summaryrefslogtreecommitdiffstats
path: root/ipc/chromium/src/base/waitable_event_posix.cc
diff options
context:
space:
mode:
Diffstat (limited to 'ipc/chromium/src/base/waitable_event_posix.cc')
-rw-r--r--ipc/chromium/src/base/waitable_event_posix.cc362
1 files changed, 362 insertions, 0 deletions
diff --git a/ipc/chromium/src/base/waitable_event_posix.cc b/ipc/chromium/src/base/waitable_event_posix.cc
new file mode 100644
index 0000000000..ad63876016
--- /dev/null
+++ b/ipc/chromium/src/base/waitable_event_posix.cc
@@ -0,0 +1,362 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/waitable_event.h"
+
+#include "base/condition_variable.h"
+#include "base/lock.h"
+#include "base/message_loop.h"
+
+// -----------------------------------------------------------------------------
+// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
+// support cross-process events (where one process can signal an event which
+// others are waiting on). Because of this, we can avoid having one thread per
+// listener in several cases.
+//
+// The WaitableEvent maintains a list of waiters, protected by a lock. Each
+// waiter is either an async wait, in which case we have a Task and the
+// MessageLoop to run it on, or a blocking wait, in which case we have the
+// condition variable to signal.
+//
+// Waiting involves grabbing the lock and adding oneself to the wait list. Async
+// waits can be canceled, which means grabbing the lock and removing oneself
+// from the list.
+//
+// Waiting on multiple events is handled by adding a single, synchronous wait to
+// the wait-list of many events. An event passes a pointer to itself when
+// firing a waiter and so we can store that pointer to find out which event
+// triggered.
+// -----------------------------------------------------------------------------
+
+namespace base {
+
+// -----------------------------------------------------------------------------
+// This is just an abstract base class for waking the two types of waiters
+// -----------------------------------------------------------------------------
+WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
+ : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {}
+
+WaitableEvent::~WaitableEvent() {}
+
+void WaitableEvent::Reset() {
+ AutoLock locked(kernel_->lock_);
+ kernel_->signaled_ = false;
+}
+
+void WaitableEvent::Signal() {
+ AutoLock locked(kernel_->lock_);
+
+ if (kernel_->signaled_) return;
+
+ if (kernel_->manual_reset_) {
+ SignalAll();
+ kernel_->signaled_ = true;
+ } else {
+ // In the case of auto reset, if no waiters were woken, we remain
+ // signaled.
+ if (!SignalOne()) kernel_->signaled_ = true;
+ }
+}
+
+bool WaitableEvent::IsSignaled() {
+ AutoLock locked(kernel_->lock_);
+
+ const bool result = kernel_->signaled_;
+ if (result && !kernel_->manual_reset_) kernel_->signaled_ = false;
+ return result;
+}
+
+// -----------------------------------------------------------------------------
+// Synchronous waits
+
+// -----------------------------------------------------------------------------
+// This is an synchronous waiter. The thread is waiting on the given condition
+// variable and the fired flag in this object.
+// -----------------------------------------------------------------------------
+class SyncWaiter : public WaitableEvent::Waiter {
+ public:
+ SyncWaiter(ConditionVariable* cv, Lock* lock)
+ : fired_(false), cv_(cv), lock_(lock), signaling_event_(NULL) {}
+
+ bool Fire(WaitableEvent* signaling_event) override {
+ lock_->Acquire();
+ const bool previous_value = fired_;
+ fired_ = true;
+ if (!previous_value) signaling_event_ = signaling_event;
+ lock_->Release();
+
+ if (previous_value) return false;
+
+ cv_->Broadcast();
+
+ // SyncWaiters are stack allocated on the stack of the blocking thread.
+ return true;
+ }
+
+ WaitableEvent* signaled_event() const { return signaling_event_; }
+
+ // ---------------------------------------------------------------------------
+ // These waiters are always stack allocated and don't delete themselves. Thus
+ // there's no problem and the ABA tag is the same as the object pointer.
+ // ---------------------------------------------------------------------------
+ bool Compare(void* tag) override { return this == tag; }
+
+ // ---------------------------------------------------------------------------
+ // Called with lock held.
