summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/utrie.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/utrie.cpp')
-rw-r--r--intl/icu/source/common/utrie.cpp1234
1 files changed, 1234 insertions, 0 deletions
diff --git a/intl/icu/source/common/utrie.cpp b/intl/icu/source/common/utrie.cpp
new file mode 100644
index 0000000000..ecf9b1cba7
--- /dev/null
+++ b/intl/icu/source/common/utrie.cpp
@@ -0,0 +1,1234 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+******************************************************************************
+*
+* Copyright (C) 2001-2012, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+******************************************************************************
+* file name: utrie.cpp
+* encoding: UTF-8
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2001oct20
+* created by: Markus W. Scherer
+*
+* This is a common implementation of a "folded" trie.
+* It is a kind of compressed, serializable table of 16- or 32-bit values associated with
+* Unicode code points (0..0x10ffff).
+*/
+
+#ifdef UTRIE_DEBUG
+# include <stdio.h>
+#endif
+
+#include "unicode/utypes.h"
+#include "cmemory.h"
+#include "utrie.h"
+
+/* miscellaneous ------------------------------------------------------------ */
+
+#undef ABS
+#define ABS(x) ((x)>=0 ? (x) : -(x))
+
+static inline UBool
+equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
+ while(length>0 && *s==*t) {
+ ++s;
+ ++t;
+ --length;
+ }
+ return (UBool)(length==0);
+}
+
+/* Building a trie ----------------------------------------------------------*/
+
+U_CAPI UNewTrie * U_EXPORT2
+utrie_open(UNewTrie *fillIn,
+ uint32_t *aliasData, int32_t maxDataLength,
+ uint32_t initialValue, uint32_t leadUnitValue,
+ UBool latin1Linear) {
+ UNewTrie *trie;
+ int32_t i, j;
+
+ if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH ||
+ (latin1Linear && maxDataLength<1024)
+ ) {
+ return NULL;
+ }
+
+ if(fillIn!=NULL) {
+ trie=fillIn;
+ } else {
+ trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie));
+ if(trie==NULL) {
+ return NULL;
+ }
+ }
+ uprv_memset(trie, 0, sizeof(UNewTrie));
+ trie->isAllocated= (UBool)(fillIn==NULL);
+
+ if(aliasData!=NULL) {
+ trie->data=aliasData;
+ trie->isDataAllocated=FALSE;
+ } else {
+ trie->data=(uint32_t *)uprv_malloc(maxDataLength*4);
+ if(trie->data==NULL) {
+ uprv_free(trie);
+ return NULL;
+ }
+ trie->isDataAllocated=TRUE;
+ }
+
+ /* preallocate and reset the first data block (block index 0) */
+ j=UTRIE_DATA_BLOCK_LENGTH;
+
+ if(latin1Linear) {
+ /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */
+ /* made sure above that maxDataLength>=1024 */
+
+ /* set indexes to point to consecutive data blocks */
+ i=0;
+ do {
+ /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */
+ trie->index[i++]=j;
+ j+=UTRIE_DATA_BLOCK_LENGTH;
+ } while(i<(256>>UTRIE_SHIFT));
+ }
+
+ /* reset the initially allocated blocks to the initial value */
+ trie->dataLength=j;
+ while(j>0) {
+ trie->data[--j]=initialValue;
+ }
+
+ trie->leadUnitValue=leadUnitValue;
+ trie->indexLength=UTRIE_MAX_INDEX_LENGTH;
+ trie->dataCapacity=maxDataLength;
+ trie->isLatin1Linear=latin1Linear;
+ trie->isCompacted=FALSE;
+ return trie;
+}
+
+U_CAPI UNewTrie * U_EXPORT2
+utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) {
+ UNewTrie *trie;
+ UBool isDataAllocated;
+
+ /* do not clone if other is not valid or already compacted */
+ if(other==NULL || other->data==NULL || other->isCompacted) {
+ return NULL;
+ }
+
+ /* clone data */
+ if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) {
+ isDataAllocated=FALSE;
+ } else {
+ aliasDataCapacity=other->dataCapacity;
+ aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4);
+ if(aliasData==NULL) {
+ return NULL;
+ }
+ isDataAllocated=TRUE;
+ }
+
+ trie=utrie_open(fillIn, aliasData, aliasDataCapacity,
+ other->data[0], other->leadUnitValue,
+ other->isLatin1Linear);
+ if(trie==NULL) {
