diff options
Diffstat (limited to 'intl/icu/source/common/dictbe.cpp')
-rw-r--r-- | intl/icu/source/common/dictbe.cpp | 1410 |
1 files changed, 1410 insertions, 0 deletions
diff --git a/intl/icu/source/common/dictbe.cpp b/intl/icu/source/common/dictbe.cpp new file mode 100644 index 0000000000..b42cdf03fa --- /dev/null +++ b/intl/icu/source/common/dictbe.cpp @@ -0,0 +1,1410 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/** + ******************************************************************************* + * Copyright (C) 2006-2016, International Business Machines Corporation + * and others. All Rights Reserved. + ******************************************************************************* + */ + +#include <utility> + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_BREAK_ITERATION + +#include "brkeng.h" +#include "dictbe.h" +#include "unicode/uniset.h" +#include "unicode/chariter.h" +#include "unicode/ubrk.h" +#include "utracimp.h" +#include "uvectr32.h" +#include "uvector.h" +#include "uassert.h" +#include "unicode/normlzr.h" +#include "cmemory.h" +#include "dictionarydata.h" + +U_NAMESPACE_BEGIN + +/* + ****************************************************************** + */ + +DictionaryBreakEngine::DictionaryBreakEngine() { +} + +DictionaryBreakEngine::~DictionaryBreakEngine() { +} + +UBool +DictionaryBreakEngine::handles(UChar32 c) const { + return fSet.contains(c); +} + +int32_t +DictionaryBreakEngine::findBreaks( UText *text, + int32_t startPos, + int32_t endPos, + UVector32 &foundBreaks ) const { + (void)startPos; // TODO: remove this param? + int32_t result = 0; + + // Find the span of characters included in the set. + // The span to break begins at the current position in the text, and + // extends towards the start or end of the text, depending on 'reverse'. + + int32_t start = (int32_t)utext_getNativeIndex(text); + int32_t current; + int32_t rangeStart; + int32_t rangeEnd; + UChar32 c = utext_current32(text); + while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { + utext_next32(text); // TODO: recast loop for postincrement + c = utext_current32(text); + } + rangeStart = start; + rangeEnd = current; + result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); + utext_setNativeIndex(text, current); + + return result; +} + +void +DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { + fSet = set; + // Compact for caching + fSet.compact(); +} + +/* + ****************************************************************** + * PossibleWord + */ + +// Helper class for improving readability of the Thai/Lao/Khmer word break +// algorithm. The implementation is completely inline. + +// List size, limited by the maximum number of words in the dictionary +// that form a nested sequence. +static const int32_t POSSIBLE_WORD_LIST_MAX = 20; + +class PossibleWord { +private: + // list of word candidate lengths, in increasing length order + // TODO: bytes would be sufficient for word lengths. + int32_t count; // Count of candidates + int32_t prefix; // The longest match with a dictionary word + int32_t offset; // Offset in the text of these candidates + int32_t mark; // The preferred candidate's offset + int32_t current; // The candidate we're currently looking at + int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. + int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. + +public: + PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} + ~PossibleWord() {} + + // Fill the list of candidates if needed, select the longest, and return the number found + int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); + + // Select the currently marked candidate, point after it in the text, and invalidate self + int32_t acceptMarked( UText *text ); + + // Back up from the current candidate to the next shorter one; return TRUE if that exists + // and point the text after it + UBool backUp( UText *text ); + + // Return the longest prefix this candidate location shares with a dictionary word + // Return value is in code points. + int32_t longestPrefix() { return prefix; } + + // Mark the current candidate as the one we like + void markCurrent() { mark = current; } + + // Get length in code points of the marked word. + int32_t markedCPLength() { return cpLengths[mark]; } +}; + + +int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { + // TODO: If getIndex is too slow, use offset < 0 and add discardAll() + int32_t start = (int32_t)utext_getNativeIndex(text); + if (start != offset) { + offset = start; + count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); + // Dictionary leaves text after longest prefix, not longest word. Back up. + if (count <= 0) { + utext_setNativeIndex(text, start); + } + } + if (count > 0) { + utext_setNativeIndex(text, start+cuLengths[count-1]); + } + current = count-1; + mark = current; + return count; +} + +int32_t +PossibleWord::acceptMarked( UText *text ) { + utext_setNativeIndex(text, offset + cuLengths[mark]); + return cuLengths[mark]; +} + + +UBool +PossibleWord::backUp( UText *text ) { + if (current > 0) { + utext_setNativeIndex(text, offset + cuLengths[--current]); + return TRUE; + } + return FALSE; +} + +/* + ****************************************************************** + * ThaiBreakEngine + */ + +// How many words in a row are "good enough"? +static const int32_t THAI_LOOKAHEAD = 3; + +// Will not combine a non-word with a preceding dictionary word longer than this +static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; + +// Ellision character +static const int32_t THAI_PAIYANNOI = 0x0E2F; + +// Repeat character +static const int32_t THAI_MAIYAMOK = 0x0E46; + +// Minimum word size +static const int32_t THAI_MIN_WORD = 2; + +// Minimum number of characters for two words +static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; + +ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine(), + fDictionary(adoptDictionary) +{ + UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); + UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Thai"); + fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); + if (U_SUCCESS(status)) { + setCharacters(fThaiWordSet); + } + fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); + fMarkSet.add(0x0020); + fEndWordSet = fThaiWordSet; + fEndWordSet.remove(0x0E31); // MAI HAN-AKAT + fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI + fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK + fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI + fSuffixSet.add(THAI_PAIYANNOI); + fSuffixSet.add(THAI_MAIYAMOK); + + // Compact for caching. + fMarkSet.compact(); + fEndWordSet.compact(); + fBeginWordSet.compact(); + fSuffixSet.compact(); + UTRACE_EXIT_STATUS(status); +} + +ThaiBreakEngine::~ThaiBreakEngine() { + delete fDictionary; +} + +int32_t +ThaiBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UVector32 &foundBreaks ) const { + utext_setNativeIndex(text, rangeStart); + utext_moveIndex32(text, THAI_MIN_WORD_SPAN); + if (utext_getNativeIndex(text) >= rangeEnd) { + return 0; // Not enough characters for two words + } + utext_setNativeIndex(text, rangeStart); + + + uint32_t wordsFound = 0; + int32_t cpWordLength = 0; // Word Length in Code Points. + int32_t cuWordLength = 0; // Word length in code units (UText native indexing) + int32_t current; + UErrorCode status = U_ZERO_ERROR; + PossibleWord words[THAI_LOOKAHEAD]; + + utext_setNativeIndex(text, rangeStart); + + while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { + cpWordLength = 0; + cuWordLength = 0; + + // Look for candidate words at the current position + int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + + // If we found exactly one, use that + if (candidates == 1) { + cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + // If there was more than one, see which one can take us forward the most words + else if (candidates > 1) { + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int32_t wordsMatched = 1; + if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound%THAI_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % THAI_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); +foundBest: + // Set UText position to after the accepted word. + cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it with the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + + UChar32 uc = 0; + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (cuWordLength == 0 + || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + int32_t remaining = rangeEnd - (current+cuWordLength); + UChar32 pc; + int32_t chars = 0; + for (;;) { + int32_t pcIndex = (int32_t)utext_getNativeIndex(text); + pc = utext_next32(text); + int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; + chars += pcSize; + remaining -= pcSize; + if (remaining <= 0) { + break; + } + uc = utext_current32(text); + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + // NOTE: In the original Apple code, checked that the next + // two characters after uc were not 0x0E4C THANTHAKHAT before + // checking the dictionary. That is just a performance filter, + // but it's not clear it's faster than checking the trie. + int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current + cuWordLength + chars); + if (num_candidates > 0) { + break; + } + } + } + + // Bump the word count if there wasn't already one + if (cuWordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + cuWordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current+cuWordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { + if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && fSuffixSet.contains(uc = utext_current32(text))) { + if (uc == THAI_PAIYANNOI) { + if (!fSuffixSet.contains(utext_previous32(text))) { + // Skip over previous end and PAIYANNOI + utext_next32(text); + int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word + uc = utext_current32(text); // Fetch next character + } + else { + // Restore prior position + utext_next32(text); + } + } + if (uc == THAI_MAIYAMOK) { + if (utext_previous32(text) != THAI_MAIYAMOK) { + // Skip over previous end and MAIYAMOK + utext_next32(text); + int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word + } + else { + // Restore prior position + utext_next32(text); + } + } + } + else { + utext_setNativeIndex(text, current+cuWordLength); + } + } + + // Did we find a word on this iteration? If so, push it on the break stack + if (cuWordLength > 0) { + foundBreaks.push((current+cuWordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +/* + ****************************************************************** + * LaoBreakEngine + */ + +// How many words in a row are "good enough"? +static const int32_t LAO_LOOKAHEAD = 3; + +// Will not combine a non-word with a preceding dictionary word longer than this +static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; + +// Minimum word size +static const int32_t LAO_MIN_WORD = 2; + +// Minimum number of characters for two words +static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; + +LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine(), + fDictionary(adoptDictionary) +{ + UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); + UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Laoo"); + fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); + if (U_SUCCESS(status)) { + setCharacters(fLaoWordSet); + } + fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); + fMarkSet.add(0x0020); + fEndWordSet = fLaoWordSet; + fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels + fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) + fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) + fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels + + // Compact for caching. + fMarkSet.compact(); + fEndWordSet.compact(); + fBeginWordSet.compact(); + UTRACE_EXIT_STATUS(status); +} + +LaoBreakEngine::~LaoBreakEngine() { + delete fDictionary; +} + +int32_t +LaoBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UVector32 &foundBreaks ) const { + if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { + return 0; // Not enough characters for two words + } + + uint32_t wordsFound = 0; + int32_t cpWordLength = 0; + int32_t cuWordLength = 0; + int32_t current; + UErrorCode status = U_ZERO_ERROR; + PossibleWord words[LAO_LOOKAHEAD]; + + utext_setNativeIndex(text, rangeStart); + + while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { + cuWordLength = 0; + cpWordLength = 0; + + // Look for candidate words at the current position + int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + + // If we found exactly one, use that + if (candidates == 1) { + cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + // If there was more than one, see which one can take us forward the most words + else if (candidates > 1) { + // If we're already at the end of the range, we're done + if (utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int32_t wordsMatched = 1; + if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound%LAO_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % LAO_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); +foundBest: + cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it withe the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (cuWordLength == 0 + || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + int32_t remaining = rangeEnd - (current + cuWordLength); + UChar32 pc; + UChar32 uc; + int32_t chars = 0; + for (;;) { + int32_t pcIndex = (int32_t)utext_getNativeIndex(text); + pc = utext_next32(text); + int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; + chars += pcSize; + remaining -= pcSize; + if (remaining <= 0) { + break; + } + uc = utext_current32(text); + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + // TODO: this looks iffy; compare with old code. + int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current + cuWordLength + chars); + if (num_candidates > 0) { + break; + } + } + } + + // Bump the word count if there wasn't already one + if (cuWordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + cuWordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current + cuWordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. + // NOT CURRENTLY APPLICABLE TO LAO + + // Did we find a word on this iteration? If so, push it on the break stack + if (cuWordLength > 0) { + foundBreaks.push((current+cuWordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +/* + ****************************************************************** + * BurmeseBreakEngine + */ + +// How many words in a row are "good enough"? +static const int32_t BURMESE_LOOKAHEAD = 3; + +// Will not combine a non-word with a preceding dictionary word longer than this +static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; + +// Minimum word size +static const int32_t BURMESE_MIN_WORD = 2; + +// Minimum number of characters for two words +static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; + +BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine(), + fDictionary(adoptDictionary) +{ + UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); + UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Mymr"); + fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status); + if (U_SUCCESS(status)) { + setCharacters(fBurmeseWordSet); + } + fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status); + fMarkSet.add(0x0020); + fEndWordSet = fBurmeseWordSet; + fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels + + // Compact for caching. + fMarkSet.compact(); + fEndWordSet.compact(); + fBeginWordSet.compact(); + UTRACE_EXIT_STATUS(status); +} + +BurmeseBreakEngine::~BurmeseBreakEngine() { + delete fDictionary; +} + +int32_t +BurmeseBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UVector32 &foundBreaks ) const { + if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { + return 0; // Not enough characters for two words + } + + uint32_t wordsFound = 0; + int32_t cpWordLength = 0; + int32_t cuWordLength = 0; + int32_t current; + UErrorCode status = U_ZERO_ERROR; + PossibleWord words[BURMESE_LOOKAHEAD]; + + utext_setNativeIndex(text, rangeStart); + + while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { + cuWordLength = 0; + cpWordLength = 0; + + // Look for candidate words at the current position + int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + + // If we found exactly one, use that + if (candidates == 1) { + cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + // If there was more than one, see which one can take us forward the most words + else if (candidates > 1) { + // If we're already at the end of the range, we're done + if (utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int32_t wordsMatched = 1; + if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); +foundBest: + cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it withe the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (cuWordLength == 0 + || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + int32_t remaining = rangeEnd - (current + cuWordLength); + UChar32 pc; + UChar32 uc; + int32_t chars = 0; + for (;;) { + int32_t pcIndex = (int32_t)utext_getNativeIndex(text); + pc = utext_next32(text); + int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; + chars += pcSize; + remaining -= pcSize; + if (remaining <= 0) { + break; + } + uc = utext_current32(text); + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + // TODO: this looks iffy; compare with old code. + int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current + cuWordLength + chars); + if (num_candidates > 0) { + break; + } + } + } + + // Bump the word count if there wasn't already one + if (cuWordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + cuWordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current + cuWordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. + // NOT CURRENTLY APPLICABLE TO BURMESE + + // Did we find a word on this iteration? If so, push it on the break stack + if (cuWordLength > 0) { + foundBreaks.push((current+cuWordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +/* + ****************************************************************** + * KhmerBreakEngine + */ + +// How many words in a row are "good enough"? +static const int32_t KHMER_LOOKAHEAD = 3; + +// Will not combine a non-word with a preceding dictionary word longer than this +static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; + +// Minimum word size +static const int32_t KHMER_MIN_WORD = 2; + +// Minimum number of characters for two words +static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; + +KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine(), + fDictionary(adoptDictionary) +{ + UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); + UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Khmr"); + fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); + if (U_SUCCESS(status)) { + setCharacters(fKhmerWordSet); + } + fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); + fMarkSet.add(0x0020); + fEndWordSet = fKhmerWordSet; + fBeginWordSet.add(0x1780, 0x17B3); + //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels + //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word + //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word + fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters + //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels +// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT +// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI +// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK +// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI +// fSuffixSet.add(THAI_PAIYANNOI); +// fSuffixSet.add(THAI_MAIYAMOK); + + // Compact for caching. + fMarkSet.compact(); + fEndWordSet.compact(); + fBeginWordSet.compact(); +// fSuffixSet.compact(); + UTRACE_EXIT_STATUS(status); +} + +KhmerBreakEngine::~KhmerBreakEngine() { + delete fDictionary; +} + +int32_t +KhmerBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UVector32 &foundBreaks ) const { + if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { + return 0; // Not enough characters for two words + } + + uint32_t wordsFound = 0; + int32_t cpWordLength = 0; + int32_t cuWordLength = 0; + int32_t current; + UErrorCode status = U_ZERO_ERROR; + PossibleWord words[KHMER_LOOKAHEAD]; + + utext_setNativeIndex(text, rangeStart); + + while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { + cuWordLength = 0; + cpWordLength = 0; + + // Look for candidate words at the current position + int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + + // If we found exactly one, use that + if (candidates == 1) { + cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + + // If there was more than one, see which one can take us forward the most words + else if (candidates > 1) { + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int32_t wordsMatched = 1; + if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); +foundBest: + cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); + cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it with the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (cuWordLength == 0 + || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + int32_t remaining = rangeEnd - (current+cuWordLength); + UChar32 pc; + UChar32 uc; + int32_t chars = 0; + for (;;) { + int32_t pcIndex = (int32_t)utext_getNativeIndex(text); + pc = utext_next32(text); + int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; + chars += pcSize; + remaining -= pcSize; + if (remaining <= 0) { + break; + } + uc = utext_current32(text); + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current+cuWordLength+chars); + if (num_candidates > 0) { + break; + } + } + } + + // Bump the word count if there wasn't already one + if (cuWordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + cuWordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current+cuWordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. +// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { +// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 +// && fSuffixSet.contains(uc = utext_current32(text))) { +// if (uc == KHMER_PAIYANNOI) { +// if (!fSuffixSet.contains(utext_previous32(text))) { +// // Skip over previous end and PAIYANNOI +// utext_next32(text); +// utext_next32(text); +// wordLength += 1; // Add PAIYANNOI to word +// uc = utext_current32(text); // Fetch next character +// } +// else { +// // Restore prior position +// utext_next32(text); +// } +// } +// if (uc == KHMER_MAIYAMOK) { +// if (utext_previous32(text) != KHMER_MAIYAMOK) { +// // Skip over previous end and MAIYAMOK +// utext_next32(text); +// utext_next32(text); +// wordLength += 1; // Add MAIYAMOK to word +// } +// else { +// // Restore prior position +// utext_next32(text); +// } +// } +// } +// else { +// utext_setNativeIndex(text, current+wordLength); +// } +// } + + // Did we find a word on this iteration? If so, push it on the break stack + if (cuWordLength > 0) { + foundBreaks.push((current+cuWordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +#if !UCONFIG_NO_NORMALIZATION +/* + ****************************************************************** + * CjkBreakEngine + */ +static const uint32_t kuint32max = 0xFFFFFFFF; +CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) +: DictionaryBreakEngine(), fDictionary(adoptDictionary) { + UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); + UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Hani"); + // Korean dictionary only includes Hangul syllables + fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); + fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); + fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); + fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); + nfkcNorm2 = Normalizer2::getNFKCInstance(status); + + if (U_SUCCESS(status)) { + // handle Korean and Japanese/Chinese using different dictionaries + if (type == kKorean) { + setCharacters(fHangulWordSet); + } else { //Chinese and Japanese + UnicodeSet cjSet; + cjSet.addAll(fHanWordSet); + cjSet.addAll(fKatakanaWordSet); + cjSet.addAll(fHiraganaWordSet); + cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK + cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK + setCharacters(cjSet); + } + } + UTRACE_EXIT_STATUS(status); +} + +CjkBreakEngine::~CjkBreakEngine(){ + delete fDictionary; +} + +// The katakanaCost values below are based on the length frequencies of all +// katakana phrases in the dictionary +static const int32_t kMaxKatakanaLength = 8; +static const int32_t kMaxKatakanaGroupLength = 20; +static const uint32_t maxSnlp = 255; + +static inline uint32_t getKatakanaCost(int32_t wordLength){ + //TODO: fill array with actual values from dictionary! + static const uint32_t katakanaCost[kMaxKatakanaLength + 1] + = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; + return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; +} + +static inline bool isKatakana(UChar32 value) { + return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || + (value >= 0xFF66 && value <= 0xFF9f); +} + + +// Function for accessing internal utext flags. +// Replicates an internal UText