+ // ---------------------------------------------------------------------------
+ bool fired() const { return fired_; }
+
+ // ---------------------------------------------------------------------------
+ // During a TimedWait, we need a way to make sure that an auto-reset
+ // WaitableEvent doesn't think that this event has been signaled between
+ // unlocking it and removing it from the wait-list. Called with lock held.
+ // ---------------------------------------------------------------------------
+ void Disable() { fired_ = true; }
+
+ private:
+ bool fired_;
+ ConditionVariable* const cv_;
+ Lock* const lock_;
+ WaitableEvent* signaling_event_; // The WaitableEvent which woke us
+};
+
+bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
+ const TimeTicks end_time(TimeTicks::Now() + max_time);
+ const bool finite_time = max_time.ToInternalValue() >= 0;
+
+ kernel_->lock_.Acquire();
+ if (kernel_->signaled_) {
+ if (!kernel_->manual_reset_) {
+ // In this case we were signaled when we had no waiters. Now that
+ // someone has waited upon us, we can automatically reset.
+ kernel_->signaled_ = false;
+ }
+
+ kernel_->lock_.Release();
+ return true;
+ }
+
+ Lock lock;
+ lock.Acquire();
+ ConditionVariable cv(&lock);
+ SyncWaiter sw(&cv, &lock);
+
+ Enqueue(&sw);
+ kernel_->lock_.Release();
+ // We are violating locking order here by holding the SyncWaiter lock but not
+ // the WaitableEvent lock. However, this is safe because we don't lock @lock_
+ // again before unlocking it.
+
+ for (;;) {
+ const TimeTicks current_time(TimeTicks::Now());
+
+ if (sw.fired() || (finite_time && current_time >= end_time)) {
+ const bool return_value = sw.fired();
+
+ // We can't acquire @lock_ before releasing @lock (because of locking
+ // order), however, inbetween the two a signal could be fired and @sw
+ // would accept it, however we will still return false, so the signal
+ // would be lost on an auto-reset WaitableEvent. Thus we call Disable
+ // which makes sw::Fire return false.
+ sw.Disable();
+ lock.Release();
+
+ kernel_->lock_.Acquire();
+ kernel_->Dequeue(&sw, &sw);
+ kernel_->lock_.Release();
+
+ return return_value;
+ }
+
+ if (finite_time) {
+ const TimeDelta max_wait(end_time - current_time);
+ cv.TimedWait(max_wait);
+ } else {
+ cv.Wait();
+ }
+ }
+}
+
+bool WaitableEvent::Wait() { return TimedWait(TimeDelta::FromSeconds(-1)); }
+
+// -----------------------------------------------------------------------------
+
+// -----------------------------------------------------------------------------
+// Synchronous waiting on multiple objects.
+
+static bool // StrictWeakOrdering
+cmp_fst_addr(const std::pair<WaitableEvent*, unsigned>& a,
+ const std::pair<WaitableEvent*, unsigned>& b) {
+ return a.first < b.first;
+}
+
+// static
+size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, size_t count) {
+ DCHECK(count) << "Cannot wait on no events";
+
+ // We need to acquire the locks in a globally consistent order. Thus we sort
+ // the array of waitables by address. We actually sort a pairs so that we can
+ // map back to the original index values later.
+ std::vector<std::pair<WaitableEvent*, size_t> > waitables;
+ waitables.reserve(count);
+ for (size_t i = 0; i < count; ++i)
+ waitables.push_back(std::make_pair(raw_waitables[i], i));
+
+ DCHECK_EQ(count, waitables.size());
+
+ sort(waitables.begin(), waitables.end(), cmp_fst_addr);
+
+ // The set of waitables must be distinct. Since we have just sorted by
+ // address, we can check this cheaply by comparing pairs of consecutive
+ // elements.
+ for (size_t i = 0; i < waitables.size() - 1; ++i) {
+ DCHECK(waitables[i].first != waitables[i + 1].first);
+ }
+
+ Lock lock;
+ ConditionVariable cv(&lock);
+ SyncWaiter sw(&cv, &lock);
+
+ const size_t r = EnqueueMany(&waitables[0], count, &sw);
+ if (r) {
+ // One of the events is already signaled. The SyncWaiter has not been
+ // enqueued anywhere. EnqueueMany returns the count of remaining waitables
+ // when the signaled one was seen, so the index of the signaled event is
+ // @count - @r.