+ uprv_free(aliasData);
+ } else {
+ uprv_memcpy(trie->index, other->index, sizeof(trie->index));
+ uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
+ trie->dataLength=other->dataLength;
+ trie->isDataAllocated=isDataAllocated;
+ }
+
+ return trie;
+}
+
+U_CAPI void U_EXPORT2
+utrie_close(UNewTrie *trie) {
+ if(trie!=NULL) {
+ if(trie->isDataAllocated) {
+ uprv_free(trie->data);
+ trie->data=NULL;
+ }
+ if(trie->isAllocated) {
+ uprv_free(trie);
+ }
+ }
+}
+
+U_CAPI uint32_t * U_EXPORT2
+utrie_getData(UNewTrie *trie, int32_t *pLength) {
+ if(trie==NULL || pLength==NULL) {
+ return NULL;
+ }
+
+ *pLength=trie->dataLength;
+ return trie->data;
+}
+
+static int32_t
+utrie_allocDataBlock(UNewTrie *trie) {
+ int32_t newBlock, newTop;
+
+ newBlock=trie->dataLength;
+ newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH;
+ if(newTop>trie->dataCapacity) {
+ /* out of memory in the data array */
+ return -1;
+ }
+ trie->dataLength=newTop;
+ return newBlock;
+}
+
+/**
+ * No error checking for illegal arguments.
+ *
+ * @return -1 if no new data block available (out of memory in data array)
+ * @internal
+ */
+static int32_t
+utrie_getDataBlock(UNewTrie *trie, UChar32 c) {
+ int32_t indexValue, newBlock;
+
+ c>>=UTRIE_SHIFT;
+ indexValue=trie->index[c];
+ if(indexValue>0) {
+ return indexValue;
+ }
+
+ /* allocate a new data block */
+ newBlock=utrie_allocDataBlock(trie);
+ if(newBlock<0) {
+ /* out of memory in the data array */
+ return -1;
+ }
+ trie->index[c]=newBlock;
+
+ /* copy-on-write for a block from a setRange() */
+ uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH);
+ return newBlock;
+}
+
+/**
+ * @return TRUE if the value was successfully set
+ */
+U_CAPI UBool U_EXPORT2
+utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) {
+ int32_t block;
+
+ /* valid, uncompacted trie and valid c? */
+ if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
+ return FALSE;
+ }
+
+ block=utrie_getDataBlock(trie, c);
+ if(block<0) {
+ return FALSE;
+ }
+
+ trie->data[block+(c&UTRIE_MASK)]=value;
+ return TRUE;
+}
+
+U_CAPI uint32_t U_EXPORT2
+utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) {
+ int32_t block;
+
+ /* valid, uncompacted trie and valid c? */
+ if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
+ if(pInBlockZero!=NULL) {
+ *pInBlockZero=TRUE;
+ }
+ return 0;
+ }
+
+ block=trie->index[c>>UTRIE_SHIFT];
+ if(pInBlockZero!=NULL) {
+ *pInBlockZero= (UBool)(block==0);
+ }
+
+ return trie->data[ABS(block)+(c&UTRIE_MASK)];
+}
+
+/**
+ * @internal
+ */
+static void
+utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
+ uint32_t value, uint32_t initialValue, UBool overwrite) {
+ uint32_t *pLimit;
+
+ pLimit=block+limit;
+ block+=start;
+ if(overwrite) {
+ while(block<pLimit) {
+ *block++=value;
+ }
+ } else {
+ while(block<pLimit) {
+ if(*block==initialValue) {
+ *block=value;
+ }
+ ++block;
+ }
+ }
+}
+
+U_CAPI UBool U_EXPORT2
+utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) {
+ /*
+ * repeat value in [start..limit[
+ * mark index values for repeat-data blocks by setting bit 31 of the index values
+ * fill around existing values if any, if(overwrite)
+ */
+ uint32_t initialValue;
+ int32_t block, rest, repeatBlock;
+
+ /* valid, uncompacted trie and valid indexes? */
+ if( trie==NULL || trie->isCompacted ||
+ (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit
+ ) {
+ return FALSE;
+ }
+ if(start==limit) {
+ return TRUE; /* nothing to do */
+ }
+
+ initialValue=trie->data[0];
+ if(start&UTRIE_MASK) {
+ UChar32 nextStart;
+
+ /* set partial block at [start..following block boundary[ */
+ block=utrie_getDataBlock(trie, start);
+ if(block<0) {
+ return FALSE;
+ }
+
+ nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK;
+ if(nextStart<=limit) {
+ utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH,
+ value, initialValue, overwrite);
+ start=nextStart;
+ } else {
+ utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK,
