summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/rbbi_cache.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/rbbi_cache.cpp')
-rw-r--r--intl/icu/source/common/rbbi_cache.cpp653
1 files changed, 653 insertions, 0 deletions
diff --git a/intl/icu/source/common/rbbi_cache.cpp b/intl/icu/source/common/rbbi_cache.cpp
new file mode 100644
index 0000000000..4f9e83360a
--- /dev/null
+++ b/intl/icu/source/common/rbbi_cache.cpp
@@ -0,0 +1,653 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+
+// file: rbbi_cache.cpp
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_BREAK_ITERATION
+
+#include "unicode/ubrk.h"
+#include "unicode/rbbi.h"
+
+#include "rbbi_cache.h"
+
+#include "brkeng.h"
+#include "cmemory.h"
+#include "rbbidata.h"
+#include "rbbirb.h"
+#include "uassert.h"
+#include "uvectr32.h"
+
+U_NAMESPACE_BEGIN
+
+/*
+ * DictionaryCache implementation
+ */
+
+RuleBasedBreakIterator::DictionaryCache::DictionaryCache(RuleBasedBreakIterator *bi, UErrorCode &status) :
+ fBI(bi), fBreaks(status), fPositionInCache(-1),
+ fStart(0), fLimit(0), fFirstRuleStatusIndex(0), fOtherRuleStatusIndex(0) {
+}
+
+RuleBasedBreakIterator::DictionaryCache::~DictionaryCache() {
+}
+
+void RuleBasedBreakIterator::DictionaryCache::reset() {
+ fPositionInCache = -1;
+ fStart = 0;
+ fLimit = 0;
+ fFirstRuleStatusIndex = 0;
+ fOtherRuleStatusIndex = 0;
+ fBreaks.removeAllElements();
+}
+
+UBool RuleBasedBreakIterator::DictionaryCache::following(int32_t fromPos, int32_t *result, int32_t *statusIndex) {
+ if (fromPos >= fLimit || fromPos < fStart) {
+ fPositionInCache = -1;
+ return FALSE;
+ }
+
+ // Sequential iteration, move from previous boundary to the following
+
+ int32_t r = 0;
+ if (fPositionInCache >= 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) {
+ ++fPositionInCache;
+ if (fPositionInCache >= fBreaks.size()) {
+ fPositionInCache = -1;
+ return FALSE;
+ }
+ r = fBreaks.elementAti(fPositionInCache);
+ U_ASSERT(r > fromPos);
+ *result = r;
+ *statusIndex = fOtherRuleStatusIndex;
+ return TRUE;
+ }
+
+ // Random indexing. Linear search for the boundary following the given position.
+
+ for (fPositionInCache = 0; fPositionInCache < fBreaks.size(); ++fPositionInCache) {
+ r= fBreaks.elementAti(fPositionInCache);
+ if (r > fromPos) {
+ *result = r;
+ *statusIndex = fOtherRuleStatusIndex;
+ return TRUE;
+ }
+ }
+ UPRV_UNREACHABLE;
+}
+
+
+UBool RuleBasedBreakIterator::DictionaryCache::preceding(int32_t fromPos, int32_t *result, int32_t *statusIndex) {
+ if (fromPos <= fStart || fromPos > fLimit) {
+ fPositionInCache = -1;
+ return FALSE;
+ }
+
+ if (fromPos == fLimit) {
+ fPositionInCache = fBreaks.size() - 1;
+ if (fPositionInCache >= 0) {
+ U_ASSERT(fBreaks.elementAti(fPositionInCache) == fromPos);
+ }
+ }
+
+ int32_t r;
+ if (fPositionInCache > 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) {
+ --fPositionInCache;
+ r = fBreaks.elementAti(fPositionInCache);
+ U_ASSERT(r < fromPos);
+ *result = r;
+ *statusIndex = ( r== fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex;
+ return TRUE;
+ }
+
+ if (fPositionInCache == 0) {
+ fPositionInCache = -1;
+ return FALSE;
+ }
+
+ for (fPositionInCache = fBreaks.size()-1; fPositionInCache >= 0; --fPositionInCache) {
+ r = fBreaks.elementAti(fPositionInCache);
+ if (r < fromPos) {
+ *result = r;
+ *statusIndex = ( r == fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex;
+ return TRUE;
+ }
+ }
+ UPRV_UNREACHABLE;
+}
+
+void RuleBasedBreakIterator::DictionaryCache::populateDictionary(int32_t startPos, int32_t endPos,
+ int32_t firstRuleStatus, int32_t otherRuleStatus) {
+ if ((endPos - startPos) <= 1) {
+ return;
+ }
+
+ reset();
+ fFirstRuleStatusIndex = firstRuleStatus;
+ fOtherRuleStatusIndex = otherRuleStatus;
+
+ int32_t rangeStart = startPos;
+ int32_t rangeEnd = endPos;
+
+ uint16_t category;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ int32_t foundBreakCount = 0;
+ UText *text = &fBI->fText;
+
+ // Loop through the text, looking for ranges of dictionary characters.
