summaryrefslogtreecommitdiffstats
path: root/ipc/glue/MessageChannel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ipc/glue/MessageChannel.cpp')
-rw-r--r--ipc/glue/MessageChannel.cpp2951
1 files changed, 2951 insertions, 0 deletions
diff --git a/ipc/glue/MessageChannel.cpp b/ipc/glue/MessageChannel.cpp
new file mode 100644
index 0000000000..7f90742b44
--- /dev/null
+++ b/ipc/glue/MessageChannel.cpp
@@ -0,0 +1,2951 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: sw=2 ts=4 et :
+ */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mozilla/ipc/MessageChannel.h"
+
+#include <math.h>
+
+#include <utility>
+
+#include "CrashAnnotations.h"
+#include "mozilla/Assertions.h"
+#include "mozilla/CycleCollectedJSContext.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/Logging.h"
+#include "mozilla/Mutex.h"
+#include "mozilla/ScopeExit.h"
+#include "mozilla/Sprintf.h"
+#include "mozilla/StaticMutex.h"
+#include "mozilla/Telemetry.h"
+#include "mozilla/TimeStamp.h"
+#include "mozilla/UniquePtrExtensions.h"
+#include "mozilla/dom/ScriptSettings.h"
+#include "mozilla/ipc/ProcessChild.h"
+#include "mozilla/ipc/ProtocolUtils.h"
+#include "nsAppRunner.h"
+#include "nsContentUtils.h"
+#include "nsDataHashtable.h"
+#include "nsDebug.h"
+#include "nsExceptionHandler.h"
+#include "nsIMemoryReporter.h"
+#include "nsISupportsImpl.h"
+#include "nsPrintfCString.h"
+
+#ifdef OS_WIN
+# include "mozilla/gfx/Logging.h"
+#endif
+
+#ifdef MOZ_TASK_TRACER
+# include "GeckoTaskTracer.h"
+using namespace mozilla::tasktracer;
+#endif
+
+// Undo the damage done by mozzconf.h
+#undef compress
+
+static mozilla::LazyLogModule sLogModule("ipc");
+#define IPC_LOG(...) MOZ_LOG(sLogModule, LogLevel::Debug, (__VA_ARGS__))
+
+/*
+ * IPC design:
+ *
+ * There are three kinds of messages: async, sync, and intr. Sync and intr
+ * messages are blocking.
+ *
+ * Terminology: To dispatch a message Foo is to run the RecvFoo code for
+ * it. This is also called "handling" the message.
+ *
+ * Sync and async messages can sometimes "nest" inside other sync messages
+ * (i.e., while waiting for the sync reply, we can dispatch the inner
+ * message). Intr messages cannot nest. The three possible nesting levels are
+ * NOT_NESTED, NESTED_INSIDE_SYNC, and NESTED_INSIDE_CPOW. The intended uses
+ * are:
+ * NOT_NESTED - most messages.
+ * NESTED_INSIDE_SYNC - CPOW-related messages, which are always sync
+ * and can go in either direction.
+ * NESTED_INSIDE_CPOW - messages where we don't want to dispatch
+ * incoming CPOWs while waiting for the response.
+ * These nesting levels are ordered: NOT_NESTED, NESTED_INSIDE_SYNC,
+ * NESTED_INSIDE_CPOW. Async messages cannot be NESTED_INSIDE_SYNC but they can
+ * be NESTED_INSIDE_CPOW.
+ *
+ * To avoid jank, the parent process is not allowed to send NOT_NESTED sync
+ * messages. When a process is waiting for a response to a sync message M0, it
+ * will dispatch an incoming message M if:
+ * 1. M has a higher nesting level than M0, or
+ * 2. if M has the same nesting level as M0 and we're in the child, or
+ * 3. if M has the same nesting level as M0 and it was sent by the other side
+ * while dispatching M0.
+ * The idea is that messages with higher nesting should take precendence. The
+ * purpose of rule 2 is to handle a race where both processes send to each other
+ * simultaneously. In this case, we resolve the race in favor of the parent (so
+ * the child dispatches first).
+ *
+ * Messages satisfy the following properties:
+ * A. When waiting for a response to a sync message, we won't dispatch any
+ * messages of nesting level.
+ * B. Messages of the same nesting level will be dispatched roughly in the
+ * order they were sent. The exception is when the parent and child send
+ * sync messages to each other simulataneously. In this case, the parent's
+ * message is dispatched first. While it is dispatched, the child may send
+ * further nested messages, and these messages may be dispatched before the
+ * child's original message. We can consider ordering to be preserved here
+ * because we pretend that the child's original message wasn't sent until
+ * after the parent's message is finished being dispatched.
+ *
+ * When waiting for a sync message reply, we dispatch an async message only if
+ * it is NESTED_INSIDE_CPOW. Normally NESTED_INSIDE_CPOW async
+ * messages are sent only from the child. However, the parent can send
+ * NESTED_INSIDE_CPOW async messages when it is creating a bridged protocol.
+ *
+ * Intr messages are blocking and can nest, but they don't participate in the
+ * nesting levels. While waiting for an intr response, all incoming messages are
+ * dispatched until a response is received. When two intr messages race with
+ * each other, a similar scheme is used to ensure that one side wins. The
+ * winning side is chosen based on the message type.
+ *
+ * Intr messages differ from sync messages in that, while sending an intr
+ * message, we may dispatch an async message. This causes some additional
+ * complexity. One issue is that replies can be received out of order. It's also
+ * more difficult to determine whether one message is nested inside
+ * another. Consequently, intr handling uses mOutOfTurnReplies and
+ * mRemoteStackDepthGuess, which are not needed for sync messages.
+ */
+
+using namespace mozilla;
+using namespace mozilla::ipc;
+
+using mozilla::MonitorAutoLock;
+using mozilla::MonitorAutoUnlock;
+using mozilla::dom::AutoNoJSAPI;
+
+#define IPC_ASSERT(_cond, ...) \
+ do { \
+ if (!(_cond)) DebugAbort(__FILE__, __LINE__, #_cond, ##__VA_ARGS__); \
+ } while (0)
+
+static MessageChannel* gParentProcessBlocker;
+
+namespace mozilla {
+namespace ipc {
+
+static const uint32_t kMinTelemetryMessageSize = 4096;
+
+// Note: we round the time we spend to the nearest millisecond. So a min value
+// of 1 ms actually captures from 500us and above.
+static const uint32_t kMinTelemetryIPCWriteLatencyMs = 1;
+
+// Note: we round the time we spend waiting for a response to the nearest
+// millisecond. So a min value of 1 ms actually captures from 500us and above.
+// This is used for both the sending and receiving side telemetry for sync IPC,
+// (IPC_SYNC_MAIN_LATENCY_MS and IPC_SYNC_RECEIVE_MS).
+static const uint32_t kMinTelemetrySyncIPCLatencyMs = 1;
+
+const int32_t MessageChannel::kNoTimeout = INT32_MIN;
+
+// static
+bool MessageChannel::sIsPumpingMessages = false;
+
+enum Direction { IN_MESSAGE, OUT_MESSAGE };
+
+class MessageChannel::InterruptFrame {
+ private:
+ enum Semantics { INTR_SEMS, SYNC_SEMS, ASYNC_SEMS };
+
+ public:
+ InterruptFrame(Direction direction, const Message* msg)
+ : mMessageName(msg->name()),
+ mMessageRoutingId(msg->routing_id()),
+ mMesageSemantics(msg->is_interrupt() ? INTR_SEMS
+ : msg->is_sync() ? SYNC_SEMS
+ : ASYNC_SEMS),
+ mDirection(direction),
+ mMoved(false) {
+ MOZ_RELEASE_ASSERT(mMessageName);
+ }
+
+ InterruptFrame(InterruptFrame&& aOther) {
+ MOZ_RELEASE_ASSERT(aOther.mMessageName);
+ mMessageName = aOther.mMessageName;
+ aOther.mMessageName = nullptr;
+ mMoved = aOther.mMoved;
+ aOther.mMoved = true;
+
+ mMessageRoutingId = aOther.mMessageRoutingId;
+ mMesageSemantics = aOther.mMesageSemantics;
+ mDirection = aOther.mDirection;
+ }
+
+ ~InterruptFrame() { MOZ_RELEASE_ASSERT(mMessageName || mMoved); }
+
+ InterruptFrame& operator=(InterruptFrame&& aOther) {
+ MOZ_RELEASE_ASSERT(&aOther != this);
+ this->~InterruptFrame();
+ new (this) InterruptFrame(std::move(aOther));
+ return *this;
+ }
+
+ bool IsInterruptIncall() const {
+ return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
+ }
+
+ bool IsInterruptOutcall() const {
+ return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
+ }
+
+ bool IsOutgoingSync() const {
+ return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) &&
+ mDirection == OUT_MESSAGE;
+ }
+
+ void Describe(int32_t* id, const char** dir, const char** sems,
+ const char** name) const {
+ *id = mMessageRoutingId;
+ *dir = (IN_MESSAGE == mDirection) ? "in" : "out";
+ *sems = (INTR_SEMS == mMesageSemantics) ? "intr"
+ : (SYNC_SEMS == mMesageSemantics) ? "sync"
+ : "async";
+ *name = mMessageName;
+ }
+
+ int32_t GetRoutingId() const { return mMessageRoutingId; }
+
+ private:
+ const char* mMessageName;
+ int32_t mMessageRoutingId;
+ Semantics mMesageSemantics;
+ Direction mDirection;
+ bool mMoved;
+
+ // Disable harmful methods.
+ InterruptFrame(const InterruptFrame& aOther) = delete;
+ InterruptFrame& operator=(const InterruptFrame&) = delete;
+};
+
+class MOZ_STACK_CLASS MessageChannel::CxxStackFrame {
+ public:
+ CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
+ : mThat(that) {
+ mThat.AssertWorkerThread();
+
+ if (mThat.mCxxStackFrames.empty()) mThat.EnteredCxxStack();
+
+ if (!mThat.mCxxStackFrames.append(InterruptFrame(direction, msg)))
+ MOZ_CRASH();
+
+ const InterruptFrame& frame = mThat.mCxxStackFrames.back();
+
+ if (frame.IsInterruptIncall()) mThat.EnteredCall();
+
+ if (frame.IsOutgoingSync()) mThat.EnteredSyncSend();
+
+ mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
+ }
+
+ ~CxxStackFrame() {
+ mThat.AssertWorkerThread();
+
+ MOZ_RELEASE_ASSERT(!mThat.mCxxStackFrames.empty());
+
+ const InterruptFrame& frame = mThat.mCxxStackFrames.back();
+ bool exitingSync = frame.IsOutgoingSync();
+ bool exitingCall = frame.IsInterruptIncall();
+ mThat.mCxxStackFrames.shrinkBy(1);
+
+ bool exitingStack = mThat.mCxxStackFrames.empty();
+
+ // According how lifetime is declared, mListener on MessageChannel
+ // lives longer than MessageChannel itself. Hence is expected to
+ // be alive. There is nothing to even assert here, there is no place
+ // we would be nullifying mListener on MessageChannel.
+
+ if (exitingCall) mThat.ExitedCall();
+
+ if (exitingSync) mThat.ExitedSyncSend();
+
+ if (exitingStack) mThat.ExitedCxxStack();
+ }
+
+ private:
+ MessageChannel& mThat;
+
+ // Disable harmful methods.
+ CxxStackFrame() = delete;
+ CxxStackFrame(const CxxStackFrame&) = delete;
+ CxxStackFrame& operator=(const CxxStackFrame&) = delete;
+};
+
+class AutoEnterTransaction {
+ public:
+ explicit AutoEnterTransaction(MessageChannel* aChan, int32_t aMsgSeqno,
+ int32_t aTransactionID, int aNestedLevel)
+ : mChan(aChan),
+ mActive(true),
+ mOutgoing(true),
+ mNestedLevel(aNestedLevel),
+ mSeqno(aMsgSeqno),
+ mTransaction(aTransactionID),
+ mNext(mChan->mTransactionStack) {
+ mChan->mMonitor->AssertCurrentThreadOwns();
+ mChan->mTransactionStack = this;
+ }
+
+ explicit AutoEnterTransaction(MessageChannel* aChan,
+ const IPC::Message& aMessage)
+ : mChan(aChan),
+ mActive(true),
+ mOutgoing(false),
+ mNestedLevel(aMessage.nested_level()),
+ mSeqno(aMessage.seqno()),
+ mTransaction(aMessage.transaction_id()),
+ mNext(mChan->mTransactionStack) {
+ mChan->mMonitor->AssertCurrentThreadOwns();
+
+ if (!aMessage.is_sync()) {
+ mActive = false;
+ return;
+ }
+
+ mChan->mTransactionStack = this;
+ }
+
+ ~AutoEnterTransaction() {
+ mChan->mMonitor->AssertCurrentThreadOwns();
+ if (mActive) {
+ mChan->mTransactionStack = mNext;
+ }
+ }
+
+ void Cancel() {
+ AutoEnterTransaction* cur = mChan->mTransactionStack;
+ MOZ_RELEASE_ASSERT(cur == this);
+ while (cur && cur->mNestedLevel != IPC::Message::NOT_NESTED) {
+ // Note that, in the following situation, we will cancel multiple
+ // transactions:
+ // 1. Parent sends NESTED_INSIDE_SYNC message P1 to child.