+ value, initialValue, overwrite);
+ return TRUE;
+ }
+ }
+
+ /* number of positions in the last, partial block */
+ rest=limit&UTRIE_MASK;
+
+ /* round down limit to a block boundary */
+ limit&=~UTRIE_MASK;
+
+ /* iterate over all-value blocks */
+ if(value==initialValue) {
+ repeatBlock=0;
+ } else {
+ repeatBlock=-1;
+ }
+ while(start<limit) {
+ /* get index value */
+ block=trie->index[start>>UTRIE_SHIFT];
+ if(block>0) {
+ /* already allocated, fill in value */
+ utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite);
+ } else if(trie->data[-block]!=value && (block==0 || overwrite)) {
+ /* set the repeatBlock instead of the current block 0 or range block */
+ if(repeatBlock>=0) {
+ trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
+ } else {
+ /* create and set and fill the repeatBlock */
+ repeatBlock=utrie_getDataBlock(trie, start);
+ if(repeatBlock<0) {
+ return FALSE;
+ }
+
+ /* set the negative block number to indicate that it is a repeat block */
+ trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
+ utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE);
+ }
+ }
+
+ start+=UTRIE_DATA_BLOCK_LENGTH;
+ }
+
+ if(rest>0) {
+ /* set partial block at [last block boundary..limit[ */
+ block=utrie_getDataBlock(trie, start);
+ if(block<0) {
+ return FALSE;
+ }
+
+ utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite);
+ }
+
+ return TRUE;
+}
+
+static int32_t
+_findSameIndexBlock(const int32_t *idx, int32_t indexLength,
+ int32_t otherBlock) {
+ int32_t block, i;
+
+ for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) {
+ for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) {
+ if(idx[block+i]!=idx[otherBlock+i]) {
+ break;
+ }
+ }
+ if(i==UTRIE_SURROGATE_BLOCK_COUNT) {
+ return block;
+ }
+ }
+ return indexLength;
+}
+
+/*
+ * Fold the normalization data for supplementary code points into
+ * a compact area on top of the BMP-part of the trie index,
+ * with the lead surrogates indexing this compact area.
+ *
+ * Duplicate the index values for lead surrogates:
+ * From inside the BMP area, where some may be overridden with folded values,
+ * to just after the BMP area, where they can be retrieved for
+ * code point lookups.
+ */
+static void
+utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) {
+ int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT];
+ int32_t *idx;
+ uint32_t value;
+ UChar32 c;
+ int32_t indexLength, block;
+#ifdef UTRIE_DEBUG
+ int countLeadCUWithData=0;
+#endif
+
+ idx=trie->index;
+
+ /* copy the lead surrogate indexes into a temporary array */
+ uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT);
+
+ /*
+ * set all values for lead surrogate code *units* to leadUnitValue
+ * so that, by default, runtime lookups will find no data for associated
+ * supplementary code points, unless there is data for such code points
+ * which will result in a non-zero folding value below that is set for
+ * the respective lead units
+ *
+ * the above saved the indexes for surrogate code *points*
+ * fill the indexes with simplified code from utrie_setRange32()
+ */
+ if(trie->leadUnitValue==trie->data[0]) {
+ block=0; /* leadUnitValue==initialValue, use all-initial-value block */
+ } else {
+ /* create and fill the repeatBlock */
+ block=utrie_allocDataBlock(trie);
+ if(block<0) {
+ /* data table overflow */
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE);
+ block=-block; /* negative block number to indicate that it is a repeat block */
+ }
+ for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) {
+ trie->index[c]=block;
+ }
+
+ /*
+ * Fold significant index values into the area just after the BMP indexes.
+ * In case the first lead surrogate has significant data,
+ * its index block must be used first (in which case the folding is a no-op).
+ * Later all folded index blocks are moved up one to insert the copied
+ * lead surrogate indexes.