function. + +static inline int32_t utext_i32_flag(int32_t bitIndex) { + return (int32_t)1 << bitIndex; +} + + +/* + * @param text A UText representing the text + * @param rangeStart The start of the range of dictionary characters + * @param rangeEnd The end of the range of dictionary characters + * @param foundBreaks vector<int32> to receive the break positions + * @return The number of breaks found + */ +int32_t +CjkBreakEngine::divideUpDictionaryRange( UText *inText, + int32_t rangeStart, + int32_t rangeEnd, + UVector32 &foundBreaks ) const { + if (rangeStart >= rangeEnd) { + return 0; + } + + // UnicodeString version of input UText, NFKC normalized if necessary. + UnicodeString inString; + + // inputMap[inStringIndex] = corresponding native index from UText inText. + // If NULL then mapping is 1:1 + LocalPointer<UVector32> inputMap; + + UErrorCode status = U_ZERO_ERROR; + + + // if UText has the input string as one contiguous UTF-16 chunk + if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && + inText->chunkNativeStart <= rangeStart && + inText->chunkNativeLimit >= rangeEnd && + inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { + + // Input UText is in one contiguous UTF-16 chunk. + // Use Read-only aliasing UnicodeString. + inString.setTo(FALSE, + inText->chunkContents + rangeStart - inText->chunkNativeStart, + rangeEnd - rangeStart); + } else { + // Copy the text from the original inText (UText) to inString (UnicodeString). + // Create a map from UnicodeString indices -> UText offsets. + utext_setNativeIndex(inText, rangeStart); + int32_t limit = rangeEnd; + U_ASSERT(limit <= utext_nativeLength(inText)); + if (limit > utext_nativeLength(inText)) { + limit = (int32_t)utext_nativeLength(inText); + } + inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); + if (U_FAILURE(status)) { + return 0; + } + while (utext_getNativeIndex(inText) < limit) { + int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); + UChar32 c = utext_next32(inText); + U_ASSERT(c != U_SENTINEL); + inString.append(c); + while (inputMap->size() < inString.length()) { + inputMap->addElement(nativePosition, status); + } + } + inputMap->addElement(limit, status); + } + + + if (!nfkcNorm2->isNormalized(inString, status)) { + UnicodeString normalizedInput; + // normalizedMap[normalizedInput position] == original UText position. + LocalPointer<UVector32> normalizedMap(new UVector32(status), status); + if (U_FAILURE(status)) { + return 0; + } + + UnicodeString fragment; + UnicodeString normalizedFragment; + for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk + fragment.remove(); + int32_t fragmentStartI = srcI; + UChar32 c = inString.char32At(srcI); + for (;;) { + fragment.append(c); + srcI = inString.moveIndex32(srcI, 1); + if (srcI == inString.length()) { + break; + } + c = inString.char32At(srcI); + if (nfkcNorm2->hasBoundaryBefore(c)) { + break; + } + } + nfkcNorm2->normalize(fragment, normalizedFragment, status); + normalizedInput.append(normalizedFragment); + + // Map every position in the normalized chunk to the start of the chunk + // in the original input. + int32_t fragmentOriginalStart = inputMap.isValid() ? + inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; + while (normalizedMap->size() < normalizedInput.length()) { + normalizedMap->addElement(fragmentOriginalStart, status); + if (U_FAILURE(status)) { + break; + } + } + } + U_ASSERT(normalizedMap->size() == normalizedInput.length()); + int32_t nativeEnd = inputMap.isValid() ? + inputMap->elementAti(inString.length()) : inString.length()+rangeStart; + normalizedMap->addElement(nativeEnd, status); + + inputMap = std::move(normalizedMap); + inString = std::move(normalizedInput); + } + + int32_t numCodePts = inString.countChar32(); + if (numCodePts != inString.length()) { + // There are supplementary characters in the input. + // The dictionary will produce boundary positions in terms of code point indexes, + // not in terms of code unit string indexes. + // Use the inputMap mechanism to take care of this in addition to indexing differences + // from normalization and/or UTF-8 input. + UBool hadExistingMap = inputMap.isValid(); + if (!hadExistingMap) { + inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); + if (U_FAILURE(status)) { + return 0; + } + } + int32_t cpIdx = 0; + for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { + U_ASSERT(cuIdx >= cpIdx); + if (hadExistingMap) { + inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); + } else { + inputMap->addElement(cuIdx+rangeStart, status); + } + cpIdx++; + if (cuIdx == inString.length()) { + break; + } + } + } + + // bestSnlp[i] is the snlp of the best segmentation of the first i + // code points in the range to be matched. + UVector32 bestSnlp(numCodePts + 1, status); + bestSnlp.addElement(0, status); + for(int32_t i = 1; i <= numCodePts; i++) { + bestSnlp.addElement(kuint32max, status); + } + + + // prev[i] is the index of the last CJK code point in the previous word in + // the best segmentation of the first i characters. + UVector32 