+ // 2. Child sends NESTED_INSIDE_SYNC message C1 to child.
+ // 3. Child dispatches P1, parent blocks.
+ // 4. Child cancels.
+ // In this case, both P1 and C1 are cancelled. The parent will
+ // remove C1 from its queue when it gets the cancellation message.
+ MOZ_RELEASE_ASSERT(cur->mActive);
+ cur->mActive = false;
+ cur = cur->mNext;
+ }
+
+ mChan->mTransactionStack = cur;
+
+ MOZ_RELEASE_ASSERT(IsComplete());
+ }
+
+ bool AwaitingSyncReply() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ if (mOutgoing) {
+ return true;
+ }
+ return mNext ? mNext->AwaitingSyncReply() : false;
+ }
+
+ int AwaitingSyncReplyNestedLevel() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ if (mOutgoing) {
+ return mNestedLevel;
+ }
+ return mNext ? mNext->AwaitingSyncReplyNestedLevel() : 0;
+ }
+
+ bool DispatchingSyncMessage() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ if (!mOutgoing) {
+ return true;
+ }
+ return mNext ? mNext->DispatchingSyncMessage() : false;
+ }
+
+ int DispatchingSyncMessageNestedLevel() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ if (!mOutgoing) {
+ return mNestedLevel;
+ }
+ return mNext ? mNext->DispatchingSyncMessageNestedLevel() : 0;
+ }
+
+ int NestedLevel() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ return mNestedLevel;
+ }
+
+ int32_t SequenceNumber() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ return mSeqno;
+ }
+
+ int32_t TransactionID() const {
+ MOZ_RELEASE_ASSERT(mActive);
+ return mTransaction;
+ }
+
+ void ReceivedReply(IPC::Message&& aMessage) {
+ MOZ_RELEASE_ASSERT(aMessage.seqno() == mSeqno);
+ MOZ_RELEASE_ASSERT(aMessage.transaction_id() == mTransaction);
+ MOZ_RELEASE_ASSERT(!mReply);
+ IPC_LOG("Reply received on worker thread: seqno=%d", mSeqno);
+ mReply = MakeUnique<IPC::Message>(std::move(aMessage));
+ MOZ_RELEASE_ASSERT(IsComplete());
+ }
+
+ void HandleReply(IPC::Message&& aMessage) {
+ AutoEnterTransaction* cur = mChan->mTransactionStack;
+ MOZ_RELEASE_ASSERT(cur == this);
+ while (cur) {
+ MOZ_RELEASE_ASSERT(cur->mActive);
+ if (aMessage.seqno() == cur->mSeqno) {
+ cur->ReceivedReply(std::move(aMessage));
+ break;
+ }
+ cur = cur->mNext;
+ MOZ_RELEASE_ASSERT(cur);
+ }
+ }
+
+ bool IsComplete() { return !mActive || mReply; }
+
+ bool IsOutgoing() { return mOutgoing; }
+
+ bool IsCanceled() { return !mActive; }
+
+ bool IsBottom() const { return !mNext; }
+
+ bool IsError() {
+ MOZ_RELEASE_ASSERT(mReply);
+ return mReply->is_reply_error();
+ }
+
+ UniquePtr<IPC::Message> GetReply() { return std::move(mReply); }
+
+ private:
+ MessageChannel* mChan;
+
+ // Active is true if this transaction is on the mChan->mTransactionStack
+ // stack. Generally we're not on the stack if the transaction was canceled
+ // or if it was for a message that doesn't require transactions (an async
+ // message).
+ bool mActive;
+
+ // Is this stack frame for an outgoing message?
+ bool mOutgoing;
+
+ // Properties of the message being sent/received.
+ int mNestedLevel;
+ int32_t mSeqno;
+ int32_t mTransaction;
+
+ // Next item in mChan->mTransactionStack.
+ AutoEnterTransaction* mNext;
+
+ // Pointer the a reply received for this message, if one was received.
+ UniquePtr<IPC::Message> mReply;
+};
+
+class PendingResponseReporter final : public nsIMemoryReporter {
+ ~PendingResponseReporter() = default;
+
+ public:
+ NS_DECL_THREADSAFE_ISUPPORTS
+
+ NS_IMETHOD
+ CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
+ bool aAnonymize) override {
+ MOZ_COLLECT_REPORT(
+ "unresolved-ipc-responses", KIND_OTHER, UNITS_COUNT,
+ MessageChannel::gUnresolvedResponses,
+ "Outstanding IPC async message responses that are still not resolved.");
+ return NS_OK;
+ }
+};
+
+NS_IMPL_ISUPPORTS(PendingResponseReporter, nsIMemoryReporter)
+
+class ChannelCountReporter final : public nsIMemoryReporter {
+ ~ChannelCountReporter() = default;
+
+ struct ChannelCounts {
+ size_t mNow;
+ size_t mMax;
+
+ ChannelCounts() : mNow(0), mMax(0) {}
+
+ void Inc() {
+ ++mNow;
+ if (mMax < mNow) {
+ mMax = mNow;
+ }
+ }
+
+ void Dec() {
+ MOZ_ASSERT(mNow > 0);
+ --mNow;
+ }
+ };
+
+ using CountTable = nsDataHashtable<nsDepCharHashKey, ChannelCounts>;
+
+ static StaticMutex sChannelCountMutex;
+ static CountTable* sChannelCounts;
+
+ public:
+ NS_DECL_THREADSAFE_ISUPPORTS
+
+ NS_IMETHOD
+ CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
+ bool aAnonymize) override {
+ StaticMutexAutoLock countLock(sChannelCountMutex);
+ if (!sChannelCounts) {
+ return NS_OK;
+ }
+ for (auto iter = sChannelCounts->Iter(); !iter.Done(); iter.Next()) {
+ nsPrintfCString pathNow("ipc-channels/%s", iter.Key());
+ nsPrintfCString pathMax("ipc-channels-peak/%s", iter.Key());
+ nsPrintfCString descNow(
+ "Number of IPC channels for"
+ " top-level actor type %s",
+ iter.Key());
+ nsPrintfCString descMax(
+ "Peak number of IPC channels for"
+ " top-level actor type %s",
+ iter.Key());
+
+ aHandleReport->Callback(""_ns, pathNow, KIND_OTHER, UNITS_COUNT,
+ iter.Data().mNow, descNow, aData);
+ aHandleReport->Callback(""_ns, pathMax, KIND_OTHER, UNITS_COUNT,
+ iter.Data().mMax, descMax, aData);
+ }
+ return NS_OK;
+ }
+
+ static void Increment(const char* aName) {
+ StaticMutexAutoLock countLock(sChannelCountMutex);
+ if (!sChannelCounts) {
+ sChannelCounts = new CountTable;
+ }
+ sChannelCounts->GetOrInsert(aName).Inc();
+ }
+
+ static void Decrement(const char* aName) {
+ StaticMutexAutoLock countLock(sChannelCountMutex);
+ MOZ_ASSERT(sChannelCounts);
+ sChannelCounts->GetOrInsert(aName).Dec();
+ }
+};
+
+StaticMutex ChannelCountReporter::sChannelCountMutex;
+ChannelCountReporter::CountTable* ChannelCountReporter::sChannelCounts;
+
+NS_IMPL_ISUPPORTS(ChannelCountReporter, nsIMemoryReporter)
+
+// In child processes, the first MessageChannel is created before
+// XPCOM is initialized enough to construct the memory reporter
+// manager. This retries every time a MessageChannel is constructed,
+// which is good enough in practice.
+template <class Reporter>
+static void TryRegisterStrongMemoryReporter() {
+ static Atomic<bool> registered;
+ if (registered.compareExchange(false, true)) {
+ RefPtr<Reporter> reporter = new Reporter();
+ if (NS_FAILED(RegisterStrongMemoryReporter(reporter))) {
+ registered = false;
+ }
+ }
+}
+
+Atomic<size_t> MessageChannel::gUnresolvedResponses;
+
+MessageChannel::MessageChannel(const char* aName, IToplevelProtocol* aListener)
+ : mName(aName),
+ mListener(aListener),
+ mChannelState(ChannelClosed),
+ mSide(UnknownSide),
+ mIsCrossProcess(false),
+ mChannelErrorTask(nullptr),
+ mTimeoutMs(kNoTimeout),
+ mInTimeoutSecondHalf(false),
+ mNextSeqno(0),
+ mLastSendError(SyncSendError::SendSuccess),
+ mDispatchingAsyncMessage(false),
+ mDispatchingAsyncMessageNestedLevel(0),
+ mTransactionStack(nullptr),
+ mTimedOutMessageSeqno(0),
+ mTimedOutMessageNestedLevel(0),
+ mMaybeDeferredPendingCount(0),
+ mRemoteStackDepthGuess(0),
+ mSawInterruptOutMsg(false),
+ mIsWaitingForIncoming(false),
+ mAbortOnError(false),
+ mNotifiedChannelDone(false),
+ mFlags(REQUIRE_DEFAULT),
+ mPeerPidSet(false),
+ mPeerPid(-1),
+ mIsPostponingSends(false),
+ mBuildIDsConfirmedMatch(false),
+ mIsSameThreadChannel(false) {
+ MOZ_COUNT_CTOR(ipc::MessageChannel);
+
+#ifdef OS_WIN
+ mTopFrame = nullptr;
+ mIsSyncWaitingOnNonMainThread = false;
+#endif
+
+ mOnChannelConnectedTask = NewNonOwningCancelableRunnableMethod(
+ "ipc::MessageChannel::DispatchOnChannelConnected", this,
+ &MessageChannel::DispatchOnChannelConnected);
+
+#ifdef OS_WIN
+ mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
+ MOZ_RELEASE_ASSERT(mEvent, "CreateEvent failed! Nothing is going to work!");
+#endif
+
+ TryRegisterStrongMemoryReporter<PendingResponseReporter>();
+ TryRegisterStrongMemoryReporter<ChannelCountReporter>();
+}
+
+MessageChannel::~MessageChannel() {
+ MOZ_COUNT_DTOR(ipc::MessageChannel);
+ IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
+#ifdef OS_WIN
+ if (mEvent) {
+ BOOL ok = CloseHandle(mEvent);
+ mEvent = nullptr;
+
+ if (!ok) {
+ gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
+ << "MessageChannel failed to close. GetLastError: " << GetLastError();
+ }
+ MOZ_RELEASE_ASSERT(ok);
+ } else {
+ gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
+ << "MessageChannel destructor ran without an mEvent Handle";
+ }
+#endif
+ Clear();
+}
+
+#ifdef DEBUG
+void MessageChannel::AssertMaybeDeferredCountCorrect() {
+ size_t count = 0;
+ for (MessageTask* task : mPending) {
+ if (!IsAlwaysDeferred(task->Msg())) {
+ count++;
+ }
+ }
+
+ MOZ_ASSERT(count == mMaybeDeferredPendingCount);
+}
+#endif
+
+// This function returns the current transaction ID. Since the notion of a
+// "current transaction" can be hard to define when messages race with each
+// other and one gets canceled and the other doesn't, we require that this
+// function is only called when the current transaction is known to be for a
+// NESTED_INSIDE_SYNC message. In that case, we know for sure what the caller is
+// looking for.
+int32_t MessageChannel::CurrentNestedInsideSyncTransaction() const {
+ mMonitor->AssertCurrentThreadOwns();
+ if (!mTransactionStack) {
+ return 0;
+ }
+ MOZ_RELEASE_ASSERT(mTransactionStack->NestedLevel() ==
+ IPC::Message::NESTED_INSIDE_SYNC);
+ return mTransactionStack->TransactionID();
+}
+
+bool MessageChannel::AwaitingSyncReply() const {
+ mMonitor->AssertCurrentThreadOwns();
+ return mTransactionStack ? mTransactionStack->AwaitingSyncReply() : false;
+}
+
+int MessageChannel::AwaitingSyncReplyNestedLevel() const {
+ mMonitor->AssertCurrentThreadOwns();
+ return mTransactionStack ? mTransactionStack->AwaitingSyncReplyNestedLevel()
+ : 0;
+}
+
+bool MessageChannel::DispatchingSyncMessage() const {
+ mMonitor->AssertCurrentThreadOwns();
+ return mTransactionStack ? mTransactionStack->DispatchingSyncMessage()
+ : false;
+}
+
+int MessageChannel::DispatchingSyncMessageNestedLevel() const {
+ mMonitor->AssertCurrentThreadOwns();
+ return mTransactionStack
+ ? mTransactionStack->DispatchingSyncMessageNestedLevel()
+ : 0;
+}
+
+static void PrintErrorMessage(Side side, const char* channelName,
+ const char* msg) {
+ const char* from = (side == ChildSide)
+ ? "Child"
+ : ((side == ParentSide) ? "Parent" : "Unknown");
+ printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
+}
+
+bool MessageChannel::Connected() const {
+ mMonitor->AssertCurrentThreadOwns();
+
+ // The transport layer allows us to send messages before
+ // receiving the "connected" ack from the remote side.
+ return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
+}
+
+bool MessageChannel::CanSend() const {
+ if (!mMonitor) {
+ return false;
+ }
+ MonitorAutoLock lock(*mMonitor);
+ return Connected();
+}
+
+void MessageChannel::Clear() {
+ // Don't clear mWorkerThread; we use it in AssertLinkThread() and
+ // AssertWorkerThread().