+ */
+ indexLength=UTRIE_BMP_INDEX_LENGTH;
+
+ /* search for any index (stage 1) entries for supplementary code points */
+ for(c=0x10000; c<0x110000;) {
+ if(idx[c>>UTRIE_SHIFT]!=0) {
+ /* there is data, treat the full block for a lead surrogate */
+ c&=~0x3ff;
+
+#ifdef UTRIE_DEBUG
+ ++countLeadCUWithData;
+ /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */
+#endif
+
+ /* is there an identical index block? */
+ block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT);
+
+ /*
+ * get a folded value for [c..c+0x400[ and,
+ * if different from the value for the lead surrogate code point,
+ * set it for the lead surrogate code unit
+ */
+ value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT);
+ if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) {
+ if(!utrie_set32(trie, U16_LEAD(c), value)) {
+ /* data table overflow */
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ /* if we did not find an identical index block... */
+ if(block==indexLength) {
+ /* move the actual index (stage 1) entries from the supplementary position to the new one */
+ uprv_memmove(idx+indexLength,
+ idx+(c>>UTRIE_SHIFT),
+ 4*UTRIE_SURROGATE_BLOCK_COUNT);
+ indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
+ }
+ }
+ c+=0x400;
+ } else {
+ c+=UTRIE_DATA_BLOCK_LENGTH;
+ }
+ }
+#ifdef UTRIE_DEBUG
+ if(countLeadCUWithData>0) {
+ printf("supplementary data for %d lead surrogates\n", countLeadCUWithData);
+ }
+#endif
+
+ /*
+ * index array overflow?
+ * This is to guarantee that a folding offset is of the form
+ * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023.
+ * If the index is too large, then n>=1024 and more than 10 bits are necessary.
+ *
+ * In fact, it can only ever become n==1024 with completely unfoldable data and
+ * the additional block of duplicated values for lead surrogates.
+ */
+ if(indexLength>=UTRIE_MAX_INDEX_LENGTH) {
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ return;
+ }
+
+ /*
+ * make space for the lead surrogate index block and
+ * insert it between the BMP indexes and the folded ones
+ */
+ uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT,
+ idx+UTRIE_BMP_INDEX_LENGTH,
+ 4*(indexLength-UTRIE_BMP_INDEX_LENGTH));
+ uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH,
+ leadIndexes,
+ 4*UTRIE_SURROGATE_BLOCK_COUNT);
+ indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
+
+#ifdef UTRIE_DEBUG
+ printf("trie index count: BMP %ld all Unicode %ld folded %ld\n",
+ UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength);
+#endif
+
+ trie->indexLength=indexLength;
+}
+
+/*
+ * Set a value in the trie index map to indicate which data block
+ * is referenced and which one is not.
+ * utrie_compact() will remove data blocks that are not used at all.
+ * Set
+ * - 0 if it is used
+ * - -1 if it is not used
+ */
+static void
+_findUnusedBlocks(UNewTrie *trie) {
+ int32_t i;
+
+ /* fill the entire map with "not used" */
+ uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4);
+
+ /* mark each block that _is_ used with 0 */
+ for(i=0; i<trie->indexLength; ++i) {
+ trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0;
+ }
+
+ /* never move the all-initial-value block 0 */
+ trie->map[0]=0;
+}
+
+static int32_t
+_findSameDataBlock(const uint32_t *data, int32_t dataLength,
+ int32_t otherBlock, int32_t step) {
+ int32_t block;
+
+ /* ensure that we do not even partially get past dataLength */
+ dataLength-=UTRIE_DATA_BLOCK_LENGTH;
+
+ for(block=0; block<=dataLength; block+=step) {
+ if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) {
+ return block;
+ }
+ }
+ return -1;
+}
+
+/*
+ * Compact a folded build-time trie.
