].
+ pub enum SendTimeoutError<T> {
+ /// The data could not be sent on the channel because the channel is
+ /// full, and the timeout to send has elapsed.
+ Timeout(T),
+
+ /// The receive half of the channel was explicitly closed or has been
+ /// dropped.
+ Closed(T),
+ }
+
+ impl<T: fmt::Debug> Error for SendTimeoutError<T> {}
+
+ impl<T> fmt::Display for SendTimeoutError<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ fmt,
+ "{}",
+ match self {
+ SendTimeoutError::Timeout(..) => "timed out waiting on send operation",
+ SendTimeoutError::Closed(..) => "channel closed",
+ }
+ )
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/sync/mpsc/list.rs b/third_party/rust/tokio/src/sync/mpsc/list.rs
new file mode 100644
index 0000000000..53f82a25ef
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/list.rs
@@ -0,0 +1,341 @@
+//! A concurrent, lock-free, FIFO list.
+
+use crate::loom::{
+ sync::atomic::{AtomicPtr, AtomicUsize},
+ thread,
+};
+use crate::sync::mpsc::block::{self, Block};
+
+use std::fmt;
+use std::ptr::NonNull;
+use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
+
+/// List queue transmit handle
+pub(crate) struct Tx<T> {
+ /// Tail in the `Block` mpmc list.
+ block_tail: AtomicPtr<Block<T>>,
+
+ /// Position to push the next message. This reference a block and offset
+ /// into the block.
+ tail_position: AtomicUsize,
+}
+
+/// List queue receive handle
+pub(crate) struct Rx<T> {
+ /// Pointer to the block being processed
+ head: NonNull<Block<T>>,
+
+ /// Next slot index to process
+ index: usize,
+
+ /// Pointer to the next block pending release
+ free_head: NonNull<Block<T>>,
+}
+
+pub(crate) fn channel<T>() -> (Tx<T>, Rx<T>) {
+ // Create the initial block shared between the tx and rx halves.
+ let initial_block = Box::new(Block::new(0));
+ let initial_block_ptr = Box::into_raw(initial_block);
+
+ let tx = Tx {
+ block_tail: AtomicPtr::new(initial_block_ptr),
+ tail_position: AtomicUsize::new(0),
+ };
+
+ let head = NonNull::new(initial_block_ptr).unwrap();
+
+ let rx = Rx {
+ head,
+ index: 0,
+ free_head: head,
+ };
+
+ (tx, rx)
+}
+
+impl<T> Tx<T> {
+ /// Pushes a value into the list.
+ pub(crate) fn push(&self, value: T) {
+ // First, claim a slot for the value. `Acquire` is used here to
+ // synchronize with the `fetch_add` in `reclaim_blocks`.
+ let slot_index = self.tail_position.fetch_add(1, Acquire);
+
+ // Load the current block and write the value
+ let block = self.find_block(slot_index);
+
+ unsafe {
+ // Write the value to the block
+ block.as_ref().write(slot_index, value);
+ }
+ }
+
+ /// Closes the send half of the list
+ ///
+ /// Similar process as pushing a value, but instead of writing the value &
+ /// setting the ready flag, the TX_CLOSED flag is set on the block.
+ pub(crate) fn close(&self) {
+ // First, claim a slot for the value. This is the last slot that will be
+ // claimed.
+ let slot_index = self.tail_position.fetch_add(1, Acquire);
+
+ let block = self.find_block(slot_index);
+
+ unsafe { block.as_ref().tx_close() }
+ }
+
+ fn find_block(&self, slot_index: usize) -> NonNull<Block<T>> {
+ // The start index of the block that contains `index`.
+ let start_index = block::start_index(slot_index);
+
+ // The index offset into the block
+ let offset = block::offset(slot_index);
+
+ // Load the current head of the block
+ let mut block_ptr = self.block_tail.load(Acquire);
+
+ let block = unsafe { &*block_ptr };
+
+ // Calculate the distance between the tail ptr and the target block
+ let distance = block.distance(start_index);
+
+ // Decide if this call to `find_block` should attempt to update the
+ // `block_tail` pointer.