+ //
+ // Also don't clear mListener. If we clear it, then sending a message
+ // through this channel after it's Clear()'ed can cause this process to
+ // crash.
+ //
+ // In practice, mListener owns the channel, so the channel gets deleted
+ // before mListener. But just to be safe, mListener is a weak pointer.
+
+#if !defined(ANDROID)
+ if (!Unsound_IsClosed()) {
+ CrashReporter::AnnotateCrashReport(
+ CrashReporter::Annotation::IPCFatalErrorProtocol,
+ nsDependentCString(mName));
+ switch (mChannelState) {
+ case ChannelOpening:
+ MOZ_CRASH(
+ "MessageChannel destroyed without being closed "
+ "(mChannelState == ChannelOpening).");
+ break;
+ case ChannelConnected:
+ MOZ_CRASH(
+ "MessageChannel destroyed without being closed "
+ "(mChannelState == ChannelConnected).");
+ break;
+ case ChannelTimeout:
+ MOZ_CRASH(
+ "MessageChannel destroyed without being closed "
+ "(mChannelState == ChannelTimeout).");
+ break;
+ case ChannelClosing:
+ MOZ_CRASH(
+ "MessageChannel destroyed without being closed "
+ "(mChannelState == ChannelClosing).");
+ break;
+ case ChannelError:
+ MOZ_CRASH(
+ "MessageChannel destroyed without being closed "
+ "(mChannelState == ChannelError).");
+ break;
+ default:
+ MOZ_CRASH("MessageChannel destroyed without being closed.");
+ }
+ }
+#endif
+
+ if (gParentProcessBlocker == this) {
+ gParentProcessBlocker = nullptr;
+ }
+
+ gUnresolvedResponses -= mPendingResponses.size();
+ for (auto& pair : mPendingResponses) {
+ pair.second.get()->Reject(ResponseRejectReason::ChannelClosed);
+ }
+ mPendingResponses.clear();
+
+ if (mLink != nullptr && mIsCrossProcess) {
+ ChannelCountReporter::Decrement(mName);
+ }
+
+ if (mLink) {
+ mLink->PrepareToDestroy();
+ mLink = nullptr;
+ }
+
+ mOnChannelConnectedTask->Cancel();
+
+ if (mChannelErrorTask) {
+ mChannelErrorTask->Cancel();
+ mChannelErrorTask = nullptr;
+ }
+
+ // Free up any memory used by pending messages.
+ for (MessageTask* task : mPending) {
+ task->Clear();
+ }
+ mPending.clear();
+
+ mMaybeDeferredPendingCount = 0;
+
+ mOutOfTurnReplies.clear();
+ while (!mDeferred.empty()) {
+ mDeferred.pop();
+ }
+}
+
+bool MessageChannel::Open(mozilla::UniquePtr<Transport> aTransport,
+ MessageLoop* aIOLoop, Side aSide) {
+ MOZ_ASSERT(!mLink, "Open() called > once");
+
+ mMonitor = new RefCountedMonitor();
+ mWorkerThread = GetCurrentSerialEventTarget();
+ MOZ_ASSERT(mWorkerThread, "We should always be on a nsISerialEventTarget");
+ mListener->OnIPCChannelOpened();
+
+ auto link = MakeUnique<ProcessLink>(this);
+ link->Open(std::move(aTransport), aIOLoop,
+ aSide); // :TODO: n.b.: sets mChild
+ mLink = std::move(link);
+ mIsCrossProcess = true;
+ ChannelCountReporter::Increment(mName);
+ return true;
+}
+
+bool MessageChannel::Open(MessageChannel* aTargetChan,
+ nsISerialEventTarget* aEventTarget, Side aSide) {
+ // Opens a connection to another thread in the same process.
+
+ // This handshake proceeds as follows:
+ // - Let A be the thread initiating the process (either child or parent)
+ // and B be the other thread.
+ // - A spawns thread for B, obtaining B's message loop
+ // - A creates ProtocolChild and ProtocolParent instances.
+ // Let PA be the one appropriate to A and PB the side for B.
+ // - A invokes PA->Open(PB, ...):
+ // - set state to mChannelOpening
+ // - this will place a work item in B's worker loop (see next bullet)
+ // and then spins until PB->mChannelState becomes mChannelConnected
+ // - meanwhile, on PB's worker loop, the work item is removed and:
+ // - invokes PB->OpenAsOtherThread(PA, ...):
+ // - sets its state and that of PA to Connected
+ MOZ_ASSERT(aTargetChan, "Need a target channel");
+ MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
+
+ CommonThreadOpenInit(aTargetChan, GetCurrentSerialEventTarget(), aSide);
+
+ Side oppSide = UnknownSide;
+ switch (aSide) {
+ case ChildSide:
+ oppSide = ParentSide;
+ break;
+ case ParentSide:
+ oppSide = ChildSide;
+ break;
+ case UnknownSide:
+ break;
+ }
+
+ mMonitor = new RefCountedMonitor();
+
+ MonitorAutoLock lock(*mMonitor);
+ mChannelState = ChannelOpening;
+ MOZ_ALWAYS_SUCCEEDS(aEventTarget->Dispatch(
+ NewNonOwningRunnableMethod<MessageChannel*, nsISerialEventTarget*, Side>(
+ "ipc::MessageChannel::OpenAsOtherThread", aTargetChan,
+ &MessageChannel::OpenAsOtherThread, this, aEventTarget, oppSide)));
+
+ while (ChannelOpening == mChannelState) mMonitor->Wait();
+ MOZ_RELEASE_ASSERT(ChannelConnected == mChannelState,
+ "not connected when awoken");
+ return (ChannelConnected == mChannelState);
+}
+
+void MessageChannel::OpenAsOtherThread(MessageChannel* aTargetChan,
+ nsISerialEventTarget* aThread,
+ Side aSide) {
+ // Invoked when the other side has begun the open.
+ MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
+ MOZ_ASSERT(ChannelOpening == aTargetChan->mChannelState,
+ "Target channel not in the process of opening");
+
+ CommonThreadOpenInit(aTargetChan, aThread, aSide);
+ mMonitor = aTargetChan->mMonitor;
+
+ MonitorAutoLock lock(*mMonitor);
+ MOZ_RELEASE_ASSERT(ChannelOpening == aTargetChan->mChannelState,
+ "Target channel not in the process of opening");
+ mChannelState = ChannelConnected;
+ aTargetChan->mChannelState = ChannelConnected;
+ aTargetChan->mMonitor->Notify();
+}
+
+void MessageChannel::CommonThreadOpenInit(MessageChannel* aTargetChan,
+ nsISerialEventTarget* aThread,
+ Side aSide) {
+ MOZ_ASSERT(aThread);
+ mWorkerThread = aThread;
+ mListener->OnIPCChannelOpened();
+
+ mLink = MakeUnique<ThreadLink>(this, aTargetChan);
+ mSide = aSide;
+}
+
+bool MessageChannel::OpenOnSameThread(MessageChannel* aTargetChan,
+ mozilla::ipc::Side aSide) {
+ nsCOMPtr<nsISerialEventTarget> currentThread = GetCurrentSerialEventTarget();
+ CommonThreadOpenInit(aTargetChan, currentThread, aSide);
+
+ Side oppSide = UnknownSide;
+ switch (aSide) {
+ case ChildSide:
+ oppSide = ParentSide;
+ break;
+ case ParentSide:
+ oppSide = ChildSide;
+ break;
+ case UnknownSide:
+ break;
+ }
+ mIsSameThreadChannel = true;
+
+ // XXX(nika): Avoid setting up a monitor for same thread channels? We
+ // shouldn't need it.
+ mMonitor = new RefCountedMonitor();
+
+ mChannelState = ChannelOpening;
+ aTargetChan->CommonThreadOpenInit(this, currentThread, oppSide);
+
+ aTargetChan->mIsSameThreadChannel = true;
+ aTargetChan->mMonitor = mMonitor;
+
+ mChannelState = ChannelConnected;
+ aTargetChan->mChannelState = ChannelConnected;
+ return true;
+}
+
+bool MessageChannel::Send(UniquePtr<Message> aMsg) {
+ if (aMsg->size() >= kMinTelemetryMessageSize) {
+ Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
+ }
+
+ // If the message was created by the IPC bindings, the create time will be
+ // recorded. Use this information to report the
+ // IPC_WRITE_MAIN_THREAD_LATENCY_MS (time from message creation to it being
+ // sent).
+ if (NS_IsMainThread() && aMsg->create_time()) {
+ uint32_t latencyMs = round(
+ (mozilla::TimeStamp::Now() - aMsg->create_time()).ToMilliseconds());
+ if (latencyMs >= kMinTelemetryIPCWriteLatencyMs) {
+ mozilla::Telemetry::Accumulate(
+ mozilla::Telemetry::IPC_WRITE_MAIN_THREAD_LATENCY_MS,
+ nsDependentCString(aMsg->name()), latencyMs);
+ }
+ }
+
+ MOZ_RELEASE_ASSERT(!aMsg->is_sync());
+ MOZ_RELEASE_ASSERT(aMsg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);
+
+ CxxStackFrame frame(*this, OUT_MESSAGE, aMsg.get());
+
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+ if (MSG_ROUTING_NONE == aMsg->routing_id()) {
+ ReportMessageRouteError("MessageChannel::Send");
+ return false;
+ }
+
+ if (aMsg->seqno() == 0) {
+ aMsg->set_seqno(NextSeqno());
+ }
+
+ MonitorAutoLock lock(*mMonitor);
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel", aMsg.get());
+ return false;
+ }
+
+ AddProfilerMarker(*aMsg, MessageDirection::eSending);
+ SendMessageToLink(std::move(aMsg));
+ return true;
+}
+
+void MessageChannel::SendMessageToLink(UniquePtr<Message> aMsg) {
+ if (mIsPostponingSends) {
+ mPostponedSends.push_back(std::move(aMsg));
+ return;
+ }
+ mLink->SendMessage(std::move(aMsg));
+}
+
+void MessageChannel::BeginPostponingSends() {
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+
+ MonitorAutoLock lock(*mMonitor);
+ {
+ MOZ_ASSERT(!mIsPostponingSends);
+ mIsPostponingSends = true;
+ }
+}
+
+void MessageChannel::StopPostponingSends() {
+ // Note: this can be called from any thread.
+ MonitorAutoLock lock(*mMonitor);
+
+ MOZ_ASSERT(mIsPostponingSends);
+
+ for (UniquePtr<Message>& iter : mPostponedSends) {
+ mLink->SendMessage(std::move(iter));
+ }
+
+ // We unset this after SendMessage so we can make correct thread
+ // assertions in MessageLink.
+ mIsPostponingSends = false;
+ mPostponedSends.clear();
+}
+
+UniquePtr<MessageChannel::UntypedCallbackHolder> MessageChannel::PopCallback(
+ const Message& aMsg) {
+ auto iter = mPendingResponses.find(aMsg.seqno());
+ if (iter != mPendingResponses.end()) {
+ UniquePtr<MessageChannel::UntypedCallbackHolder> ret =
+ std::move(iter->second);
+ mPendingResponses.erase(iter);
+ gUnresolvedResponses--;
+ return ret;
+ }
+ return nullptr;
+}
+
+void MessageChannel::RejectPendingResponsesForActor(ActorIdType aActorId) {
+ auto itr = mPendingResponses.begin();
+ while (itr != mPendingResponses.end()) {
+ if (itr->second.get()->mActorId != aActorId) {
+ ++itr;
+ continue;
+ }
+ itr->second.get()->Reject(ResponseRejectReason::ActorDestroyed);
+ // Take special care of advancing the iterator since we are
+ // removing it while iterating.
+ itr = mPendingResponses.erase(itr);
+ gUnresolvedResponses--;
+ }
+}
+
+class BuildIDsMatchMessage : public IPC::Message {
+ public:
+ BuildIDsMatchMessage()
+ : IPC::Message(MSG_ROUTING_NONE, BUILD_IDS_MATCH_MESSAGE_TYPE) {}
+ void Log(const std::string& aPrefix, FILE* aOutf) const {
+ fputs("(special `Build IDs match' message)", aOutf);
+ }
+};
+
+// Send the parent a special async message to confirm when the parent and child
+// are of the same buildID. Skips sending the message and returns false if the
+// buildIDs don't match. This is a minor variation on
+// MessageChannel::Send(Message* aMsg).
+bool MessageChannel::SendBuildIDsMatchMessage(const char* aParentBuildID) {
+ MOZ_ASSERT(!XRE_IsParentProcess());
+
+ nsCString parentBuildID(aParentBuildID);
+ nsCString childBuildID(mozilla::PlatformBuildID());
+
+ if (parentBuildID != childBuildID) {
+ // The build IDs didn't match, usually because an update occurred in the
+ // background.
+ return false;
+ }
+
+ auto msg = MakeUnique<BuildIDsMatchMessage>();
+
+ MOZ_RELEASE_ASSERT(!msg->is_sync());
+ MOZ_RELEASE_ASSERT(msg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);
+
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+ // Don't check for MSG_ROUTING_NONE.