+ *
+ * The compaction
+ * - removes blocks that are identical with earlier ones
+ * - overlaps adjacent blocks as much as possible (if overlap==TRUE)
+ * - moves blocks in steps of the data granularity
+ * - moves and overlaps blocks that overlap with multiple values in the overlap region
+ *
+ * It does not
+ * - try to move and overlap blocks that are not already adjacent
+ */
+static void
+utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) {
+ int32_t i, start, newStart, overlapStart;
+
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
+ return;
+ }
+
+ /* valid, uncompacted trie? */
+ if(trie==NULL) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ if(trie->isCompacted) {
+ return; /* nothing left to do */
+ }
+
+ /* compaction */
+
+ /* initialize the index map with "block is used/unused" flags */
+ _findUnusedBlocks(trie);
+
+ /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */
+ if(trie->isLatin1Linear && UTRIE_SHIFT<=8) {
+ overlapStart=UTRIE_DATA_BLOCK_LENGTH+256;
+ } else {
+ overlapStart=UTRIE_DATA_BLOCK_LENGTH;
+ }
+
+ newStart=UTRIE_DATA_BLOCK_LENGTH;
+ for(start=newStart; start<trie->dataLength;) {
+ /*
+ * start: index of first entry of current block
+ * newStart: index where the current block is to be moved
+ * (right after current end of already-compacted data)
+ */
+
+ /* skip blocks that are not used */
+ if(trie->map[start>>UTRIE_SHIFT]<0) {
+ /* advance start to the next block */
+ start+=UTRIE_DATA_BLOCK_LENGTH;
+
+ /* leave newStart with the previous block! */
+ continue;
+ }
+
+ /* search for an identical block */
+ if( start>=overlapStart &&
+ (i=_findSameDataBlock(trie->data, newStart, start,
+ overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH))
+ >=0
+ ) {
+ /* found an identical block, set the other block's index value for the current block */
+ trie->map[start>>UTRIE_SHIFT]=i;
+
+ /* advance start to the next block */
+ start+=UTRIE_DATA_BLOCK_LENGTH;
+
+ /* leave newStart with the previous block! */
+ continue;
+ }
+
+ /* see if the beginning of this block can be overlapped with the end of the previous block */
+ if(overlap && start>=overlapStart) {
+ /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
+ for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY;
+ i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i);
+ i-=UTRIE_DATA_GRANULARITY) {}
+ } else {
+ i=0;
+ }
+
+ if(i>0) {
+ /* some overlap */
+ trie->map[start>>UTRIE_SHIFT]=newStart-i;
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=i;
+ for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) {
+ trie->data[newStart++]=trie->data[start++];
+ }
+ } else if(newStart<start) {
+ /* no overlap, just move the indexes to their new positions */
+ trie->map[start>>UTRIE_SHIFT]=newStart;
+ for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) {
+ trie->data[newStart++]=trie->data[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ trie->map[start>>UTRIE_SHIFT]=start;
+ newStart+=UTRIE_DATA_BLOCK_LENGTH;
+ start=newStart;
+ }
+ }
+
+ /* now adjust the index (stage 1) table */
+ for(i=0; i<trie->indexLength; ++i) {
+ trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT];
+ }
+
+#ifdef UTRIE_DEBUG
+ /* we saved some space */
+ printf("compacting trie: count of 32-bit words %lu->%lu\n",
+ (long)trie->dataLength, (long)newStart);
+#endif
+
+ trie->dataLength=newStart;
+}
+
+/* serialization ------------------------------------------------------------ */
+
+/*
+ * Default function for the folding value:
+ * Just store the offset (16 bits) if there is any non-initial-value entry.
+ *
+ * The offset parameter is never 0.
+ * Returning the offset itself is safe for UTRIE_SHIFT>=5 because
+ * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800
+ * which fits into 16-bit trie values;
+ * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases.
+ *
+ * Theoretically, it would be safer for all possible UTRIE_SHIFT including
+ * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS
+ * which would always result in a value of 0x40..0x43f
+ * (start/end 1k blocks of supplementary Unicode code points).
+ * However, this would be uglier, and would not work for some existing
+ * binary data file formats.
+ *
+ * Also, we do not plan to change UTRIE_SHIFT because it would change binary
+ * data file formats, and we would probably not make it smaller because of
+ * the then even larger BMP index length even for empty tries.