+ // For each span, find the appropriate break engine, and ask it to find
+ // any breaks within the span.
+
+ utext_setNativeIndex(text, rangeStart);
+ UChar32 c = utext_current32(text);
+ category = UTRIE2_GET16(fBI->fData->fTrie, c);
+
+ while(U_SUCCESS(status)) {
+ while((current = (int32_t)UTEXT_GETNATIVEINDEX(text)) < rangeEnd && (category & 0x4000) == 0) {
+ utext_next32(text); // TODO: cleaner loop structure.
+ c = utext_current32(text);
+ category = UTRIE2_GET16(fBI->fData->fTrie, c);
+ }
+ if (current >= rangeEnd) {
+ break;
+ }
+
+ // We now have a dictionary character. Get the appropriate language object
+ // to deal with it.
+ const LanguageBreakEngine *lbe = fBI->getLanguageBreakEngine(c);
+
+ // Ask the language object if there are any breaks. It will add them to the cache and
+ // leave the text pointer on the other side of its range, ready to search for the next one.
+ if (lbe != NULL) {
+ foundBreakCount += lbe->findBreaks(text, rangeStart, rangeEnd, fBreaks);
+ }
+
+ // Reload the loop variables for the next go-round
+ c = utext_current32(text);
+ category = UTRIE2_GET16(fBI->fData->fTrie, c);
+ }
+
+ // If we found breaks, ensure that the first and last entries are
+ // the original starting and ending position. And initialize the
+ // cache iteration position to the first entry.
+
+ // printf("foundBreakCount = %d\n", foundBreakCount);
+ if (foundBreakCount > 0) {
+ U_ASSERT(foundBreakCount == fBreaks.size());
+ if (startPos < fBreaks.elementAti(0)) {
+ // The dictionary did not place a boundary at the start of the segment of text.
+ // Add one now. This should not commonly happen, but it would be easy for interactions
+ // of the rules for dictionary segments and the break engine implementations to
+ // inadvertently cause it. Cover it here, just in case.
+ fBreaks.insertElementAt(startPos, 0, status);
+ }
+ if (endPos > fBreaks.peeki()) {
+ fBreaks.push(endPos, status);
+ }
+ fPositionInCache = 0;
+ // Note: Dictionary matching may extend beyond the original limit.
+ fStart = fBreaks.elementAti(0);
+ fLimit = fBreaks.peeki();
+ } else {
+ // there were no language-based breaks, even though the segment contained
+ // dictionary characters. Subsequent attempts to fetch boundaries from the dictionary cache
+ // for this range will fail, and the calling code will fall back to the rule based boundaries.
+ }
+}
+
+
+/*
+ * BreakCache implemetation
+ */
+
+RuleBasedBreakIterator::BreakCache::BreakCache(RuleBasedBreakIterator *bi, UErrorCode &status) :
+ fBI(bi), fSideBuffer(status) {
+ reset();
+}
+
+
+RuleBasedBreakIterator::BreakCache::~BreakCache() {
+}
+
+
+void RuleBasedBreakIterator::BreakCache::reset(int32_t pos, int32_t ruleStatus) {
+ fStartBufIdx = 0;
+ fEndBufIdx = 0;
+ fTextIdx = pos;
+ fBufIdx = 0;
+ fBoundaries[0] = pos;
+ fStatuses[0] = (uint16_t)ruleStatus;
+}
+
+
+int32_t RuleBasedBreakIterator::BreakCache::current() {
+ fBI->fPosition = fTextIdx;
+ fBI->fRuleStatusIndex = fStatuses[fBufIdx];
+ fBI->fDone = FALSE;
+ return fTextIdx;
+}
+
+
+void RuleBasedBreakIterator::BreakCache::following(int32_t startPos, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) {
+ // startPos is in the cache. Do a next() from that position.