+
+ MonitorAutoLock lock(*mMonitor);
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel", msg.get());
+ return false;
+ }
+ mLink->SendMessage(std::move(msg));
+ return true;
+}
+
+class CancelMessage : public IPC::Message {
+ public:
+ explicit CancelMessage(int transaction)
+ : IPC::Message(MSG_ROUTING_NONE, CANCEL_MESSAGE_TYPE) {
+ set_transaction_id(transaction);
+ }
+ static bool Read(const Message* msg) { return true; }
+ void Log(const std::string& aPrefix, FILE* aOutf) const {
+ fputs("(special `Cancel' message)", aOutf);
+ }
+};
+
+bool MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg) {
+ AssertLinkThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ if (MSG_ROUTING_NONE == aMsg.routing_id()) {
+ if (GOODBYE_MESSAGE_TYPE == aMsg.type()) {
+ // :TODO: Sort out Close() on this side racing with Close() on the
+ // other side
+ mChannelState = ChannelClosing;
+ if (LoggingEnabled()) {
+ printf("NOTE: %s process received `Goodbye', closing down\n",
+ (mSide == ChildSide) ? "child" : "parent");
+ }
+ return true;
+ } else if (CANCEL_MESSAGE_TYPE == aMsg.type()) {
+ IPC_LOG("Cancel from message");
+ CancelTransaction(aMsg.transaction_id());
+ NotifyWorkerThread();
+ return true;
+ } else if (BUILD_IDS_MATCH_MESSAGE_TYPE == aMsg.type()) {
+ IPC_LOG("Build IDs match message");
+ mBuildIDsConfirmedMatch = true;
+ return true;
+ } else if (IMPENDING_SHUTDOWN_MESSAGE_TYPE == aMsg.type()) {
+ IPC_LOG("Impending Shutdown received");
+ ProcessChild::NotifyImpendingShutdown();
+ return true;
+ }
+ }
+ return false;
+}
+
+/* static */
+bool MessageChannel::IsAlwaysDeferred(const Message& aMsg) {
+ // If a message is not NESTED_INSIDE_CPOW and not sync, then we always defer
+ // it.
+ return aMsg.nested_level() != IPC::Message::NESTED_INSIDE_CPOW &&
+ !aMsg.is_sync();
+}
+
+bool MessageChannel::ShouldDeferMessage(const Message& aMsg) {
+ // Never defer messages that have the highest nested level, even async
+ // ones. This is safe because only the child can send these messages, so
+ // they can never nest.
+ if (aMsg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
+ MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
+ return false;
+ }
+
+ // Unless they're NESTED_INSIDE_CPOW, we always defer async messages.
+ // Note that we never send an async NESTED_INSIDE_SYNC message.
+ if (!aMsg.is_sync()) {
+ MOZ_RELEASE_ASSERT(aMsg.nested_level() == IPC::Message::NOT_NESTED);
+ MOZ_ASSERT(IsAlwaysDeferred(aMsg));
+ return true;
+ }
+
+ MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
+
+ int msgNestedLevel = aMsg.nested_level();
+ int waitingNestedLevel = AwaitingSyncReplyNestedLevel();
+
+ // Always defer if the nested level of the incoming message is less than the
+ // nested level of the message we're awaiting.
+ if (msgNestedLevel < waitingNestedLevel) return true;
+
+ // Never defer if the message has strictly greater nested level.
+ if (msgNestedLevel > waitingNestedLevel) return false;
+
+ // When both sides send sync messages of the same nested level, we resolve the
+ // race by dispatching in the child and deferring the incoming message in
+ // the parent. However, the parent still needs to dispatch nested sync
+ // messages.
+ //
+ // Deferring in the parent only sort of breaks message ordering. When the
+ // child's message comes in, we can pretend the child hasn't quite
+ // finished sending it yet. Since the message is sync, we know that the
+ // child hasn't moved on yet.
+ return mSide == ParentSide &&
+ aMsg.transaction_id() != CurrentNestedInsideSyncTransaction();
+}
+
+void MessageChannel::OnMessageReceivedFromLink(Message&& aMsg) {
+ AssertLinkThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ if (MaybeInterceptSpecialIOMessage(aMsg)) return;
+
+ mListener->OnChannelReceivedMessage(aMsg);
+
+ // Regardless of the Interrupt stack, if we're awaiting a sync reply,
+ // we know that it needs to be immediately handled to unblock us.
+ if (aMsg.is_sync() && aMsg.is_reply()) {
+ IPC_LOG("Received reply seqno=%d xid=%d", aMsg.seqno(),
+ aMsg.transaction_id());
+
+ if (aMsg.seqno() == mTimedOutMessageSeqno) {
+ // Drop the message, but allow future sync messages to be sent.
+ IPC_LOG("Received reply to timedout message; igoring; xid=%d",
+ mTimedOutMessageSeqno);
+ EndTimeout();
+ return;
+ }
+
+ MOZ_RELEASE_ASSERT(AwaitingSyncReply());
+ MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
+
+ mTransactionStack->HandleReply(std::move(aMsg));
+ NotifyWorkerThread();
+ return;
+ }
+
+ // Nested messages cannot be compressed.
+ MOZ_RELEASE_ASSERT(aMsg.compress_type() == IPC::Message::COMPRESSION_NONE ||
+ aMsg.nested_level() == IPC::Message::NOT_NESTED);
+
+ bool reuseTask = false;
+ if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) {
+ bool compress =
+ (!mPending.isEmpty() &&
+ mPending.getLast()->Msg().type() == aMsg.type() &&
+ mPending.getLast()->Msg().routing_id() == aMsg.routing_id());
+ if (compress) {
+ // This message type has compression enabled, and the back of the
+ // queue was the same message type and routed to the same destination.
+ // Replace it with the newer message.
+ MOZ_RELEASE_ASSERT(mPending.getLast()->Msg().compress_type() ==
+ IPC::Message::COMPRESSION_ENABLED);
+ mPending.getLast()->Msg() = std::move(aMsg);
+
+ reuseTask = true;
+ }
+ } else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL &&
+ !mPending.isEmpty()) {
+ for (MessageTask* p = mPending.getLast(); p; p = p->getPrevious()) {
+ if (p->Msg().type() == aMsg.type() &&
+ p->Msg().routing_id() == aMsg.routing_id()) {
+ // This message type has compression enabled, and the queue
+ // holds a message with the same message type and routed to the
+ // same destination. Erase it. Note that, since we always
+ // compress these redundancies, There Can Be Only One.
+ MOZ_RELEASE_ASSERT(p->Msg().compress_type() ==
+ IPC::Message::COMPRESSION_ALL);
+ MOZ_RELEASE_ASSERT(IsAlwaysDeferred(p->Msg()));
+ p->remove();
+ break;
+ }
+ }
+ }
+
+ bool alwaysDeferred = IsAlwaysDeferred(aMsg);
+
+ bool wakeUpSyncSend = AwaitingSyncReply() && !ShouldDeferMessage(aMsg);
+
+ bool shouldWakeUp =
+ AwaitingInterruptReply() || wakeUpSyncSend || AwaitingIncomingMessage();
+
+ // Although we usually don't need to post a message task if
+ // shouldWakeUp is true, it's easier to post anyway than to have to
+ // guarantee that every Send call processes everything it's supposed to
+ // before returning.
+ bool shouldPostTask = !shouldWakeUp || wakeUpSyncSend;
+
+ IPC_LOG("Receive on link thread; seqno=%d, xid=%d, shouldWakeUp=%d",
+ aMsg.seqno(), aMsg.transaction_id(), shouldWakeUp);
+
+ if (reuseTask) {
+ return;
+ }
+
+ // There are three cases we're concerned about, relating to the state of the
+ // main thread:
+ //
+ // (1) We are waiting on a sync reply - main thread is blocked on the
+ // IPC monitor.
+ // - If the message is NESTED_INSIDE_SYNC, we wake up the main thread to
+ // deliver the message depending on ShouldDeferMessage. Otherwise, we
+ // leave it in the mPending queue, posting a task to the main event
+ // loop, where it will be processed once the synchronous reply has been
+ // received.
+ //
+ // (2) We are waiting on an Interrupt reply - main thread is blocked on the
+ // IPC monitor.
+ // - Always notify and wake up the main thread.
+ //
+ // (3) We are not waiting on a reply.
+ // - We post a task to the main event loop.
+ //
+ // Note that, we may notify the main thread even though the monitor is not
+ // blocked. This is okay, since we always check for pending events before
+ // blocking again.
+
+#ifdef MOZ_TASK_TRACER
+ aMsg.TaskTracerDispatch();
+#endif
+ RefPtr<MessageTask> task = new MessageTask(this, std::move(aMsg));
+ mPending.insertBack(task);
+
+ if (!alwaysDeferred) {
+ mMaybeDeferredPendingCount++;
+ }
+
+ if (shouldWakeUp) {
+ NotifyWorkerThread();
+ }
+
+ if (shouldPostTask) {
+ task->Post();
+ }
+}
+
+void MessageChannel::PeekMessages(
+ const std::function<bool(const Message& aMsg)>& aInvoke) {
+ // FIXME: We shouldn't be holding the lock for aInvoke!
+ MonitorAutoLock lock(*mMonitor);
+
+ for (MessageTask* it : mPending) {
+ const Message& msg = it->Msg();
+ if (!aInvoke(msg)) {
+ break;
+ }
+ }
+}
+
+void MessageChannel::ProcessPendingRequests(
+ AutoEnterTransaction& aTransaction) {
+ mMonitor->AssertCurrentThreadOwns();
+
+ AssertMaybeDeferredCountCorrect();
+ if (mMaybeDeferredPendingCount == 0) {
+ return;
+ }
+
+ IPC_LOG("ProcessPendingRequests for seqno=%d, xid=%d",
+ aTransaction.SequenceNumber(), aTransaction.TransactionID());
+
+ // Loop until there aren't any more nested messages to process.
+ for (;;) {
+ // If we canceled during ProcessPendingRequest, then we need to leave
+ // immediately because the results of ShouldDeferMessage will be
+ // operating with weird state (as if no Send is in progress). That could
+ // cause even NOT_NESTED sync messages to be processed (but not
+ // NOT_NESTED async messages), which would break message ordering.
+ if (aTransaction.IsCanceled()) {
+ return;
+ }
+
+ mozilla::Vector<Message> toProcess;
+
+ for (MessageTask* p = mPending.getFirst(); p;) {
+ Message& msg = p->Msg();
+
+ MOZ_RELEASE_ASSERT(!aTransaction.IsCanceled(),
+ "Calling ShouldDeferMessage when cancelled");
+ bool defer = ShouldDeferMessage(msg);
+
+ // Only log the interesting messages.
+ if (msg.is_sync() ||
+ msg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
+ IPC_LOG("ShouldDeferMessage(seqno=%d) = %d", msg.seqno(), defer);
+ }
+
+ if (!defer) {
+ MOZ_ASSERT(!IsAlwaysDeferred(msg));
+
+ if (!toProcess.append(std::move(msg))) MOZ_CRASH();
+
+ mMaybeDeferredPendingCount--;
+
+ p = p->removeAndGetNext();
+ continue;
+ }
+ p = p->getNext();
+ }
+
+ if (toProcess.empty()) {
+ break;
+ }
+
+ // Processing these messages could result in more messages, so we
+ // loop around to check for more afterwards.
+
+ for (auto it = toProcess.begin(); it != toProcess.end(); it++) {
+ ProcessPendingRequest(std::move(*it));
+ }
+ }
+
+ AssertMaybeDeferredCountCorrect();
+}
+
+bool MessageChannel::Send(UniquePtr<Message> aMsg, Message* aReply) {
+ mozilla::TimeStamp start = TimeStamp::Now();
+ if (aMsg->size() >= kMinTelemetryMessageSize) {
+ Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
+ }
+
+ // Sanity checks.
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+ MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
+ "sync send over same-thread channel will deadlock!");
+
+#ifdef OS_WIN
+ SyncStackFrame frame(this, false);
+ NeuteredWindowRegion neuteredRgn(mFlags &
+ REQUIRE_DEFERRED_MESSAGE_PROTECTION);
+#endif
+#ifdef MOZ_TASK_TRACER
+ AutoScopedLabel autolabel("sync message %s", aMsg->name());
+#endif
+
+ CxxStackFrame f(*this, OUT_MESSAGE, aMsg.get());
+
+ MonitorAutoLock lock(*mMonitor);
+
+ if (mTimedOutMessageSeqno) {
+ // Don't bother sending another sync message if a previous one timed out
+ // and we haven't received a reply for it. Once the original timed-out
+ // message receives a reply, we'll be able to send more sync messages
+ // again.
+ IPC_LOG("Send() failed due to previous timeout");
+ mLastSendError = SyncSendError::PreviousTimeout;
+ return false;
+ }
+
+ if (DispatchingSyncMessageNestedLevel() == IPC::Message::NOT_NESTED &&
+ aMsg->nested_level() > IPC::Message::NOT_NESTED) {
+ // Don't allow sending CPOWs while we're dispatching a sync message.
+ IPC_LOG("Nested level forbids send");
+ mLastSendError = SyncSendError::SendingCPOWWhileDispatchingSync;
+ return false;
+ }
+
+ if (DispatchingSyncMessageNestedLevel() == IPC::Message::NESTED_INSIDE_CPOW ||
+ DispatchingAsyncMessageNestedLevel() ==
+ IPC::Message::NESTED_INSIDE_CPOW) {
+ // Generally only the parent dispatches urgent messages. And the only
+ // sync messages it can send are NESTED_INSIDE_SYNC. Mainly we want to
+ // ensure here that we don't return false for non-CPOW messages.