+ */
+static uint32_t U_CALLCONV
+defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) {
+ uint32_t value, initialValue;
+ UChar32 limit;
+ UBool inBlockZero;
+
+ initialValue=trie->data[0];
+ limit=start+0x400;
+ while(start<limit) {
+ value=utrie_get32(trie, start, &inBlockZero);
+ if(inBlockZero) {
+ start+=UTRIE_DATA_BLOCK_LENGTH;
+ } else if(value!=initialValue) {
+ return (uint32_t)offset;
+ } else {
+ ++start;
+ }
+ }
+ return 0;
+}
+
+U_CAPI int32_t U_EXPORT2
+utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity,
+ UNewTrieGetFoldedValue *getFoldedValue,
+ UBool reduceTo16Bits,
+ UErrorCode *pErrorCode) {
+ UTrieHeader *header;
+ uint32_t *p;
+ uint16_t *dest16;
+ int32_t i, length;
+ uint8_t* data = NULL;
+
+ /* argument check */
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
+ return 0;
+ }
+
+ if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+ if(getFoldedValue==NULL) {
+ getFoldedValue=defaultGetFoldedValue;
+ }
+
+ data = (uint8_t*)dt;
+ /* fold and compact if necessary, also checks that indexLength is within limits */
+ if(!trie->isCompacted) {
+ /* compact once without overlap to improve folding */
+ utrie_compact(trie, FALSE, pErrorCode);
+
+ /* fold the supplementary part of the index array */
+ utrie_fold(trie, getFoldedValue, pErrorCode);
+
+ /* compact again with overlap for minimum data array length */
+ utrie_compact(trie, TRUE, pErrorCode);
+
+ trie->isCompacted=TRUE;
+ if(U_FAILURE(*pErrorCode)) {
+ return 0;
+ }
+ }
+
+ /* is dataLength within limits? */
+ if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) {
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+
+ length=sizeof(UTrieHeader)+2*trie->indexLength;
+ if(reduceTo16Bits) {
+ length+=2*trie->dataLength;
+ } else {
+ length+=4*trie->dataLength;
+ }
+
+ if(length>capacity) {
+ return length; /* preflighting */
+ }
+
+#ifdef UTRIE_DEBUG
+ printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n",
+ (long)trie->indexLength, (long)trie->dataLength, (long)length);
+#endif
+
+ /* set the header fields */
+ header=(UTrieHeader *)data;
+ data+=sizeof(UTrieHeader);
+
+ header->signature=0x54726965; /* "Trie" */
+ header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT);
+
+ if(!reduceTo16Bits) {
+ header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT;
+ }
+ if(trie->isLatin1Linear) {
+ header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR;
+ }
+
+ header->indexLength=trie->indexLength;
+ header->dataLength=trie->dataLength;
+
+ /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */
+ if(reduceTo16Bits) {
+ /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */
+ p=(uint32_t *)trie->index;
+ dest16=(uint16_t *)data;
+ for(i=trie->indexLength; i>0; --i) {
+ *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT);
+ }
+
+ /* write 16-bit data values */
+ p=trie->data;
+ for(i=trie->dataLength; i>0; --i) {
+ *dest16++=(uint16_t)*p++;
+ }
+ } else {
+ /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */
+ p=(uint32_t *)trie->index;
+ dest16=(uint16_t *)data;
+ for(i=trie->indexLength; i>0; --i) {
+ *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT);
+ }
+
+ /* write 32-bit data values */
+ uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength);
+ }
+
+ return length;
+}
+
+/* inverse to defaultGetFoldedValue() */
+U_CAPI int32_t U_EXPORT2
+utrie_defaultGetFoldingOffset(uint32_t data) {
+ return (int32_t)data;
+}
+
+U_CAPI int32_t U_EXPORT2
+utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) {
+ const UTrieHeader *header;
+ const uint16_t *p16;
+ uint32_t options;
+
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
+ return -1;
+ }
+
+ /* enough data for a trie header? */
+ if(length<(int32_t)sizeof(UTrieHeader)) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+
+ /* check the signature */
+ header=(const UTrieHeader *)data;
+ if(header->signature!=0x54726965) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+
+ /* get the options and check the shift values */
+ options=header->options;
+ if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT ||
+ ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT
+ ) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+ trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0);
+
+ /* get the length values */
+ trie->indexLength=header->indexLength;
+ trie->dataLength=header->dataLength;
+
+ length-=(int32_t)sizeof(UTrieHeader);
+
+ /* enough data for the index? */
+ if(length<2*trie->indexLength) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+ p16=(const uint16_t *)(header+1);
+ trie->index=p16;
+ p16+=trie->indexLength;
+ length-=2*trie->indexLength;
+
+ /* get the data */
+ if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) {
+ if(length<4*trie->dataLength) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+ trie->data32=(const uint32_t *)p16;
+ trie->initialValue=trie->data32[0];
+ length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength;
+ } else {
+ if(length<2*trie->dataLength) {
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return -1;
+ }
+
+ /* the "data16" data is used via the index pointer */
+ trie->data32=NULL;
+ trie->initialValue=trie->index[trie->indexLength];
+ length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength;
+ }
+
+ trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
+
+ return length;
+}
+
+U_CAPI int32_t U_EXPORT2
+utrie_unserializeDummy(UTrie *trie,
+ void *data, int32_t length,
+ uint32_t initialValue, uint32_t leadUnitValue,
+ UBool make16BitTrie,
+ UErrorCode *pErrorCode) {
+ uint16_t *p16;
+ int32_t actualLength, latin1Length, i, limit;
+ uint16_t block;
+
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
+ return -1;
+ }
+
+ /* calculate the actual size of the dummy trie data */
+
+ /* max(Latin-1, block 0) */
+ latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/
+
+ trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT;
+ trie->dataLength=latin1Length;
+ if(leadUnitValue!=initialValue) {
+ trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH;
+ }
+
+ actualLength=trie->indexLength*2;
+ if(make16BitTrie) {
+ actualLength+=trie->dataLength*2;
+ } else {
+ actualLength+=trie->dataLength*4;
+ }
+
+ /* enough space for the dummy trie? */
+ if(length<actualLength) {
+ *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
+ return actualLength;
+ }
+
+ trie->isLatin1Linear=TRUE;
+ trie->initialValue=initialValue;
+
+ /* fill the index and data arrays */
+ p16=(uint16_t *)data;
+ trie->index=p16;
+
+ if(make16BitTrie) {
+ /* indexes to block 0 */
+ block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT);
+ limit=trie->indexLength;
+ for(i=0; i<limit; ++i) {
+ p16[i]=block;
+ }
+
+ if(leadUnitValue!=initialValue) {
+ /* indexes for lead surrogate code units to the block after Latin-1 */
+ block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
+ i=0xd800>>UTRIE_SHIFT;
+ limit=0xdc00>>UTRIE_SHIFT;
+ for(; i<limit; ++i) {
+ p16[i]=block;
+ }
+ }
+
+ trie->data32=NULL;
+
+ /* Latin-1 data */
+ p16+=trie->indexLength;
+ for(i=0; i<latin1Length; ++i) {
+ p16[i]=(uint16_t)initialValue;
+ }
+
+ /* data for lead surrogate code units */
+ if(leadUnitValue!=initialValue) {
+ limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
+ for(/* i=latin1Length */; i<limit; ++i) {
+ p16[i]=(uint16_t)leadUnitValue;
+ }
+ }
+ } else {
+ uint32_t *p32;
+
+ /* indexes to block 0 */
+ uprv_memset(p16, 0, trie->indexLength*2);
+
+ if(leadUnitValue!=initialValue) {
+ /* indexes for lead surrogate code units to the block after Latin-1 */
+ block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
+ i=0xd800>>UTRIE_SHIFT;
+ limit=0xdc00>>UTRIE_SHIFT;
+ for(; i<limit; ++i) {
+ p16[i]=block;
+ }
+ }
+
+ trie->data32=p32=(uint32_t *)(p16+trie->indexLength);
+
+ /* Latin-1 data */
+ for(i=0; i<latin1Length; ++i) {
+ p32[i]=initialValue;
+ }
+
+ /* data for lead surrogate code units */
+ if(leadUnitValue!=initialValue) {
+ limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
+ for(/* i=latin1Length */; i<limit; ++i) {
+ p32[i]=leadUnitValue;
+ }
+ }
+ }
+
+ trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
+
+ return actualLength;
+}
+
+/* enumeration -------------------------------------------------------------- */
+
+/* default UTrieEnumValue() returns the input value itself */
+static uint32_t U_CALLCONV
+enumSameValue(const void * /*context*/, uint32_t value) {
+ return value;
+}
+
+/**
+ * Enumerate all ranges of code points with the same relevant values.
+ * The values are transformed from the raw trie entries by the enumValue function.