+ // TODO: an awkward set of interactions with bi->fDone
+ // seek() does not clear it; it can't because of interactions with populateNear().
+ // next() does not clear it in the fast-path case, where everything matters. Maybe it should.
+ // So clear it here, for the case where seek() succeeded on an iterator that had previously run off the end.
+ fBI->fDone = false;
+ next();
+ }
+ return;
+}
+
+
+void RuleBasedBreakIterator::BreakCache::preceding(int32_t startPos, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) {
+ if (startPos == fTextIdx) {
+ previous(status);
+ } else {
+ // seek() leaves the BreakCache positioned at the preceding boundary
+ // if the requested position is between two bounaries.
+ // current() pushes the BreakCache position out to the BreakIterator itself.
+ U_ASSERT(startPos > fTextIdx);
+ current();
+ }
+ }
+ return;
+}
+
+
+/*
+ * Out-of-line code for BreakCache::next().
+ * Cache does not already contain the boundary
+ */
+void RuleBasedBreakIterator::BreakCache::nextOL() {
+ fBI->fDone = !populateFollowing();
+ fBI->fPosition = fTextIdx;
+ fBI->fRuleStatusIndex = fStatuses[fBufIdx];
+ return;
+}
+
+
+void RuleBasedBreakIterator::BreakCache::previous(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ int32_t initialBufIdx = fBufIdx;
+ if (fBufIdx == fStartBufIdx) {
+ // At start of cache. Prepend to it.
+ populatePreceding(status);
+ } else {
+ // Cache already holds the next boundary
+ fBufIdx = modChunkSize(fBufIdx - 1);
+ fTextIdx = fBoundaries[fBufIdx];
+ }
+ fBI->fDone = (fBufIdx == initialBufIdx);
+ fBI->fPosition = fTextIdx;
+ fBI->fRuleStatusIndex = fStatuses[fBufIdx];
+ return;
+}
+
+
+UBool RuleBasedBreakIterator::BreakCache::seek(int32_t pos) {
+ if (pos < fBoundaries[fStartBufIdx] || pos > fBoundaries[fEndBufIdx]) {
+ return FALSE;
+ }
+ if (pos == fBoundaries[fStartBufIdx]) {
+ // Common case: seek(0), from BreakIterator::first()
+ fBufIdx = fStartBufIdx;
+ fTextIdx = fBoundaries[fBufIdx];
+ return TRUE;
+ }
+ if (pos == fBoundaries[fEndBufIdx]) {
+ fBufIdx = fEndBufIdx;
+ fTextIdx = fBoundaries[fBufIdx];
+ return TRUE;
+ }
+
+ int32_t min = fStartBufIdx;
+ int32_t max = fEndBufIdx;
+ while (min != max) {
+ int32_t probe = (min + max + (min>max ? CACHE_SIZE : 0)) / 2;
+ probe = modChunkSize(probe);
+ if (fBoundaries[probe] > pos) {
+ max = probe;
+ } else {
+ min = modChunkSize(probe + 1);
+ }
+ }
+ U_ASSERT(fBoundaries[max] > pos);
+ fBufIdx = modChunkSize(max - 1);
+ fTextIdx = fBoundaries[fBufIdx];
+ U_ASSERT(fTextIdx <= pos);
+ return TRUE;
+}
+
+
+UBool RuleBasedBreakIterator::BreakCache::populateNear(int32_t position, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ U_ASSERT(position < fBoundaries[fStartBufIdx] || position > fBoundaries[fEndBufIdx]);
+
+ // Find a boundary somewhere in the vicinity of the requested position.
+ // Depending on the safe rules and the text data, it could be either before, at, or after
+ // the requested position.