+ MOZ_RELEASE_ASSERT(aMsg->nested_level() ==
+ IPC::Message::NESTED_INSIDE_SYNC);
+ IPC_LOG("Sending while dispatching urgent message");
+ mLastSendError = SyncSendError::SendingCPOWWhileDispatchingUrgent;
+ return false;
+ }
+
+ if (aMsg->nested_level() < DispatchingSyncMessageNestedLevel() ||
+ aMsg->nested_level() < AwaitingSyncReplyNestedLevel()) {
+ MOZ_RELEASE_ASSERT(DispatchingSyncMessage() || DispatchingAsyncMessage());
+ MOZ_RELEASE_ASSERT(!mIsPostponingSends);
+ IPC_LOG("Cancel from Send");
+ auto cancel =
+ MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
+ CancelTransaction(CurrentNestedInsideSyncTransaction());
+ mLink->SendMessage(std::move(cancel));
+ }
+
+ IPC_ASSERT(aMsg->is_sync(), "can only Send() sync messages here");
+
+ IPC_ASSERT(aMsg->nested_level() >= DispatchingSyncMessageNestedLevel(),
+ "can't send sync message of a lesser nested level than what's "
+ "being dispatched");
+ IPC_ASSERT(AwaitingSyncReplyNestedLevel() <= aMsg->nested_level(),
+ "nested sync message sends must be of increasing nested level");
+ IPC_ASSERT(
+ DispatchingSyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
+ "not allowed to send messages while dispatching urgent messages");
+
+ IPC_ASSERT(
+ DispatchingAsyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
+ "not allowed to send messages while dispatching urgent messages");
+
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::SendAndWait", aMsg.get());
+ mLastSendError = SyncSendError::NotConnectedBeforeSend;
+ return false;
+ }
+
+ aMsg->set_seqno(NextSeqno());
+
+ int32_t seqno = aMsg->seqno();
+ int nestedLevel = aMsg->nested_level();
+ msgid_t replyType = aMsg->type() + 1;
+
+ AutoEnterTransaction* stackTop = mTransactionStack;
+
+ // If the most recent message on the stack is NESTED_INSIDE_SYNC, then our
+ // message should nest inside that and we use the same transaction
+ // ID. Otherwise we need a new transaction ID (so we use the seqno of the
+ // message we're sending).
+ bool nest =
+ stackTop && stackTop->NestedLevel() == IPC::Message::NESTED_INSIDE_SYNC;
+ int32_t transaction = nest ? stackTop->TransactionID() : seqno;
+ aMsg->set_transaction_id(transaction);
+
+ bool handleWindowsMessages = mListener->HandleWindowsMessages(*aMsg.get());
+ AutoEnterTransaction transact(this, seqno, transaction, nestedLevel);
+
+ IPC_LOG("Send seqno=%d, xid=%d", seqno, transaction);
+
+ // aMsg will be destroyed soon, but name() is not owned by aMsg.
+ const char* msgName = aMsg->name();
+
+ AddProfilerMarker(*aMsg, MessageDirection::eSending);
+ SendMessageToLink(std::move(aMsg));
+
+ while (true) {
+ MOZ_RELEASE_ASSERT(!transact.IsCanceled());
+ ProcessPendingRequests(transact);
+ if (transact.IsComplete()) {
+ break;
+ }
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::Send");
+ mLastSendError = SyncSendError::DisconnectedDuringSend;
+ return false;
+ }
+
+ MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
+ MOZ_RELEASE_ASSERT(!transact.IsComplete());
+ MOZ_RELEASE_ASSERT(mTransactionStack == &transact);
+
+ bool maybeTimedOut = !WaitForSyncNotify(handleWindowsMessages);
+
+ if (mListener->NeedArtificialSleep()) {
+ MonitorAutoUnlock unlock(*mMonitor);
+ mListener->ArtificialSleep();
+ }
+
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::SendAndWait");
+ mLastSendError = SyncSendError::DisconnectedDuringSend;
+ return false;
+ }
+
+ if (transact.IsCanceled()) {
+ break;
+ }
+
+ MOZ_RELEASE_ASSERT(mTransactionStack == &transact);
+
+ // We only time out a message if it initiated a new transaction (i.e.,
+ // if neither side has any other message Sends on the stack).
+ bool canTimeOut = transact.IsBottom();
+ if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) {
+ // Since ShouldContinueFromTimeout drops the lock, we need to
+ // re-check all our conditions here. We shouldn't time out if any of
+ // these things happen because there won't be a reply to the timed
+ // out message in these cases.
+ if (transact.IsComplete()) {
+ break;
+ }
+
+ IPC_LOG("Timing out Send: xid=%d", transaction);
+
+ mTimedOutMessageSeqno = seqno;
+ mTimedOutMessageNestedLevel = nestedLevel;
+ mLastSendError = SyncSendError::TimedOut;
+ return false;
+ }
+
+ if (transact.IsCanceled()) {
+ break;
+ }
+ }
+
+ if (transact.IsCanceled()) {
+ IPC_LOG("Other side canceled seqno=%d, xid=%d", seqno, transaction);
+ mLastSendError = SyncSendError::CancelledAfterSend;
+ return false;
+ }
+
+ if (transact.IsError()) {
+ IPC_LOG("Error: seqno=%d, xid=%d", seqno, transaction);
+ mLastSendError = SyncSendError::ReplyError;
+ return false;
+ }
+
+ uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
+ IPC_LOG("Got reply: seqno=%d, xid=%d, msgName=%s, latency=%ums", seqno,
+ transaction, msgName, latencyMs);
+
+ UniquePtr<Message> reply = transact.GetReply();
+
+ MOZ_RELEASE_ASSERT(reply);
+ MOZ_RELEASE_ASSERT(reply->is_reply(), "expected reply");
+ MOZ_RELEASE_ASSERT(!reply->is_reply_error());
+ MOZ_RELEASE_ASSERT(reply->seqno() == seqno);
+ MOZ_RELEASE_ASSERT(reply->type() == replyType, "wrong reply type");
+ MOZ_RELEASE_ASSERT(reply->is_sync());
+
+ AddProfilerMarker(*reply, MessageDirection::eReceiving);
+
+ *aReply = std::move(*reply);
+ if (aReply->size() >= kMinTelemetryMessageSize) {
+ Telemetry::Accumulate(Telemetry::IPC_REPLY_SIZE,
+ nsDependentCString(msgName), aReply->size());
+ }
+
+ // NOTE: Only collect IPC_SYNC_MAIN_LATENCY_MS on the main thread (bug
+ // 1343729)
+ if (NS_IsMainThread() && latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
+ Telemetry::Accumulate(Telemetry::IPC_SYNC_MAIN_LATENCY_MS,
+ nsDependentCString(msgName), latencyMs);
+ }
+ return true;
+}
+
+bool MessageChannel::Call(UniquePtr<Message> aMsg, Message* aReply) {
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+ MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
+ "intr call send over same-thread channel will deadlock!");
+
+#ifdef OS_WIN
+ SyncStackFrame frame(this, true);
+#endif
+#ifdef MOZ_TASK_TRACER
+ AutoScopedLabel autolabel("sync message %s", aMsg->name());
+#endif
+
+ // This must come before MonitorAutoLock, as its destructor acquires the
+ // monitor lock.
+ CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg.get());
+
+ MonitorAutoLock lock(*mMonitor);
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::Call", aMsg.get());
+ return false;
+ }
+
+ // Sanity checks.
+ IPC_ASSERT(!AwaitingSyncReply(),
+ "cannot issue Interrupt call while blocked on sync request");
+ IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant");
+ IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here");
+ IPC_ASSERT(!mIsPostponingSends, "not postponing sends");
+
+ aMsg->set_seqno(NextSeqno());
+ aMsg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
+ aMsg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
+ mInterruptStack.push(MessageInfo(*aMsg));
+
+ AddProfilerMarker(*aMsg, MessageDirection::eSending);
+
+ mLink->SendMessage(std::move(aMsg));
+
+ while (true) {
+ // if a handler invoked by *Dispatch*() spun a nested event
+ // loop, and the connection was broken during that loop, we
+ // might have already processed the OnError event. if so,
+ // trying another loop iteration will be futile because
+ // channel state will have been cleared
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::Call");
+ return false;
+ }
+
+#ifdef OS_WIN
+ // We need to limit the scoped of neuteredRgn to this spot in the code.
+ // Window neutering can't be enabled during some plugin calls because
+ // we then risk the neutered window procedure being subclassed by a
+ // plugin.
+ {
+ NeuteredWindowRegion neuteredRgn(mFlags &
+ REQUIRE_DEFERRED_MESSAGE_PROTECTION);
+ /* We should pump messages at this point to ensure that the IPC
+ peer does not become deadlocked on a pending inter-thread
+ SendMessage() */
+ neuteredRgn.PumpOnce();
+ }
+#endif
+
+ // Now might be the time to process a message deferred because of race
+ // resolution.
+ MaybeUndeferIncall();
+
+ // Wait for an event to occur.
+ while (!InterruptEventOccurred()) {
+ bool maybeTimedOut = !WaitForInterruptNotify();
+
+ // We might have received a "subtly deferred" message in a nested
+ // loop that it's now time to process.
+ if (InterruptEventOccurred() ||
+ (!maybeTimedOut &&
+ (!mDeferred.empty() || !mOutOfTurnReplies.empty()))) {
+ break;
+ }
+
+ if (maybeTimedOut && !ShouldContinueFromTimeout()) return false;
+ }
+
+ Message recvd;
+ MessageMap::iterator it;
+
+ if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno())) !=
+ mOutOfTurnReplies.end()) {
+ recvd = std::move(it->second);
+ mOutOfTurnReplies.erase(it);
+ } else if (!mPending.isEmpty()) {
+ RefPtr<MessageTask> task = mPending.popFirst();
+ recvd = std::move(task->Msg());
+ if (!IsAlwaysDeferred(recvd)) {
+ mMaybeDeferredPendingCount--;
+ }
+ } else {
+ // because of subtleties with nested event loops, it's possible
+ // that we got here and nothing happened. or, we might have a
+ // deferred in-call that needs to be processed. either way, we
+ // won't break the inner while loop again until something new
+ // happens.
+ continue;
+ }
+
+ // If the message is not Interrupt, we can dispatch it as normal.
+ if (!recvd.is_interrupt()) {
+ DispatchMessage(std::move(recvd));
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::DispatchMessage");
+ return false;
+ }
+ continue;
+ }
+
+ // If the message is an Interrupt reply, either process it as a reply to our
+ // call, or add it to the list of out-of-turn replies we've received.
+ if (recvd.is_reply()) {
+ IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");
+
+ // If this is not a reply the call we've initiated, add it to our
+ // out-of-turn replies and keep polling for events.
+ {
+ const MessageInfo& outcall = mInterruptStack.top();
+
+ // Note, In the parent, sequence numbers increase from 0, and
+ // in the child, they decrease from 0.
+ if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
+ (mSide != ChildSide && recvd.seqno() < outcall.seqno())) {
+ mOutOfTurnReplies[recvd.seqno()] = std::move(recvd);
+ continue;
+ }
+
+ IPC_ASSERT(
+ recvd.is_reply_error() || (recvd.type() == (outcall.type() + 1) &&
+ recvd.seqno() == outcall.seqno()),
+ "somebody's misbehavin'", true);
+ }
+
+ // We received a reply to our most recent outstanding call. Pop
+ // this frame and return the reply.
+ mInterruptStack.pop();
+
+ AddProfilerMarker(recvd, MessageDirection::eReceiving);
+
+ bool is_reply_error = recvd.is_reply_error();
+ if (!is_reply_error) {
+ *aReply = std::move(recvd);
+ }
+
+ // If we have no more pending out calls waiting on replies, then
+ // the reply queue should be empty.
+ IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
+ "still have pending replies with no pending out-calls", true);
+
+ return !is_reply_error;
+ }
+
+ // Dispatch an Interrupt in-call. Snapshot the current stack depth while we
+ // own the monitor.