+ return waitables[count - r].second;
+ }
+
+ // At this point, we hold the locks on all the WaitableEvents and we have
+ // enqueued our waiter in them all.
+ lock.Acquire();
+ // Release the WaitableEvent locks in the reverse order
+ for (size_t i = 0; i < count; ++i) {
+ waitables[count - (1 + i)].first->kernel_->lock_.Release();
+ }
+
+ for (;;) {
+ if (sw.fired()) break;
+
+ cv.Wait();
+ }
+ lock.Release();
+
+ // The address of the WaitableEvent which fired is stored in the SyncWaiter.
+ WaitableEvent* const signaled_event = sw.signaled_event();
+ // This will store the index of the raw_waitables which fired.
+ size_t signaled_index = 0;
+
+ // Take the locks of each WaitableEvent in turn (except the signaled one) and
+ // remove our SyncWaiter from the wait-list
+ for (size_t i = 0; i < count; ++i) {
+ if (raw_waitables[i] != signaled_event) {
+ raw_waitables[i]->kernel_->lock_.Acquire();
+ // There's no possible ABA issue with the address of the SyncWaiter here
+ // because it lives on the stack. Thus the tag value is just the pointer
+ // value again.
+ raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
+ raw_waitables[i]->kernel_->lock_.Release();
+ } else {
+ signaled_index = i;
+ }
+ }
+
+ return signaled_index;
+}
+
+// -----------------------------------------------------------------------------
+// If return value == 0:
+// The locks of the WaitableEvents have been taken in order and the Waiter has
+// been enqueued in the wait-list of each. None of the WaitableEvents are
+// currently signaled
+// else:
+// None of the WaitableEvent locks are held. The Waiter has not been enqueued
+// in any of them and the return value is the index of the first WaitableEvent
+// which was signaled, from the end of the array.
+// -----------------------------------------------------------------------------
+// static
+size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
+ size_t count, Waiter* waiter) {
+ if (!count) return 0;
+
+ waitables[0].first->kernel_->lock_.Acquire();
+ if (waitables[0].first->kernel_->signaled_) {
+ if (!waitables[0].first->kernel_->manual_reset_)
+ waitables[0].first->kernel_->signaled_ = false;
+ waitables[0].first->kernel_->lock_.Release();
+ return count;
+ }
+
+ const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
+ if (r) {
+ waitables[0].first->kernel_->lock_.Release();
+ } else {
+ waitables[0].first->Enqueue(waiter);
+ }
+
+ return r;
+}
+
+// -----------------------------------------------------------------------------
+
+// -----------------------------------------------------------------------------
+// Private functions...
+
+// -----------------------------------------------------------------------------
+// Wake all waiting waiters. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::SignalAll() {
+ bool signaled_at_least_one = false;
+
+ for (std::list<Waiter*>::iterator i = kernel_->waiters_.begin();
+ i != kernel_->waiters_.end(); ++i) {
+ if ((*i)->Fire(this)) signaled_at_least_one = true;
+ }
+
+ kernel_->waiters_.clear();
+ return signaled_at_least_one;
+}
+
+// ---------------------------------------------------------------------------
+// Try to wake a single waiter. Return true if one was woken. Called with lock
+// held.
+// ---------------------------------------------------------------------------
+bool WaitableEvent::SignalOne() {
+ for (;;) {
+ if (kernel_->waiters_.empty()) return false;
+
+ const bool r = (*kernel_->waiters_.begin())->Fire(this);
+ kernel_->waiters_.pop_front();
+ if (r) return true;
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Add a waiter to the list of those waiting. Called with lock held.
+// -----------------------------------------------------------------------------
+void WaitableEvent::Enqueue(Waiter* waiter) {
+ kernel_->waiters_.push_back(waiter);
+}
+
+// -----------------------------------------------------------------------------
+// Remove a waiter from the list of those waiting. Return true if the waiter was
+// actually removed. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
+ for (std::list<Waiter*>::iterator i = waiters_.begin(); i != waiters_.end();
+ ++i) {
+ if (*i == waiter && (*i)->Compare(tag)) {
+ waiters_.erase(i);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// -----------------------------------------------------------------------------
+
+} // namespace base