+
+
+ // If the requested position is not near already cached positions, clear the existing cache,
+ // find a near-by boundary and begin new cache contents there.
+
+ if ((position < fBoundaries[fStartBufIdx] - 15) || position > (fBoundaries[fEndBufIdx] + 15)) {
+ int32_t aBoundary = 0;
+ int32_t ruleStatusIndex = 0;
+ if (position > 20) {
+ int32_t backupPos = fBI->handleSafePrevious(position);
+
+ if (backupPos > 0) {
+ // Advance to the boundary following the backup position.
+ // There is a complication: the safe reverse rules identify pairs of code points
+ // that are safe. If advancing from the safe point moves forwards by less than
+ // two code points, we need to advance one more time to ensure that the boundary
+ // is good, including a correct rules status value.
+ //
+ fBI->fPosition = backupPos;
+ aBoundary = fBI->handleNext();
+ if (aBoundary <= backupPos + 4) {
+ // +4 is a quick test for possibly having advanced only one codepoint.
+ // Four being the length of the longest potential code point, a supplementary in UTF-8
+ utext_setNativeIndex(&fBI->fText, aBoundary);
+ if (backupPos == utext_getPreviousNativeIndex(&fBI->fText)) {
+ // The initial handleNext() only advanced by a single code point. Go again.
+ aBoundary = fBI->handleNext(); // Safe rules identify safe pairs.
+ }
+ }
+ ruleStatusIndex = fBI->fRuleStatusIndex;
+ }
+ }
+ reset(aBoundary, ruleStatusIndex); // Reset cache to hold aBoundary as a single starting point.
+ }
+
+ // Fill in boundaries between existing cache content and the new requested position.
+
+ if (fBoundaries[fEndBufIdx] < position) {
+ // The last position in the cache precedes the requested position.
+ // Add following position(s) to the cache.
+ while (fBoundaries[fEndBufIdx] < position) {
+ if (!populateFollowing()) {
+ UPRV_UNREACHABLE;
+ }
+ }
+ fBufIdx = fEndBufIdx; // Set iterator position to the end of the buffer.
+ fTextIdx = fBoundaries[fBufIdx]; // Required because populateFollowing may add extra boundaries.
+ while (fTextIdx > position) { // Move backwards to a position at or preceding the requested pos.
+ previous(status);
+ }
+ return true;
+ }
+
+ if (fBoundaries[fStartBufIdx] > position) {
+ // The first position in the cache is beyond the requested position.
+ // back up more until we get a boundary <= the requested position.
+ while (fBoundaries[fStartBufIdx] > position) {
+ populatePreceding(status);
+ }
+ fBufIdx = fStartBufIdx; // Set iterator position to the start of the buffer.
+ fTextIdx = fBoundaries[fBufIdx]; // Required because populatePreceding may add extra boundaries.
+ while (fTextIdx < position) { // Move forwards to a position at or following the requested pos.
+ next();
+ }
+ if (fTextIdx > position) {
+ // If position is not itself a boundary, the next() loop above will overshoot.
+ // Back up one, leaving cache position at the boundary preceding the requested position.
+ previous(status);
+ }
+ return true;
+ }
+
+ U_ASSERT(fTextIdx == position);
+ return true;
+}
+
+
+
+UBool RuleBasedBreakIterator::BreakCache::populateFollowing() {
+ int32_t fromPosition = fBoundaries[fEndBufIdx];
+ int32_t fromRuleStatusIdx = fStatuses[fEndBufIdx];
+ int32_t pos = 0;
+ int32_t ruleStatusIdx = 0;
+
+ if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) {
+ addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
+ return TRUE;
+ }
+
+ fBI->fPosition = fromPosition;
+ pos = fBI->handleNext();
+ if (pos == UBRK_DONE) {
+ return FALSE;
+ }
+
+ ruleStatusIdx = fBI->fRuleStatusIndex;
+ if (fBI->fDictionaryCharCount > 0) {
+ // The text segment obtained from the rules includes dictionary characters.
+ // Subdivide it, with subdivided results going into the dictionary cache.
+ fBI->fDictionaryCache->populateDictionary(fromPosition, pos, fromRuleStatusIdx, ruleStatusIdx);
+ if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) {
+ addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
+ return TRUE;
+ // TODO: may want to move a sizable chunk of dictionary cache to break cache at this point.