+ size_t stackDepth = InterruptStackDepth();
+ {
+#ifdef MOZ_TASK_TRACER
+ Message::AutoTaskTracerRun tasktracerRun(recvd);
+#endif
+ MonitorAutoUnlock unlock(*mMonitor);
+
+ CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
+ RefPtr<ActorLifecycleProxy> listenerProxy =
+ mListener->GetLifecycleProxy();
+ DispatchInterruptMessage(listenerProxy, std::move(recvd), stackDepth);
+ }
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::DispatchInterruptMessage");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool MessageChannel::WaitForIncomingMessage() {
+#ifdef OS_WIN
+ SyncStackFrame frame(this, true);
+ NeuteredWindowRegion neuteredRgn(mFlags &
+ REQUIRE_DEFERRED_MESSAGE_PROTECTION);
+#endif
+
+ MonitorAutoLock lock(*mMonitor);
+ AutoEnterWaitForIncoming waitingForIncoming(*this);
+ if (mChannelState != ChannelConnected) {
+ return false;
+ }
+ if (!HasPendingEvents()) {
+ return WaitForInterruptNotify();
+ }
+
+ MOZ_RELEASE_ASSERT(!mPending.isEmpty());
+ RefPtr<MessageTask> task = mPending.getFirst();
+ RunMessage(*task);
+ return true;
+}
+
+bool MessageChannel::HasPendingEvents() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+ return Connected() && !mPending.isEmpty();
+}
+
+bool MessageChannel::InterruptEventOccurred() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+ IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");
+
+ return (!Connected() || !mPending.isEmpty() ||
+ (!mOutOfTurnReplies.empty() &&
+ mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
+ mOutOfTurnReplies.end()));
+}
+
+bool MessageChannel::ProcessPendingRequest(Message&& aUrgent) {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ IPC_LOG("Process pending: seqno=%d, xid=%d", aUrgent.seqno(),
+ aUrgent.transaction_id());
+
+ DispatchMessage(std::move(aUrgent));
+ if (!Connected()) {
+ ReportConnectionError("MessageChannel::ProcessPendingRequest");
+ return false;
+ }
+
+ return true;
+}
+
+bool MessageChannel::ShouldRunMessage(const Message& aMsg) {
+ if (!mTimedOutMessageSeqno) {
+ return true;
+ }
+
+ // If we've timed out a message and we're awaiting the reply to the timed
+ // out message, we have to be careful what messages we process. Here's what
+ // can go wrong:
+ // 1. child sends a NOT_NESTED sync message S
+ // 2. parent sends a NESTED_INSIDE_SYNC sync message H at the same time
+ // 3. parent times out H
+ // 4. child starts processing H and sends a NESTED_INSIDE_SYNC message H'
+ // nested within the same transaction
+ // 5. parent dispatches S and sends reply
+ // 6. child asserts because it instead expected a reply to H'.
+ //
+ // To solve this, we refuse to process S in the parent until we get a reply
+ // to H. More generally, let the timed out message be M. We don't process a
+ // message unless the child would need the response to that message in order
+ // to process M. Those messages are the ones that have a higher nested level
+ // than M or that are part of the same transaction as M.
+ if (aMsg.nested_level() < mTimedOutMessageNestedLevel ||
+ (aMsg.nested_level() == mTimedOutMessageNestedLevel &&
+ aMsg.transaction_id() != mTimedOutMessageSeqno)) {
+ return false;
+ }
+
+ return true;
+}
+
+void MessageChannel::RunMessage(MessageTask& aTask) {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ Message& msg = aTask.Msg();
+
+ if (!Connected()) {
+ ReportConnectionError("RunMessage");
+ return;
+ }
+
+ // Check that we're going to run the first message that's valid to run.
+#if 0
+# ifdef DEBUG
+ nsCOMPtr<nsIEventTarget> messageTarget =
+ mListener->GetMessageEventTarget(msg);
+
+ for (MessageTask* task : mPending) {
+ if (task == &aTask) {
+ break;
+ }
+
+ nsCOMPtr<nsIEventTarget> taskTarget =
+ mListener->GetMessageEventTarget(task->Msg());
+
+ MOZ_ASSERT(!ShouldRunMessage(task->Msg()) ||
+ taskTarget != messageTarget ||
+ aTask.Msg().priority() != task->Msg().priority());
+
+ }
+# endif
+#endif
+
+ if (!mDeferred.empty()) {
+ MaybeUndeferIncall();
+ }
+
+ if (!ShouldRunMessage(msg)) {
+ return;
+ }
+
+ MOZ_RELEASE_ASSERT(aTask.isInList());
+ aTask.remove();
+
+ if (!IsAlwaysDeferred(msg)) {
+ mMaybeDeferredPendingCount--;
+ }
+
+ if (IsOnCxxStack() && msg.is_interrupt() && msg.is_reply()) {
+ // We probably just received a reply in a nested loop for an
+ // Interrupt call sent before entering that loop.
+ mOutOfTurnReplies[msg.seqno()] = std::move(msg);
+ return;
+ }
+
+ DispatchMessage(std::move(msg));
+}
+
+NS_IMPL_ISUPPORTS_INHERITED(MessageChannel::MessageTask, CancelableRunnable,
+ nsIRunnablePriority, nsIRunnableIPCMessageType)
+
+MessageChannel::MessageTask::MessageTask(MessageChannel* aChannel,
+ Message&& aMessage)
+ : CancelableRunnable(aMessage.name()),
+ mChannel(aChannel),
+ mMessage(std::move(aMessage)),
+ mScheduled(false) {}
+
+nsresult MessageChannel::MessageTask::Run() {
+ if (!mChannel) {
+ return NS_OK;
+ }
+
+ mChannel->AssertWorkerThread();
+ mChannel->mMonitor->AssertNotCurrentThreadOwns();
+
+ MonitorAutoLock lock(*mChannel->mMonitor);
+
+ // In case we choose not to run this message, we may need to be able to Post
+ // it again.
+ mScheduled = false;
+
+ if (!isInList()) {
+ return NS_OK;
+ }
+
+ mChannel->RunMessage(*this);
+ return NS_OK;
+}
+
+// Warning: This method removes the receiver from whatever list it might be in.
+nsresult MessageChannel::MessageTask::Cancel() {
+ if (!mChannel) {
+ return NS_OK;
+ }
+
+ mChannel->AssertWorkerThread();
+ mChannel->mMonitor->AssertNotCurrentThreadOwns();
+
+ MonitorAutoLock lock(*mChannel->mMonitor);
+
+ if (!isInList()) {
+ return NS_OK;
+ }
+ remove();
+
+ if (!IsAlwaysDeferred(Msg())) {
+ mChannel->mMaybeDeferredPendingCount--;
+ }
+
+ return NS_OK;
+}
+
+void MessageChannel::MessageTask::Post() {
+ MOZ_RELEASE_ASSERT(!mScheduled);
+ MOZ_RELEASE_ASSERT(isInList());
+
+ mScheduled = true;
+
+ RefPtr<MessageTask> self = this;
+ nsCOMPtr<nsISerialEventTarget> eventTarget =
+ mChannel->mListener->GetMessageEventTarget(mMessage);
+
+ if (eventTarget) {
+ eventTarget->Dispatch(self.forget(), NS_DISPATCH_NORMAL);
+ } else {
+ mChannel->mWorkerThread->Dispatch(self.forget());
+ }
+}
+
+void MessageChannel::MessageTask::Clear() {
+ mChannel->AssertWorkerThread();
+
+ mChannel = nullptr;
+}
+
+NS_IMETHODIMP
+MessageChannel::MessageTask::GetPriority(uint32_t* aPriority) {
+ switch (mMessage.priority()) {
+ case Message::NORMAL_PRIORITY:
+ *aPriority = PRIORITY_NORMAL;
+ break;
+ case Message::INPUT_PRIORITY:
+ *aPriority = PRIORITY_INPUT_HIGH;
+ break;
+ case Message::HIGH_PRIORITY:
+ *aPriority = PRIORITY_HIGH;
+ break;
+ case Message::MEDIUMHIGH_PRIORITY:
+ *aPriority = PRIORITY_MEDIUMHIGH;
+ break;
+ default:
+ MOZ_ASSERT(false);
+ break;
+ }
+ return NS_OK;
+}
+
+NS_IMETHODIMP
+MessageChannel::MessageTask::GetType(uint32_t* aType) {
+ if (!Msg().is_valid()) {
+ // If mMessage has been moved already elsewhere, we can't know what the type
+ // has been.
+ return NS_ERROR_FAILURE;
+ }
+
+ *aType = Msg().type();
+ return NS_OK;
+}
+
+void MessageChannel::DispatchMessage(Message&& aMsg) {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ RefPtr<ActorLifecycleProxy> listenerProxy = mListener->GetLifecycleProxy();
+
+ Maybe<AutoNoJSAPI> nojsapi;
+ if (NS_IsMainThread() && CycleCollectedJSContext::Get()) {
+ nojsapi.emplace();
+ }
+
+ UniquePtr<Message> reply;
+
+ IPC_LOG("DispatchMessage: seqno=%d, xid=%d", aMsg.seqno(),
+ aMsg.transaction_id());
+ AddProfilerMarker(aMsg, MessageDirection::eReceiving);
+
+ {
+ AutoEnterTransaction transaction(this, aMsg);
+
+ int id = aMsg.transaction_id();
+ MOZ_RELEASE_ASSERT(!aMsg.is_sync() || id == transaction.TransactionID());
+
+ {
+#ifdef MOZ_TASK_TRACER
+ Message::AutoTaskTracerRun tasktracerRun(aMsg);
+#endif
+ MonitorAutoUnlock unlock(*mMonitor);
+ CxxStackFrame frame(*this, IN_MESSAGE, &aMsg);
+
+ mListener->ArtificialSleep();
+
+ if (aMsg.is_sync()) {
+ DispatchSyncMessage(listenerProxy, aMsg, *getter_Transfers(reply));
+ } else if (aMsg.is_interrupt()) {
+ DispatchInterruptMessage(listenerProxy, std::move(aMsg), 0);
+ } else {
+ DispatchAsyncMessage(listenerProxy, aMsg);
+ }
+
+ mListener->ArtificialSleep();
+ }
+
+ if (reply && transaction.IsCanceled()) {
+ // The transaction has been canceled. Don't send a reply.
+ IPC_LOG("Nulling out reply due to cancellation, seqno=%d, xid=%d",
+ aMsg.seqno(), id);
+ reply = nullptr;
+ }
+ }
+
+ if (reply && ChannelConnected == mChannelState) {
+ IPC_LOG("Sending reply seqno=%d, xid=%d", aMsg.seqno(),
+ aMsg.transaction_id());
+ AddProfilerMarker(*reply, MessageDirection::eSending);
+
+ mLink->SendMessage(std::move(reply));
+ }
+}
+
+void MessageChannel::DispatchSyncMessage(ActorLifecycleProxy* aProxy,
+ const Message& aMsg,
+ Message*& aReply) {
+ AssertWorkerThread();
+
+ mozilla::TimeStamp start = TimeStamp::Now();
+
+ int nestedLevel = aMsg.nested_level();
+
+ MOZ_RELEASE_ASSERT(nestedLevel == IPC::Message::NOT_NESTED ||
+ NS_IsMainThread());
+#ifdef MOZ_TASK_TRACER
+ AutoScopedLabel autolabel("sync message %s", aMsg.name());
+#endif
+
+ MessageChannel* dummy;
+ MessageChannel*& blockingVar =
+ mSide == ChildSide && NS_IsMainThread() ? gParentProcessBlocker : dummy;
+
+ Result rv;
+ {
+ AutoSetValue<MessageChannel*> blocked(blockingVar, this);
+ rv = aProxy->Get()->OnMessageReceived(aMsg, aReply);
+ }
+
+ uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
+ if (latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
+ Telemetry::Accumulate(Telemetry::IPC_SYNC_RECEIVE_MS,
+ nsDependentCString(aMsg.name()), latencyMs);
+ }
+
+ if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) {
+ aReply = Message::ForSyncDispatchError(aMsg.nested_level());
+ }
+ aReply->set_seqno(aMsg.seqno());
+ aReply->set_transaction_id(aMsg.transaction_id());
+}
+
+void MessageChannel::DispatchAsyncMessage(ActorLifecycleProxy* aProxy,
+ const Message& aMsg) {
+ AssertWorkerThread();
+ MOZ_RELEASE_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync());
+
+ if (aMsg.routing_id() == MSG_ROUTING_NONE) {
+ MOZ_CRASH("unhandled special message!");
+ }
+
+ Result rv;
+ {
+ int nestedLevel = aMsg.nested_level();
+ AutoSetValue<bool> async(mDispatchingAsyncMessage, true);
+ AutoSetValue<int> nestedLevelSet(mDispatchingAsyncMessageNestedLevel,
+ nestedLevel);
+ rv = aProxy->Get()->OnMessageReceived(aMsg);
+ }
+ MaybeHandleError(rv, aMsg, "DispatchAsyncMessage");
+}
+
+void MessageChannel::DispatchInterruptMessage(ActorLifecycleProxy* aProxy,
+ Message&& aMsg,
+ size_t stackDepth) {
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+
+ IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
+
+ if (ShouldDeferInterruptMessage(aMsg, stackDepth)) {
+ // We now know the other side's stack has one more frame
+ // than we thought.
+ ++mRemoteStackDepthGuess; // decremented in MaybeProcessDeferred()
+ mDeferred.push(std::move(aMsg));
+ return;
+ }
+
+ // If we "lost" a race and need to process the other side's in-call, we
+ // don't need to fix up the mRemoteStackDepthGuess here, because we're just
+ // about to increment it, which will make it correct again.
+
+#ifdef OS_WIN
+ SyncStackFrame frame(this, true);
+#endif
+
+ UniquePtr<Message> reply;
+
+ ++mRemoteStackDepthGuess;
+ Result rv = aProxy->Get()->OnCallReceived(aMsg, *getter_Transfers(reply));
+ --mRemoteStackDepthGuess;
+
+ if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) {
+ reply = WrapUnique(Message::ForInterruptDispatchError());
+ }
+ reply->set_seqno(aMsg.seqno());
+
+ MonitorAutoLock lock(*mMonitor);
+ if (ChannelConnected == mChannelState) {
+ AddProfilerMarker(*reply, MessageDirection::eSending);
+ mLink->SendMessage(std::move(reply));
+ }
+}
+
+bool MessageChannel::ShouldDeferInterruptMessage(const Message& aMsg,
+ size_t aStackDepth) {
+ AssertWorkerThread();
+
+ // We may or may not own the lock in this function, so don't access any
+ // channel state.
+
+ IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
+
+ // Race detection: see the long comment near mRemoteStackDepthGuess in
+ // MessageChannel.h. "Remote" stack depth means our side, and "local" means
+ // the other side.
+ if (aMsg.interrupt_remote_stack_depth_guess() ==
+ RemoteViewOfStackDepth(aStackDepth)) {
+ return false;
+ }
+
+ // Interrupt in-calls have raced. The winner, if there is one, gets to defer
+ // processing of the other side's in-call.
+ bool defer;
+ const char* winner;
+ const MessageInfo parentMsgInfo =
+ (mSide == ChildSide) ? MessageInfo(aMsg) : mInterruptStack.top();
+ const MessageInfo childMsgInfo =
+ (mSide == ChildSide) ? mInterruptStack.top() : MessageInfo(aMsg);
+ switch (mListener->MediateInterruptRace(parentMsgInfo, childMsgInfo)) {
+ case RIPChildWins:
+ winner = "child";
+ defer = (mSide == ChildSide);
+ break;
+ case RIPParentWins:
+ winner = "parent";
+ defer = (mSide != ChildSide);
+ break;
+ case RIPError:
+ MOZ_CRASH("NYI: 'Error' Interrupt race policy");
+ default:
+ MOZ_CRASH("not reached");
+ }
+
+ IPC_LOG("race in %s: %s won", (mSide == ChildSide) ? "child" : "parent",
+ winner);
+
+ return defer;
+}
+
+void MessageChannel::MaybeUndeferIncall() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ if (mDeferred.empty()) return;
+
+ size_t stackDepth = InterruptStackDepth();
+
+ Message& deferred = mDeferred.top();
+
+ // the other side can only *under*-estimate our actual stack depth
+ IPC_ASSERT(deferred.interrupt_remote_stack_depth_guess() <= stackDepth,
+ "fatal logic error");
+
+ if (ShouldDeferInterruptMessage(deferred, stackDepth)) {
+ return;
+ }
+
+ // maybe time to process this message
+ Message call(std::move(deferred));
+ mDeferred.pop();
+
+ // fix up fudge factor we added to account for race
+ IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
+ --mRemoteStackDepthGuess;
+
+ MOZ_RELEASE_ASSERT(call.nested_level() == IPC::Message::NOT_NESTED);
+ RefPtr<MessageTask> task = new MessageTask(this, std::move(call));
+ mPending.insertBack(task);
+ MOZ_ASSERT(IsAlwaysDeferred(task->Msg()));
+ task->Post();
+}
+
+void MessageChannel::EnteredCxxStack() { mListener->EnteredCxxStack(); }
+
+void MessageChannel::ExitedCxxStack() {
+ mListener->ExitedCxxStack();
+ if (mSawInterruptOutMsg) {
+ MonitorAutoLock lock(*mMonitor);
+ // see long comment in OnMaybeDequeueOne()
+ EnqueuePendingMessages();
+ mSawInterruptOutMsg = false;
+ }
+}
+
+void MessageChannel::EnteredCall() { mListener->EnteredCall(); }
+
+void MessageChannel::ExitedCall() { mListener->ExitedCall(); }
+
+void MessageChannel::EnteredSyncSend() { mListener->OnEnteredSyncSend(); }
+
+void MessageChannel::ExitedSyncSend() { mListener->OnExitedSyncSend(); }
+
+void MessageChannel::EnqueuePendingMessages() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ MaybeUndeferIncall();
+
+ // XXX performance tuning knob: could process all or k pending
+ // messages here, rather than enqueuing for later processing
+
+ RepostAllMessages();
+}
+
+bool MessageChannel::WaitResponse(bool aWaitTimedOut) {
+ if (aWaitTimedOut) {
+ if (mInTimeoutSecondHalf) {
+ // We've really timed out this time.
+ return false;
+ }
+ // Try a second time.
+ mInTimeoutSecondHalf = true;
+ } else {
+ mInTimeoutSecondHalf = false;
+ }
+ return true;
+}
+
+#ifndef OS_WIN
+bool MessageChannel::WaitForSyncNotify(bool /* aHandleWindowsMessages */) {
+# ifdef DEBUG
+ // WARNING: We don't release the lock here. We can't because the link thread
+ // could signal at this time and we would miss it. Instead we require
+ // ArtificialTimeout() to be extremely simple.
+ if (mListener->ArtificialTimeout()) {
+ return false;
+ }
+# endif
+
+ MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
+ "Wait on same-thread channel will deadlock!");
+
+ TimeDuration timeout = (kNoTimeout == mTimeoutMs)
+ ? TimeDuration::Forever()
+ : TimeDuration::FromMilliseconds(mTimeoutMs);
+ CVStatus status = mMonitor->Wait(timeout);
+
+ // If the timeout didn't expire, we know we received an event. The
+ // converse is not true.
+ return WaitResponse(status == CVStatus::Timeout);
+}
+
+bool MessageChannel::WaitForInterruptNotify() {
+ return WaitForSyncNotify(true);
+}
+
+void MessageChannel::NotifyWorkerThread() { mMonitor->Notify(); }
+#endif
+
+bool MessageChannel::ShouldContinueFromTimeout() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ bool cont;
+ {
+ MonitorAutoUnlock unlock(*mMonitor);
+ cont = mListener->ShouldContinueFromReplyTimeout();
+ mListener->ArtificialSleep();
+ }
+
+ static enum {
+ UNKNOWN,
+ NOT_DEBUGGING,
+ DEBUGGING
+ } sDebuggingChildren = UNKNOWN;
+
+ if (sDebuggingChildren == UNKNOWN) {
+ sDebuggingChildren =
+ getenv("MOZ_DEBUG_CHILD_PROCESS") || getenv("MOZ_DEBUG_CHILD_PAUSE")
+ ? DEBUGGING
+ : NOT_DEBUGGING;
+ }
+ if (sDebuggingChildren == DEBUGGING) {
+ return true;
+ }
+
+ return cont;
+}
+
+void MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs) {
+ // Set channel timeout value. Since this is broken up into
+ // two period, the minimum timeout value is 2ms.
+ AssertWorkerThread();
+ mTimeoutMs =
+ (aTimeoutMs <= 0) ? kNoTimeout : (int32_t)ceil((double)aTimeoutMs / 2.0);
+}
+
+void MessageChannel::OnChannelConnected(int32_t peer_id) {
+ MOZ_RELEASE_ASSERT(!mPeerPidSet);
+ mPeerPidSet = true;
+ mPeerPid = peer_id;
+ RefPtr<CancelableRunnable> task = mOnChannelConnectedTask;
+ mWorkerThread->Dispatch(task.forget());
+}
+
+void MessageChannel::DispatchOnChannelConnected() {
+ AssertWorkerThread();
+ MOZ_RELEASE_ASSERT(mPeerPidSet);
+ mListener->OnChannelConnected(mPeerPid);
+}
+
+void MessageChannel::ReportMessageRouteError(const char* channelName) const {
+ PrintErrorMessage(mSide, channelName, "Need a route");
+ mListener->ProcessingError(MsgRouteError, "MsgRouteError");
+}
+
+void MessageChannel::ReportConnectionError(const char* aChannelName,
+ Message* aMsg) const {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ const char* errorMsg = nullptr;
+ switch (mChannelState) {
+ case ChannelClosed:
+ errorMsg = "Closed channel: cannot send/recv";
+ break;
+ case ChannelOpening:
+ errorMsg = "Opening channel: not yet ready for send/recv";
+ break;
+ case ChannelTimeout:
+ errorMsg = "Channel timeout: cannot send/recv";
+ break;
+ case ChannelClosing:
+ errorMsg =
+ "Channel closing: too late to send/recv, messages will be lost";
+ break;
+ case ChannelError:
+ errorMsg = "Channel error: cannot send/recv";
+ break;
+
+ default:
+ MOZ_CRASH("unreached");
+ }
+
+ if (aMsg) {
+ char reason[512];
+ SprintfLiteral(reason, "(msgtype=0x%X,name=%s) %s", aMsg->type(),
+ aMsg->name(), errorMsg);
+
+ PrintErrorMessage(mSide, aChannelName, reason);
+ } else {
+ PrintErrorMessage(mSide, aChannelName, errorMsg);
+ }
+
+ MonitorAutoUnlock unlock(*mMonitor);
+ mListener->ProcessingError(MsgDropped, errorMsg);
+}
+
+bool MessageChannel::MaybeHandleError(Result code, const Message& aMsg,
+ const char* channelName) {
+ if (MsgProcessed == code) return true;
+
+ const char* errorMsg = nullptr;
+ switch (code) {
+ case MsgNotKnown:
+ errorMsg = "Unknown message: not processed";
+ break;
+ case MsgNotAllowed:
+ errorMsg = "Message not allowed: cannot be sent/recvd in this state";
+ break;
+ case MsgPayloadError:
+ errorMsg = "Payload error: message could not be deserialized";
+ break;
+ case MsgProcessingError:
+ errorMsg =
+ "Processing error: message was deserialized, but the handler "
+ "returned false (indicating failure)";
+ break;
+ case MsgRouteError:
+ errorMsg = "Route error: message sent to unknown actor ID";
+ break;
+ case MsgValueError:
+ errorMsg =
+ "Value error: message was deserialized, but contained an illegal "
+ "value";
+ break;
+
+ default:
+ MOZ_CRASH("unknown Result code");
+ return false;
+ }
+
+ char reason[512];
+ const char* msgname = aMsg.name();
+ if (msgname[0] == '?') {
+ SprintfLiteral(reason, "(msgtype=0x%X) %s", aMsg.type(), errorMsg);
+ } else {
+ SprintfLiteral(reason, "%s %s", msgname, errorMsg);
+ }
+
+ PrintErrorMessage(mSide, channelName, reason);
+
+ // Error handled in mozilla::ipc::IPCResult.
+ if (code == MsgProcessingError) {
+ return false;
+ }
+
+ mListener->ProcessingError(code, reason);
+
+ return false;
+}
+
+void MessageChannel::OnChannelErrorFromLink() {
+ AssertLinkThread();
+ mMonitor->AssertCurrentThreadOwns();
+
+ IPC_LOG("OnChannelErrorFromLink");
+
+ if (InterruptStackDepth() > 0) NotifyWorkerThread();
+
+ if (AwaitingSyncReply() || AwaitingIncomingMessage()) NotifyWorkerThread();
+
+ if (ChannelClosing != mChannelState) {
+ if (mAbortOnError) {
+ // mAbortOnError is set by main actors (e.g., ContentChild) to ensure
+ // that the process terminates even if normal shutdown is prevented.
+ // A MOZ_CRASH() here is not helpful because crash reporting relies
+ // on the parent process which we know is dead or otherwise unusable.
+ //
+ // Additionally, the parent process can (and often is) killed on Android
+ // when apps are backgrounded. We don't need to report a crash for
+ // normal behavior in that case.
+ printf_stderr("Exiting due to channel error.\n");
+ ProcessChild::QuickExit();
+ }
+ mChannelState = ChannelError;
+ mMonitor->Notify();
+ }
+
+ PostErrorNotifyTask();
+}
+
+void MessageChannel::NotifyMaybeChannelError() {
+ mMonitor->AssertNotCurrentThreadOwns();
+
+ // TODO sort out Close() on this side racing with Close() on the other side
+ if (ChannelClosing == mChannelState) {
+ // the channel closed, but we received a "Goodbye" message warning us
+ // about it. no worries
+ mChannelState = ChannelClosed;
+ NotifyChannelClosed();
+ return;
+ }
+
+ Clear();
+
+ // Oops, error! Let the listener know about it.
+ mChannelState = ChannelError;
+
+ // IPDL assumes these notifications do not fire twice, so we do not let
+ // that happen.
+ if (mNotifiedChannelDone) {
+ return;
+ }
+ mNotifiedChannelDone = true;
+
+ // After this, the channel may be deleted. Based on the premise that
+ // mListener owns this channel, any calls back to this class that may
+ // work with mListener should still work on living objects.
+ mListener->OnChannelError();
+}
+
+void MessageChannel::OnNotifyMaybeChannelError() {
+ AssertWorkerThread();
+ mMonitor->AssertNotCurrentThreadOwns();
+
+ mChannelErrorTask = nullptr;
+
+ // OnChannelError holds mMonitor when it posts this task and this
+ // task cannot be allowed to run until OnChannelError has
+ // exited. We enforce that order by grabbing the mutex here which
+ // should only continue once OnChannelError has completed.
+ {
+ MonitorAutoLock lock(*mMonitor);
+ // nothing to do here
+ }
+
+ if (IsOnCxxStack()) {
+ mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
+ "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
+ &MessageChannel::OnNotifyMaybeChannelError);
+ RefPtr<Runnable> task = mChannelErrorTask;
+ // This used to post a 10ms delayed patch; however not all
+ // nsISerialEventTarget implementations support delayed dispatch.
+ // The delay being completely arbitrary, we may not as well have any.