+ */
+U_CAPI void U_EXPORT2
+utrie_enum(const UTrie *trie,
+ UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) {
+ const uint32_t *data32;
+ const uint16_t *idx;
+
+ uint32_t value, prevValue, initialValue;
+ UChar32 c, prev;
+ int32_t l, i, j, block, prevBlock, nullBlock, offset;
+
+ /* check arguments */
+ if(trie==NULL || trie->index==NULL || enumRange==NULL) {
+ return;
+ }
+ if(enumValue==NULL) {
+ enumValue=enumSameValue;
+ }
+
+ idx=trie->index;
+ data32=trie->data32;
+
+ /* get the enumeration value that corresponds to an initial-value trie data entry */
+ initialValue=enumValue(context, trie->initialValue);
+
+ if(data32==NULL) {
+ nullBlock=trie->indexLength;
+ } else {
+ nullBlock=0;
+ }
+
+ /* set variables for previous range */
+ prevBlock=nullBlock;
+ prev=0;
+ prevValue=initialValue;
+
+ /* enumerate BMP - the main loop enumerates data blocks */
+ for(i=0, c=0; c<=0xffff; ++i) {
+ if(c==0xd800) {
+ /* skip lead surrogate code _units_, go to lead surr. code _points_ */
+ i=UTRIE_BMP_INDEX_LENGTH;
+ } else if(c==0xdc00) {
+ /* go back to regular BMP code points */
+ i=c>>UTRIE_SHIFT;
+ }
+
+ block=idx[i]<<UTRIE_INDEX_SHIFT;
+ if(block==prevBlock) {
+ /* the block is the same as the previous one, and filled with value */
+ c+=UTRIE_DATA_BLOCK_LENGTH;
+ } else if(block==nullBlock) {
+ /* this is the all-initial-value block */
+ if(prevValue!=initialValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ prevBlock=nullBlock;
+ prev=c;
+ prevValue=initialValue;
+ }
+ c+=UTRIE_DATA_BLOCK_LENGTH;
+ } else {
+ prevBlock=block;
+ for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
+ value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
+ if(value!=prevValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ if(j>0) {
+ /* the block is not filled with all the same value */
+ prevBlock=-1;
+ }
+ prev=c;
+ prevValue=value;
+ }
+ ++c;
+ }
+ }
+ }
+
+ /* enumerate supplementary code points */
+ for(l=0xd800; l<0xdc00;) {
+ /* lead surrogate access */
+ offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT;
+ if(offset==nullBlock) {
+ /* no entries for a whole block of lead surrogates */
+ if(prevValue!=initialValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ prevBlock=nullBlock;
+ prev=c;
+ prevValue=initialValue;
+ }
+
+ l+=UTRIE_DATA_BLOCK_LENGTH;
+ c+=UTRIE_DATA_BLOCK_LENGTH<<10;
+ continue;
+ }
+
+ value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)];
+
+ /* enumerate trail surrogates for this lead surrogate */
+ offset=trie->getFoldingOffset(value);
+ if(offset<=0) {
+ /* no data for this lead surrogate */
+ if(prevValue!=initialValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ prevBlock=nullBlock;
+ prev=c;
+ prevValue=initialValue;
+ }
+
+ /* nothing else to do for the supplementary code points for this lead surrogate */
+ c+=0x400;
+ } else {
+ /* enumerate code points for this lead surrogate */
+ i=offset;
+ offset+=UTRIE_SURROGATE_BLOCK_COUNT;
+ do {
+ /* copy of most of the body of the BMP loop */
+ block=idx[i]<<UTRIE_INDEX_SHIFT;
+ if(block==prevBlock) {
+ /* the block is the same as the previous one, and filled with value */
+ c+=UTRIE_DATA_BLOCK_LENGTH;
+ } else if(block==nullBlock) {
+ /* this is the all-initial-value block */
+ if(prevValue!=initialValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ prevBlock=nullBlock;
+ prev=c;
+ prevValue=initialValue;
+ }
+ c+=UTRIE_DATA_BLOCK_LENGTH;
+ } else {
+ prevBlock=block;
+ for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
+ value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
+ if(value!=prevValue) {
+ if(prev<c) {
+ if(!enumRange(context, prev, c, prevValue)) {
+ return;
+ }
+ }
+ if(j>0) {
+ /* the block is not filled with all the same value */
+ prevBlock=-1;
+ }
+ prev=c;
+ prevValue=value;
+ }
+ ++c;
+ }
+ }
+ } while(++i<offset);
+ }
+
+ ++l;
+ }
+
+ /* deliver last range */
+ enumRange(context, prev, c, prevValue);
+}