+ // But be careful with interactions with populateNear().
+ }
+ }
+
+ // Rule based segment did not include dictionary characters.
+ // Or, it did contain dictionary chars, but the dictionary segmenter didn't handle them,
+ // meaning that we didn't take the return, above.
+ // Add its end point to the cache.
+ addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
+
+ // Add several non-dictionary boundaries at this point, to optimize straight forward iteration.
+ // (subsequent calls to BreakIterator::next() will take the fast path, getting cached results.
+ //
+ for (int count=0; count<6; ++count) {
+ pos = fBI->handleNext();
+ if (pos == UBRK_DONE || fBI->fDictionaryCharCount > 0) {
+ break;
+ }
+ addFollowing(pos, fBI->fRuleStatusIndex, RetainCachePosition);
+ }
+
+ return TRUE;
+}
+
+
+UBool RuleBasedBreakIterator::BreakCache::populatePreceding(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+
+ int32_t fromPosition = fBoundaries[fStartBufIdx];
+ if (fromPosition == 0) {
+ return FALSE;
+ }
+
+ int32_t position = 0;
+ int32_t positionStatusIdx = 0;
+
+ if (fBI->fDictionaryCache->preceding(fromPosition, &position, &positionStatusIdx)) {
+ addPreceding(position, positionStatusIdx, UpdateCachePosition);
+ return TRUE;
+ }
+
+ int32_t backupPosition = fromPosition;
+
+ // Find a boundary somewhere preceding the first already-cached boundary
+ do {
+ backupPosition = backupPosition - 30;
+ if (backupPosition <= 0) {
+ backupPosition = 0;
+ } else {
+ backupPosition = fBI->handleSafePrevious(backupPosition);
+ }
+ if (backupPosition == UBRK_DONE || backupPosition == 0) {
+ position = 0;
+ positionStatusIdx = 0;
+ } else {
+ // Advance to the boundary following the backup position.
+ // There is a complication: the safe reverse rules identify pairs of code points
+ // that are safe. If advancing from the safe point moves forwards by less than
+ // two code points, we need to advance one more time to ensure that the boundary
+ // is good, including a correct rules status value.
+ //
+ fBI->fPosition = backupPosition;
+ position = fBI->handleNext();
+ if (position <= backupPosition + 4) {
+ // +4 is a quick test for possibly having advanced only one codepoint.
+ // Four being the length of the longest potential code point, a supplementary in UTF-8
+ utext_setNativeIndex(&fBI->fText, position);
+ if (backupPosition == utext_getPreviousNativeIndex(&fBI->fText)) {
+ // The initial handleNext() only advanced by a single code point. Go again.
+ position = fBI->handleNext(); // Safe rules identify safe pairs.
+ }
+ }
+ positionStatusIdx = fBI->fRuleStatusIndex;
+ }
+ } while (position >= fromPosition);
+
+ // Find boundaries between the one we just located and the first already-cached boundary
+ // Put them in a side buffer, because we don't yet know where they will fall in the circular cache buffer..
+
+ fSideBuffer.removeAllElements();
+ fSideBuffer.addElement(position, status);
+ fSideBuffer.addElement(positionStatusIdx, status);
+
+ do {
+ int32_t prevPosition = fBI->fPosition = position;
+ int32_t prevStatusIdx = positionStatusIdx;
+ position = fBI->handleNext();
+ positionStatusIdx = fBI->fRuleStatusIndex;
+ if (position == UBRK_DONE) {
+ break;
+ }
+
+ UBool segmentHandledByDictionary = FALSE;
+ if (fBI->fDictionaryCharCount != 0) {
+ // Segment from the rules includes dictionary characters.
+ // Subdivide it, with subdivided results going into the dictionary cache.