+ //
+ // Updating `block_tail` is not always performed in order to reduce
+ // contention.
+ //
+ // When set, as the routine walks the linked list, it attempts to update
+ // `block_tail`. If the update cannot be performed, `try_updating_tail`
+ // is unset.
+ let mut try_updating_tail = distance > offset;
+
+ // Walk the linked list of blocks until the block with `start_index` is
+ // found.
+ loop {
+ let block = unsafe { &(*block_ptr) };
+
+ if block.is_at_index(start_index) {
+ return unsafe { NonNull::new_unchecked(block_ptr) };
+ }
+
+ let next_block = block
+ .load_next(Acquire)
+ // There is no allocated next block, grow the linked list.
+ .unwrap_or_else(|| block.grow());
+
+ // If the block is **not** final, then the tail pointer cannot be
+ // advanced any more.
+ try_updating_tail &= block.is_final();
+
+ if try_updating_tail {
+ // Advancing `block_tail` must happen when walking the linked
+ // list. `block_tail` may not advance passed any blocks that are
+ // not "final". At the point a block is finalized, it is unknown
+ // if there are any prior blocks that are unfinalized, which
+ // makes it impossible to advance `block_tail`.
+ //
+ // While walking the linked list, `block_tail` can be advanced
+ // as long as finalized blocks are traversed.
+ //
+ // Release ordering is used to ensure that any subsequent reads
+ // are able to see the memory pointed to by `block_tail`.
+ //
+ // Acquire is not needed as any "actual" value is not accessed.
+ // At this point, the linked list is walked to acquire blocks.
+ let actual =
+ self.block_tail
+ .compare_and_swap(block_ptr, next_block.as_ptr(), Release);
+
+ if actual == block_ptr {
+ // Synchronize with any senders
+ let tail_position = self.tail_position.fetch_add(0, Release);
+
+ unsafe {
+ block.tx_release(tail_position);
+ }
+ } else {
+ // A concurrent sender is also working on advancing
+ // `block_tail` and this thread is falling behind.
+ //
+ // Stop trying to advance the tail pointer
+ try_updating_tail = false;
+ }
+ }
+
+ block_ptr = next_block.as_ptr();
+
+ thread::yield_now();
+ }
+ }
+
+ pub(crate) unsafe fn reclaim_block(&self, mut block: NonNull<Block<T>>) {
+ // The block has been removed from the linked list and ownership
+ // is reclaimed.
+ //
+ // Before dropping the block, see if it can be reused by
+ // inserting it back at the end of the linked list.
+ //
+ // First, reset the data
+ block.as_mut().reclaim();
+
+ let mut reused = false;
+
+ // Attempt to insert the block at the end
+ //
+ // Walk at most three times
+ //
+ let curr_ptr = self.block_tail.load(Acquire);
+
+ // The pointer can never be null
+ debug_assert!(!curr_ptr.is_null());
+
+ let mut curr = NonNull::new_unchecked(curr_ptr);
+
+ // TODO: Unify this logic with Block::grow
+ for _ in 0..3 {
+ match curr.as_ref().try_push(&mut block, AcqRel) {
+ Ok(_) => {
+ reused = true;
+ break;
+ }
+ Err(next) => {
+ curr = next;
+ }
+ }
+ }
+
+ if !reused {
+ let _ = Box::from_raw(block.as_ptr());
+ }
+ }
+}
+
+impl<T> fmt::Debug for Tx<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Tx")
+ .field("block_tail", &self.block_tail.load(Relaxed))
+ .field("tail_position", &self.tail_position.load(Relaxed))
+ .finish()
+ }
+}
+
+impl<T> Rx<T> {
+ /// Pops the next value off the queue
+ pub(crate) fn pop(&mut self, tx: &Tx<T>) -> Option<block::Read<T>> {
+ // Advance `head`, if needed
+ if !self.try_advancing_head() {
+ return None;
+ }
+
+ self.reclaim_blocks(tx);
+
+ unsafe {
+ let block = self.head.as_ref();
+
+ let ret = block.read(self.index);
+
+ if let Some(block::Read::Value(..)) = ret {
+ self.index = self.index.wrapping_add(1);
+ }
+
+ ret
+ }
+ }
+
+ /// Tries advancing the block pointer to the block referenced by `self.index`.
+ ///
+ /// Returns `true` if successful, `false` if there is no next block to load.
+ fn try_advancing_head(&mut self) -> bool {
+ let block_index = block::start_index(self.index);
+
+ loop {
+ let next_block = {
+ let block = unsafe { self.head.as_ref() };
+
+ if block.is_at_index(block_index) {
+ return true;
+ }
+
+ block.load_next(Acquire)
+ };
+
+ let next_block = match next_block {
+ Some(next_block) => next_block,
+ None => {
+ return false;
+ }
+ };
+
+ self.head = next_block;
+
+ thread::yield_now();
+ }
+ }
+
+ fn reclaim_blocks(&mut self, tx: &Tx<T>) {
+ while self.free_head != self.head {
+ unsafe {
+ // Get a handle to the block that will be freed and update
+ // `free_head` to point to the next block.
+ let block = self.free_head;
+
+ let observed_tail_position = block.as_ref().observed_tail_position();
+
+ let required_index = match observed_tail_position {
+ Some(i) => i,
+ None => return,
+ };
+
+ if required_index > self.index {
+ return;
+ }
+
+ // We may read the next pointer with `Relaxed` ordering as it is
+ // guaranteed that the `reclaim_blocks` routine trails the `recv`
+ // routine. Any memory accessed by `reclaim_blocks` has already
+ // been acquired by `recv`.
+ let next_block = block.as_ref().load_next(Relaxed);
+
+ // Update the free list head
+ self.free_head = next_block.unwrap();
+
+ // Push the emptied block onto the back of the queue, making it
+ // available to senders.
+ tx.reclaim_block(block);
+ }
+
+ thread::yield_now();
+ }
+ }
+
+ /// Effectively `Drop` all the blocks. Should only be called once, when
+ /// the list is dropping.
+ pub(super) unsafe fn free_blocks(&mut self) {
+ debug_assert_ne!(self.free_head, NonNull::dangling());
+
+ let mut cur = Some(self.free_head);
+
+ #[cfg(debug_assertions)]
+ {
+ // to trigger the debug assert above so as to catch that we
+ // don't call `free_blocks` more than once.
+ self.free_head = NonNull::dangling();
+ self.head = NonNull::dangling();
+ }
+
+ while let Some(block) = cur {
+ cur = block.as_ref().load_next(Relaxed);
+ drop(Box::from_raw(block.as_ptr()));
+ }
+ }
+}
+
+impl<T> fmt::Debug for Rx<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Rx")
+ .field("head", &self.head)
+ .field("index", &self.index)
+ .field("free_head", &self.free_head)
+ .finish()
+ }
+}
diff --git a/third_party/rust/tokio/src/sync/mpsc/mod.rs b/third_party/rust/tokio/src/sync/mpsc/mod.rs
new file mode 100644
index 0000000000..4cfd6150f3
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/mod.rs
@@ -0,0 +1,64 @@
+#![cfg_attr(not(feature = "sync"), allow(dead_code, unreachable_pub))]
+
+//! A multi-producer, single-consumer queue for sending values across
+//! asynchronous tasks.
+//!
+//! Similar to `std`, channel creation provides [`Receiver`] and [`Sender`]
+//! handles. [`Receiver`] implements `Stream` and allows a task to read values
+//! out of the channel. If there is no message to read, the current task will be
+//! notified when a new value is sent. [`Sender`] implements the `Sink` trait
+//! and allows sending messages into the channel. If the channel is at capacity,
+//! the send is rejected and the task will be notified when additional capacity
+//! is available. In other words, the channel provides backpressure.
+//!
+//! Unbounded channels are also available using the `unbounded_channel`
+//! constructor.
+//!
+//! # Disconnection
+//!
+//! When all [`Sender`] handles have been dropped, it is no longer
+//! possible to send values into the channel. This is considered the termination
+//! event of the stream. As such, `Receiver::poll` returns `Ok(Ready(None))`.
+//!
+//! If the [`Receiver`] handle is dropped, then messages can no longer
+//! be read out of the channel. In this case, all further attempts to send will
+//! result in an error.
+//!
+//! # Clean Shutdown
+//!
+//! When the [`Receiver`] is dropped, it is possible for unprocessed messages to
+//! remain in the channel. Instead, it is usually desirable to perform a "clean"
+//! shutdown. To do this, the receiver first calls `close`, which will prevent
+//! any further messages to be sent into the channel. Then, the receiver
+//! consumes the channel to completion, at which point the receiver can be
+//! dropped.
+//!
+//! [`Sender`]: crate::sync::mpsc::Sender
+//! [`Receiver`]: crate::sync::mpsc::Receiver
+
+pub(super) mod block;
+
+mod bounded;
+pub use self::bounded::{channel, Receiver, Sender};
+
+mod chan;
+
+pub(super) mod list;
+
+mod unbounded;
+pub use self::unbounded::{unbounded_channel, UnboundedReceiver, UnboundedSender};
+
+pub mod error;
+
+/// The number of values a block can contain.
+///
+/// This value must be a power of 2. It also must be smaller than the number of
+/// bits in `usize`.
+#[cfg(all(target_pointer_width = "64", not(loom)))]
+const BLOCK_CAP: usize = 32;
+
+#[cfg(all(not(target_pointer_width = "64"), not(loom)))]
+const BLOCK_CAP: usize = 16;
+
+#[cfg(loom)]
+const BLOCK_CAP: usize = 2;
diff --git a/third_party/rust/tokio/src/sync/mpsc/unbounded.rs b/third_party/rust/tokio/src/sync/mpsc/unbounded.rs
new file mode 100644
index 0000000000..ba543fe4c8
--- /dev/null
+++ b/third_party/rust/tokio/src/sync/mpsc/unbounded.rs
@@ -0,0 +1,176 @@
+use crate::loom::sync::atomic::AtomicUsize;
+use crate::sync::mpsc::chan;
+use crate::sync::mpsc::error::{SendError, TryRecvError};
+
+use std::fmt;
+use std::task::{Context, Poll};
+
+/// Send values to the associated `UnboundedReceiver`.
+///
+/// Instances are created by the
+/// [`unbounded_channel`](unbounded_channel) function.
+pub struct UnboundedSender<T> {
+ chan: chan::Tx<T, Semaphore>,
+}
+
+impl<T> Clone for UnboundedSender<T> {
+ fn clone(&self) -> Self {
+ UnboundedSender {
+ chan: self.chan.clone(),
+ }
+ }
+}
+
+impl<T> fmt::Debug for UnboundedSender<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("UnboundedSender")
+ .field("chan", &self.chan)
+ .finish()
+ }
+}
+
+/// Receive values from the associated `UnboundedSender`.
+///
+/// Instances are created by the
+/// [`unbounded_channel`](unbounded_channel) function.
+pub struct UnboundedReceiver<T> {
+ /// The channel receiver
+ chan: chan::Rx<T, Semaphore>,
+}
+
+impl<T> fmt::Debug for UnboundedReceiver<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("UnboundedReceiver")
+ .field("chan", &self.chan)
+ .finish()
+ }
+}
+
+/// Creates an unbounded mpsc channel for communicating between asynchronous
+/// tasks.
+///
+/// A `send` on this channel will always succeed as long as the receive half has
+/// not been closed. If the receiver falls behind, messages will be arbitrarily
+/// buffered.
+///
+/// **Note** that the amount of available system memory is an implicit bound to
+/// the channel. Using an `unbounded` channel has the ability of causing the
+/// process to run out of memory. In this case, the process will be aborted.
+pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
+ let (tx, rx) = chan::channel(AtomicUsize::new(0));
+
+ let tx = UnboundedSender::new(tx);
+ let rx = UnboundedReceiver::new(rx);
+
+ (tx, rx)
+}
+
+/// No capacity
+type Semaphore = AtomicUsize;
+
+impl<T> UnboundedReceiver<T> {
+ pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> {
+ UnboundedReceiver { chan }
+ }
+
+ #[doc(hidden)] // TODO: doc
+ pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
+ self.chan.recv(cx)
+ }
+
+ /// Receives the next value for this receiver.
+ ///
+ /// `None` is returned when all `Sender` halves have dropped, indicating
+ /// that no further values can be sent on the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (tx, mut rx) = mpsc::unbounded_channel();
+ ///
+ /// tokio::spawn(async move {
+ /// tx.send("hello").unwrap();
+ /// });
+ ///
+ /// assert_eq!(Some("hello"), rx.recv().await);
+ /// assert_eq!(None, rx.recv().await);
+ /// }
+ /// ```
+ ///
+ /// Values are buffered:
+ ///
+ /// ```
+ /// use tokio::sync::mpsc;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let (tx, mut rx) = mpsc::unbounded_channel();
+ ///
+ /// tx.send("hello").unwrap();
+ /// tx.send("world").unwrap();
+ ///
+ /// assert_eq!(Some("hello"), rx.recv().await);
+ /// assert_eq!(Some("world"), rx.recv().await);
+ /// }
+ /// ```
+ pub async fn recv(&mut self) -> Option<T> {
+ use crate::future::poll_fn;
+
+ poll_fn(|cx| self.poll_recv(cx)).await
+ }
+
+ /// Attempts to return a pending value on this receiver without blocking.
+ ///
+ /// This method will never block the caller in order to wait for data to
+ /// become available. Instead, this will always return immediately with
+ /// a possible option of pending data on the channel.
+ ///
+ /// This is useful for a flavor of "optimistic check" before deciding to
+ /// block on a receiver.
+ ///
+ /// Compared with recv, this function has two failure cases instead of
+ /// one (one for disconnection, one for an empty buffer).
+ pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
+ self.chan.try_recv()
+ }
+
+ /// Closes the receiving half of a channel, without dropping it.
+ ///
+ /// This prevents any further messages from being sent on the channel while
+ /// still enabling the receiver to drain messages that are buffered.
+ pub fn close(&mut self) {
+ self.chan.close();
+ }
+}
+
+#[cfg(feature = "stream")]
+impl<T> crate::stream::Stream for UnboundedReceiver<T> {
+ type Item = T;
+
+ fn poll_next(mut self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T>> {
+ self.poll_recv(cx)
+ }
+}
+
+impl<T> UnboundedSender<T> {
+ pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> {
+ UnboundedSender { chan }
+ }
+
+ /// Attempts to send a message on this `UnboundedSender` without blocking.
+ ///
+ /// If the receive half of the channel is closed, either due to [`close`]
+ /// being called or the [`UnboundedReceiver`] having been dropped,
+ /// the function returns an error. The error includes the value passed to `send`.
+ ///
+ /// [`close`]: UnboundedReceiver::close
+ /// [`UnboundedReceiver`]: UnboundedReceiver
+ pub fn send(&self, message: T) -> Result<(), SendError<T>> {
+ self.chan.send_unbounded(message)?;
+ Ok(())
+ }
+}