+ mWorkerThread->Dispatch(task.forget());
+ return;
+ }
+
+ NotifyMaybeChannelError();
+}
+
+void MessageChannel::PostErrorNotifyTask() {
+ mMonitor->AssertCurrentThreadOwns();
+
+ if (mChannelErrorTask) return;
+
+ // This must be the last code that runs on this thread!
+ mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
+ "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
+ &MessageChannel::OnNotifyMaybeChannelError);
+ RefPtr<Runnable> task = mChannelErrorTask;
+ mWorkerThread->Dispatch(task.forget());
+}
+
+// Special async message.
+class GoodbyeMessage : public IPC::Message {
+ public:
+ GoodbyeMessage() : IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE) {}
+ static bool Read(const Message* msg) { return true; }
+ void Log(const std::string& aPrefix, FILE* aOutf) const {
+ fputs("(special `Goodbye' message)", aOutf);
+ }
+};
+
+void MessageChannel::SynchronouslyClose() {
+ AssertWorkerThread();
+ mMonitor->AssertCurrentThreadOwns();
+ mLink->SendClose();
+
+ MOZ_RELEASE_ASSERT(!mIsSameThreadChannel || ChannelClosed == mChannelState,
+ "same-thread channel failed to synchronously close?");
+
+ while (ChannelClosed != mChannelState) mMonitor->Wait();
+}
+
+void MessageChannel::CloseWithError() {
+ AssertWorkerThread();
+
+ MonitorAutoLock lock(*mMonitor);
+ if (ChannelConnected != mChannelState) {
+ return;
+ }
+ SynchronouslyClose();
+ mChannelState = ChannelError;
+ PostErrorNotifyTask();
+}
+
+void MessageChannel::CloseWithTimeout() {
+ AssertWorkerThread();
+
+ MonitorAutoLock lock(*mMonitor);
+ if (ChannelConnected != mChannelState) {
+ return;
+ }
+ SynchronouslyClose();
+ mChannelState = ChannelTimeout;
+}
+
+void MessageChannel::NotifyImpendingShutdown() {
+ UniquePtr<Message> msg =
+ MakeUnique<Message>(MSG_ROUTING_NONE, IMPENDING_SHUTDOWN_MESSAGE_TYPE);
+ MonitorAutoLock lock(*mMonitor);
+ if (Connected()) {
+ MOZ_DIAGNOSTIC_ASSERT(mIsCrossProcess);
+ mLink->SendMessage(std::move(msg));
+ }
+}
+
+void MessageChannel::Close() {
+ AssertWorkerThread();
+
+ {
+ // We don't use MonitorAutoLock here as that causes some sort of
+ // deadlock in the error/timeout-with-a-listener state below when
+ // compiling an optimized msvc build.
+ mMonitor->Lock();
+
+ // Instead just use a ScopeExit to manage the unlock.
+ RefPtr<RefCountedMonitor> monitor(mMonitor);
+ auto exit = MakeScopeExit([m = std::move(monitor)]() { m->Unlock(); });
+
+ if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
+ // See bug 538586: if the listener gets deleted while the
+ // IO thread's NotifyChannelError event is still enqueued
+ // and subsequently deletes us, then the error event will
+ // also be deleted and the listener will never be notified
+ // of the channel error.
+ if (mListener) {
+ exit.release(); // Explicitly unlocking, clear scope exit.
+ mMonitor->Unlock();
+ NotifyMaybeChannelError();
+ }
+ return;
+ }
+
+ if (ChannelOpening == mChannelState) {
+ // SynchronouslyClose() waits for an ack from the other side, so
+ // the opening sequence should complete before this returns.
+ SynchronouslyClose();
+ mChannelState = ChannelError;
+ NotifyMaybeChannelError();
+ return;
+ }
+
+ if (ChannelClosed == mChannelState) {
+ // Slightly unexpected but harmless; ignore. See bug 1554244.
+ return;
+ }
+
+ // Notify the other side that we're about to close our socket. If we've
+ // already received a Goodbye from the other side (and our state is
+ // ChannelClosing), there's no reason to send one.
+ if (ChannelConnected == mChannelState) {
+ mLink->SendMessage(MakeUnique<GoodbyeMessage>());
+ }
+ SynchronouslyClose();
+ }
+
+ NotifyChannelClosed();
+}
+
+void MessageChannel::NotifyChannelClosed() {
+ mMonitor->AssertNotCurrentThreadOwns();
+
+ if (ChannelClosed != mChannelState)
+ MOZ_CRASH("channel should have been closed!");
+
+ Clear();
+
+ // IPDL assumes these notifications do not fire twice, so we do not let
+ // that happen.
+ if (mNotifiedChannelDone) {
+ return;
+ }
+ mNotifiedChannelDone = true;
+
+ // OK, the IO thread just closed the channel normally. Let the
+ // listener know about it. After this point the channel may be
+ // deleted.
+ mListener->OnChannelClose();
+}
+
+void MessageChannel::DebugAbort(const char* file, int line, const char* cond,
+ const char* why, bool reply) {
+ printf_stderr(
+ "###!!! [MessageChannel][%s][%s:%d] "
+ "Assertion (%s) failed. %s %s\n",
+ mSide == ChildSide ? "Child" : "Parent", file, line, cond, why,
+ reply ? "(reply)" : "");
+ // technically we need the mutex for this, but we're dying anyway
+ DumpInterruptStack(" ");
+ printf_stderr(" remote Interrupt stack guess: %zu\n",
+ mRemoteStackDepthGuess);
+ printf_stderr(" deferred stack size: %zu\n", mDeferred.size());
+ printf_stderr(" out-of-turn Interrupt replies stack size: %zu\n",
+ mOutOfTurnReplies.size());
+
+ MessageQueue pending = std::move(mPending);
+ while (!pending.isEmpty()) {
+ printf_stderr(
+ " [ %s%s ]\n",
+ pending.getFirst()->Msg().is_interrupt()
+ ? "intr"
+ : (pending.getFirst()->Msg().is_sync() ? "sync" : "async"),
+ pending.getFirst()->Msg().is_reply() ? "reply" : "");
+ pending.popFirst();
+ }
+
+ MOZ_CRASH_UNSAFE(why);
+}
+
+void MessageChannel::DumpInterruptStack(const char* const pfx) const {
+ NS_WARNING_ASSERTION(!mWorkerThread->IsOnCurrentThread(),
+ "The worker thread had better be paused in a debugger!");
+
+ printf_stderr("%sMessageChannel 'backtrace':\n", pfx);
+
+ // print a python-style backtrace, first frame to last
+ for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
+ int32_t id;
+ const char* dir;
+ const char* sems;
+ const char* name;
+ mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);
+
+ printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx, i, dir, sems, name,
+ id);
+ }
+}
+
+void MessageChannel::AddProfilerMarker(const IPC::Message& aMessage,
+ MessageDirection aDirection) {
+ mMonitor->AssertCurrentThreadOwns();
+#ifdef MOZ_GECKO_PROFILER
+ if (profiler_feature_active(ProfilerFeature::IPCMessages)) {
+ int32_t pid = mListener->OtherPidMaybeInvalid();
+ // Only record markers for IPCs with a valid pid.
+ // And if one of the profiler mutexes is locked on this thread, don't record
+ // markers, because we don't want to expose profiler IPCs due to the
+ // profiler itself, and also to avoid possible re-entrancy issues.
+ if (pid != kInvalidProcessId && !profiler_is_locked_on_current_thread()) {
+ // The current timestamp must be given to the `IPCMarker` payload.
+ const TimeStamp now = TimeStamp::NowUnfuzzed();
+ PROFILER_MARKER("IPC", IPC, MarkerTiming::InstantAt(now), IPCMarker, now,
+ now, pid, aMessage.seqno(), aMessage.type(), mSide,
+ aDirection, MessagePhase::Endpoint, aMessage.is_sync());
+ }
+ }
+#endif
+}
+
+int32_t MessageChannel::GetTopmostMessageRoutingId() const {
+ AssertWorkerThread();
+
+ if (mCxxStackFrames.empty()) {
+ return MSG_ROUTING_NONE;
+ }
+ const InterruptFrame& frame = mCxxStackFrames.back();
+ return frame.GetRoutingId();
+}
+
+void MessageChannel::EndTimeout() {
+ mMonitor->AssertCurrentThreadOwns();
+
+ IPC_LOG("Ending timeout of seqno=%d", mTimedOutMessageSeqno);
+ mTimedOutMessageSeqno = 0;
+ mTimedOutMessageNestedLevel = 0;
+
+ RepostAllMessages();
+}
+
+void MessageChannel::RepostAllMessages() {
+ bool needRepost = false;
+ for (MessageTask* task : mPending) {
+ if (!task->IsScheduled()) {
+ needRepost = true;
+ break;
+ }
+ }
+ if (!needRepost) {
+ // If everything is already scheduled to run, do nothing.
+ return;
+ }
+
+ // In some cases we may have deferred dispatch of some messages in the
+ // queue. Now we want to run them again. However, we can't just re-post
+ // those messages since the messages after them in mPending would then be
+ // before them in the event queue. So instead we cancel everything and
+ // re-post all messages in the correct order.
+ MessageQueue queue = std::move(mPending);
+ while (RefPtr<MessageTask> task = queue.popFirst()) {
+ RefPtr<MessageTask> newTask = new MessageTask(this, std::move(task->Msg()));
+ mPending.insertBack(newTask);
+ newTask->Post();
+ }
+
+ AssertMaybeDeferredCountCorrect();
+}
+
+void MessageChannel::CancelTransaction(int transaction) {
+ mMonitor->AssertCurrentThreadOwns();
+
+ // When we cancel a transaction, we need to behave as if there's no longer
+ // any IPC on the stack. Anything we were dispatching or sending will get
+ // canceled. Consequently, we have to update the state variables below.
+ //
+ // We also need to ensure that when any IPC functions on the stack return,
+ // they don't reset these values using an RAII class like AutoSetValue. To
+ // avoid that, these RAII classes check if the variable they set has been
+ // tampered with (by us). If so, they don't reset the variable to the old
+ // value.
+
+ IPC_LOG("CancelTransaction: xid=%d", transaction);
+
+ // An unusual case: We timed out a transaction which the other side then
+ // cancelled. In this case we just leave the timedout state and try to
+ // forget this ever happened.
+ if (transaction == mTimedOutMessageSeqno) {
+ IPC_LOG("Cancelled timed out message %d", mTimedOutMessageSeqno);
+ EndTimeout();
+
+ // Normally mCurrentTransaction == 0 here. But it can be non-zero if:
+ // 1. Parent sends NESTED_INSIDE_SYNC message H.
+ // 2. Parent times out H.
+ // 3. Child dispatches H and sends nested message H' (same transaction).
+ // 4. Parent dispatches H' and cancels.
+ MOZ_RELEASE_ASSERT(!mTransactionStack ||
+ mTransactionStack->TransactionID() == transaction);
+ if (mTransactionStack) {
+ mTransactionStack->Cancel();
+ }
+ } else {
+ MOZ_RELEASE_ASSERT(mTransactionStack->TransactionID() == transaction);
+ mTransactionStack->Cancel();
+ }
+
+ bool foundSync = false;
+ for (MessageTask* p = mPending.getFirst(); p;) {
+ Message& msg = p->Msg();
+
+ // If there was a race between the parent and the child, then we may
+ // have a queued sync message. We want to drop this message from the
+ // queue since if will get cancelled along with the transaction being
+ // cancelled. This happens if the message in the queue is
+ // NESTED_INSIDE_SYNC.
+ if (msg.is_sync() && msg.nested_level() != IPC::Message::NOT_NESTED) {
+ MOZ_RELEASE_ASSERT(!foundSync);
+ MOZ_RELEASE_ASSERT(msg.transaction_id() != transaction);
+ IPC_LOG("Removing msg from queue seqno=%d xid=%d", msg.seqno(),
+ msg.transaction_id());
+ foundSync = true;
+ if (!IsAlwaysDeferred(msg)) {
+ mMaybeDeferredPendingCount--;
+ }
+ p = p->removeAndGetNext();
+ continue;
+ }
+
+ p = p->getNext();
+ }
+
+ AssertMaybeDeferredCountCorrect();
+}
+
+void MessageChannel::CancelCurrentTransaction() {
+ MonitorAutoLock lock(*mMonitor);
+ if (DispatchingSyncMessageNestedLevel() >= IPC::Message::NESTED_INSIDE_SYNC) {
+ if (DispatchingSyncMessageNestedLevel() ==
+ IPC::Message::NESTED_INSIDE_CPOW ||
+ DispatchingAsyncMessageNestedLevel() ==
+ IPC::Message::NESTED_INSIDE_CPOW) {
+ mListener->IntentionalCrash();
+ }
+
+ IPC_LOG("Cancel requested: current xid=%d",
+ CurrentNestedInsideSyncTransaction());
+ MOZ_RELEASE_ASSERT(DispatchingSyncMessage());
+ auto cancel =
+ MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
+ CancelTransaction(CurrentNestedInsideSyncTransaction());
+ mLink->SendMessage(std::move(cancel));
+ }
+}
+
+void CancelCPOWs() {
+ if (gParentProcessBlocker) {
+ mozilla::Telemetry::Accumulate(mozilla::Telemetry::IPC_TRANSACTION_CANCEL,
+ true);
+ gParentProcessBlocker->CancelCurrentTransaction();
+ }
+}
+
+} // namespace ipc
+} // namespace mozilla