+ int32_t dictSegEndPosition = position;
+ fBI->fDictionaryCache->populateDictionary(prevPosition, dictSegEndPosition, prevStatusIdx, positionStatusIdx);
+ while (fBI->fDictionaryCache->following(prevPosition, &position, &positionStatusIdx)) {
+ segmentHandledByDictionary = true;
+ U_ASSERT(position > prevPosition);
+ if (position >= fromPosition) {
+ break;
+ }
+ U_ASSERT(position <= dictSegEndPosition);
+ fSideBuffer.addElement(position, status);
+ fSideBuffer.addElement(positionStatusIdx, status);
+ prevPosition = position;
+ }
+ U_ASSERT(position==dictSegEndPosition || position>=fromPosition);
+ }
+
+ if (!segmentHandledByDictionary && position < fromPosition) {
+ fSideBuffer.addElement(position, status);
+ fSideBuffer.addElement(positionStatusIdx, status);
+ }
+ } while (position < fromPosition);
+
+ // Move boundaries from the side buffer to the main circular buffer.
+ UBool success = FALSE;
+ if (!fSideBuffer.isEmpty()) {
+ positionStatusIdx = fSideBuffer.popi();
+ position = fSideBuffer.popi();
+ addPreceding(position, positionStatusIdx, UpdateCachePosition);
+ success = TRUE;
+ }
+
+ while (!fSideBuffer.isEmpty()) {
+ positionStatusIdx = fSideBuffer.popi();
+ position = fSideBuffer.popi();
+ if (!addPreceding(position, positionStatusIdx, RetainCachePosition)) {
+ // No space in circular buffer to hold a new preceding result while
+ // also retaining the current cache (iteration) position.
+ // Bailing out is safe; the cache will refill again if needed.
+ break;
+ }
+ }
+
+ return success;
+}
+
+
+void RuleBasedBreakIterator::BreakCache::addFollowing(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) {
+ U_ASSERT(position > fBoundaries[fEndBufIdx]);
+ U_ASSERT(ruleStatusIdx <= UINT16_MAX);
+ int32_t nextIdx = modChunkSize(fEndBufIdx + 1);
+ if (nextIdx == fStartBufIdx) {
+ fStartBufIdx = modChunkSize(fStartBufIdx + 6); // TODO: experiment. Probably revert to 1.
+ }
+ fBoundaries[nextIdx] = position;
+ fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx);
+ fEndBufIdx = nextIdx;
+ if (update == UpdateCachePosition) {
+ // Set current position to the newly added boundary.
+ fBufIdx = nextIdx;
+ fTextIdx = position;
+ } else {
+ // Retaining the original cache position.
+ // Check if the added boundary wraps around the buffer, and would over-write the original position.
+ // It's the responsibility of callers of this function to not add too many.
+ U_ASSERT(nextIdx != fBufIdx);
+ }
+}
+
+bool RuleBasedBreakIterator::BreakCache::addPreceding(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) {
+ U_ASSERT(position < fBoundaries[fStartBufIdx]);
+ U_ASSERT(ruleStatusIdx <= UINT16_MAX);
+ int32_t nextIdx = modChunkSize(fStartBufIdx - 1);
+ if (nextIdx == fEndBufIdx) {
+ if (fBufIdx == fEndBufIdx && update == RetainCachePosition) {
+ // Failure. The insertion of the new boundary would claim the buffer position that is the
+ // current iteration position. And we also want to retain the current iteration position.
+ // (The buffer is already completely full of entries that precede the iteration position.)
+ return false;
+ }
+ fEndBufIdx = modChunkSize(fEndBufIdx - 1);
+ }
+ fBoundaries[nextIdx] = position;
+ fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx);
+ fStartBufIdx = nextIdx;
+ if (update == UpdateCachePosition) {
+ fBufIdx = nextIdx;
+ fTextIdx = position;
+ }
+ return true;
+}
+
+
+void RuleBasedBreakIterator::BreakCache::dumpCache() {
+#ifdef RBBI_DEBUG
+ RBBIDebugPrintf("fTextIdx:%d fBufIdx:%d\n", fTextIdx, fBufIdx);
+ for (int32_t i=fStartBufIdx; ; i=modChunkSize(i+1)) {
+ RBBIDebugPrintf("%d %d\n", i, fBoundaries[i]);
+ if (i == fEndBufIdx) {
+ break;
+ }
+ }
+#endif
+}
+
+U_NAMESPACE_END
+
+#endif // #if !UCONFIG_NO_BREAK_ITERATION