prev(numCodePts + 1, status); + for(int32_t i = 0; i <= numCodePts; i++){ + prev.addElement(-1, status); + } + + const int32_t maxWordSize = 20; + UVector32 values(numCodePts, status); + values.setSize(numCodePts); + UVector32 lengths(numCodePts, status); + lengths.setSize(numCodePts); + + UText fu = UTEXT_INITIALIZER; + utext_openUnicodeString(&fu, &inString, &status); + + // Dynamic programming to find the best segmentation. + + // In outer loop, i is the code point index, + // ix is the corresponding string (code unit) index. + // They differ when the string contains supplementary characters. + int32_t ix = 0; + bool is_prev_katakana = false; + for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { + if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { + continue; + } + + int32_t count; + utext_setNativeIndex(&fu, ix); + count = fDictionary->matches(&fu, maxWordSize, numCodePts, + NULL, lengths.getBuffer(), values.getBuffer(), NULL); + // Note: lengths is filled with code point lengths + // The NULL parameter is the ignored code unit lengths. + + // if there are no single character matches found in the dictionary + // starting with this character, treat character as a 1-character word + // with the highest value possible, i.e. the least likely to occur. + // Exclude Korean characters from this treatment, as they should be left + // together by default. + if ((count == 0 || lengths.elementAti(0) != 1) && + !fHangulWordSet.contains(inString.char32At(ix))) { + values.setElementAt(maxSnlp, count); // 255 + lengths.setElementAt(1, count++); + } + + for (int32_t j = 0; j < count; j++) { + uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); + int32_t ln_j_i = lengths.elementAti(j) + i; + if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { + bestSnlp.setElementAt(newSnlp, ln_j_i); + prev.setElementAt(i, ln_j_i); + } + } + + // In Japanese, + // Katakana word in single character is pretty rare. So we apply + // the following heuristic to Katakana: any continuous run of Katakana + // characters is considered a candidate word with a default cost + // specified in the katakanaCost table according to its length. + + bool is_katakana = isKatakana(inString.char32At(ix)); + int32_t katakanaRunLength = 1; + if (!is_prev_katakana && is_katakana) { + int32_t j = inString.moveIndex32(ix, 1); + // Find the end of the continuous run of Katakana characters + while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && + isKatakana(inString.char32At(j))) { + j = inString.moveIndex32(j, 1); + katakanaRunLength++; + } + if (katakanaRunLength < kMaxKatakanaGroupLength) { + uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); + if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { + bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); + prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; + } + } + } + is_prev_katakana = is_katakana; + } + utext_close(&fu); + + // Start pushing the optimal offset index into t_boundary (t for tentative). + // prev[numCodePts] is guaranteed to be meaningful. + // We'll first push in the reverse order, i.e., + // t_boundary[0] = numCodePts, and afterwards do a swap. + UVector32 t_boundary(numCodePts+1, status); + + int32_t numBreaks = 0; + // No segmentation found, set boundary to end of range + if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { + t_boundary.addElement(numCodePts, status); + numBreaks++; + } else { + for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { + t_boundary.addElement(i, status); + numBreaks++; + } + U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); + } + + // Add a break for the start of the dictionary range if there is not one + // there already. + if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { + t_boundary.addElement(0, status); + numBreaks++; + } + + // Now that we're done, convert positions in t_boundary[] (indices in + // the normalized input string) back to indices in the original input UText + // while reversing t_boundary and pushing values to foundBreaks. + int32_t prevCPPos = -1; + int32_t prevUTextPos = -1; + for (int32_t i = numBreaks-1; i >= 0; i--) { + int32_t cpPos = t_boundary.elementAti(i); + U_ASSERT(cpPos > prevCPPos); + int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; + U_ASSERT(utextPos >= prevUTextPos); + if (utextPos > prevUTextPos) { + // Boundaries are added to foundBreaks output in ascending order. + U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); + foundBreaks.push(utextPos, status); + } else { + // Normalization expanded the input text, the dictionary found a boundary + // within the expansion, giving two boundaries with the same index in the + // original text. Ignore the second. See ticket #12918. + --numBreaks; + } + prevCPPos = cpPos; + prevUTextPos = utextPos; + } + (void)prevCPPos; // suppress compiler warnings about unused variable + + // inString goes out of scope + // inputMap goes out of scope + return numBreaks; +} +#endif + +U_NAMESPACE_END + +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */ + |