diff options
Diffstat (limited to 'media/libjpeg/simd/x86_64/jchuff-sse2.asm')
-rw-r--r-- | media/libjpeg/simd/x86_64/jchuff-sse2.asm | 345 |
1 files changed, 345 insertions, 0 deletions
diff --git a/media/libjpeg/simd/x86_64/jchuff-sse2.asm b/media/libjpeg/simd/x86_64/jchuff-sse2.asm new file mode 100644 index 0000000000..7deab582b9 --- /dev/null +++ b/media/libjpeg/simd/x86_64/jchuff-sse2.asm @@ -0,0 +1,345 @@ +; +; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2) +; +; Copyright (C) 2009-2011, 2014-2016, D. R. Commander. +; Copyright (C) 2015, Matthieu Darbois. +; +; Based on the x86 SIMD extension for IJG JPEG library +; Copyright (C) 1999-2006, MIYASAKA Masaru. +; For conditions of distribution and use, see copyright notice in jsimdext.inc +; +; This file should be assembled with NASM (Netwide Assembler), +; can *not* be assembled with Microsoft's MASM or any compatible +; assembler (including Borland's Turbo Assembler). +; NASM is available from http://nasm.sourceforge.net/ or +; http://sourceforge.net/project/showfiles.php?group_id=6208 +; +; This file contains an SSE2 implementation for Huffman coding of one block. +; The following code is based directly on jchuff.c; see jchuff.c for more +; details. + +%include "jsimdext.inc" + +; -------------------------------------------------------------------------- + SECTION SEG_CONST + + alignz 32 + GLOBAL_DATA(jconst_huff_encode_one_block) + EXTERN EXTN(jpeg_nbits_table) + +EXTN(jconst_huff_encode_one_block): + + alignz 32 + +; -------------------------------------------------------------------------- + SECTION SEG_TEXT + BITS 64 + +; These macros perform the same task as the emit_bits() function in the +; original libjpeg code. In addition to reducing overhead by explicitly +; inlining the code, additional performance is achieved by taking into +; account the size of the bit buffer and waiting until it is almost full +; before emptying it. This mostly benefits 64-bit platforms, since 6 +; bytes can be stored in a 64-bit bit buffer before it has to be emptied. + +%macro EMIT_BYTE 0 + sub put_bits, 8 ; put_bits -= 8; + mov rdx, put_buffer + mov ecx, put_bits + shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); + mov byte [buffer], dl ; *buffer++ = c; + add buffer, 1 + cmp dl, 0xFF ; need to stuff a zero byte? + jne %%.EMIT_BYTE_END + mov byte [buffer], 0 ; *buffer++ = 0; + add buffer, 1 +%%.EMIT_BYTE_END: +%endmacro + +%macro PUT_BITS 1 + add put_bits, ecx ; put_bits += size; + shl put_buffer, cl ; put_buffer = (put_buffer << size); + or put_buffer, %1 +%endmacro + +%macro CHECKBUF31 0 + cmp put_bits, 32 ; if (put_bits > 31) { + jl %%.CHECKBUF31_END + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE +%%.CHECKBUF31_END: +%endmacro + +%macro CHECKBUF47 0 + cmp put_bits, 48 ; if (put_bits > 47) { + jl %%.CHECKBUF47_END + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE + EMIT_BYTE +%%.CHECKBUF47_END: +%endmacro + +%macro EMIT_BITS 2 + CHECKBUF47 + mov ecx, %2 + PUT_BITS %1 +%endmacro + +%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) + pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128(); + pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128(); + pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128(); + pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128(); + pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; + pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; + pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; + pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; + pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; + pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; + pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; + pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; + pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; + pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; + pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; + pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; + pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; + pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; + pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; + pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; + pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; + pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; + pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; + pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; + pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; + pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; + pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; + pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; + pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; + pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; + pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; + pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; + pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; + pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; + pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; +%if %1 != 32 + pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; +%else + pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31]; +%endif + pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1); + pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1); + pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1); + pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1); + paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg); + paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg); + paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg); + paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg); + pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg); + pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg); + pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg); + pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg); + pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1); + pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1); + pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1); + pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1); + movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); + movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); + movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); + movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); + movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); + movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); + movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); + movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); +%endmacro + +; +; Encode a single block's worth of coefficients. +; +; GLOBAL(JOCTET *) +; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, +; JCOEFPTR block, int last_dc_val, +; c_derived_tbl *dctbl, c_derived_tbl *actbl) +; + +; r10 = working_state *state +; r11 = JOCTET *buffer +; r12 = JCOEFPTR block +; r13d = int last_dc_val +; r14 = c_derived_tbl *dctbl +; r15 = c_derived_tbl *actbl + +%define t1 rbp - (DCTSIZE2 * SIZEOF_WORD) +%define t2 t1 - (DCTSIZE2 * SIZEOF_WORD) +%define put_buffer r8 +%define put_bits r9d +%define buffer rax + + align 32 + GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) + +EXTN(jsimd_huff_encode_one_block_sse2): + push rbp + mov rax, rsp ; rax = original rbp + sub rsp, byte 4 + and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits + mov [rsp], rax + mov rbp, rsp ; rbp = aligned rbp + lea rsp, [t2] + push_xmm 4 + collect_args 6 + push rbx + + mov buffer, r11 ; r11 is now sratch + + mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer; + mov put_bits, dword [r10+24] ; put_bits = state->cur.put_bits; + push r10 ; r10 is now scratch + + ; Encode the DC coefficient difference per section F.1.2.1 + movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val; + sub edi, r13d ; r13 is not used anymore + mov ebx, edi + + ; This is a well-known technique for obtaining the absolute value + ; without a branch. It is derived from an assembly language technique + ; presented in "How to Optimize for the Pentium Processors", + ; Copyright (c) 1996, 1997 by Agner Fog. + mov esi, edi + sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); + xor edi, esi ; temp ^= temp3; + sub edi, esi ; temp -= temp3; + + ; For a negative input, want temp2 = bitwise complement of abs(input) + ; This code assumes we are on a two's complement machine + add ebx, esi ; temp2 += temp3; + + ; Find the number of bits needed for the magnitude of the coefficient + lea r11, [rel EXTN(jpeg_nbits_table)] + movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp); + ; Emit the Huffman-coded symbol for the number of bits + mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits]; + movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits]; + EMIT_BITS r11, esi ; EMIT_BITS(code, size) + + ; Mask off any extra bits in code + mov esi, 1 + mov ecx, edi + shl esi, cl + dec esi + and ebx, esi ; temp2 &= (((JLONG)1)<<nbits) - 1; + + ; Emit that number of bits of the value, if positive, + ; or the complement of its magnitude, if negative. + EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits) + + ; Prepare data + xor ebx, ebx + kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ + 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ + 27, 20, 13, 6, 7, 14, 21, 28, 35, \ + xmm0, xmm1, xmm2, xmm3 + kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ + 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ + 53, 60, 61, 54, 47, 55, 62, 63, 63, \ + xmm4, xmm5, xmm6, xmm7 + + pxor xmm8, xmm8 + pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); + pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); + pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); + pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); + pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero); + pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero); + pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero); + pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero); + packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); + packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); + packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5); + packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7); + pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; + pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; + pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32; + pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48; + shl r12, 16 + shl r14, 16 + or r11, r12 + or r13, r14 + shl r13, 32 + or r11, r13 + not r11 ; index = ~index; + + ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11 + ;jmp .EFN + + mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; + movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; + lea rsi, [t1] +.BLOOP: + bsf r12, r11 ; r = __builtin_ctzl(index); + jz .ELOOP + mov rcx, r12 + lea rsi, [rsi+r12*2] ; k += r; + shr r11, cl ; index >>= r; + movzx rdi, word [rsi] ; temp = t1[k]; + lea rbx, [rel EXTN(jpeg_nbits_table)] + movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp); +.BRLOOP: + cmp r12, 16 ; while (r > 15) { + jl .ERLOOP + EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0) + sub r12, 16 ; r -= 16; + jmp .BRLOOP +.ERLOOP: + ; Emit Huffman symbol for run length / number of bits + CHECKBUF31 ; uses rcx, rdx + + shl r12, 4 ; temp3 = (r << 4) + nbits; + add r12, rdi + mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3]; + movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3]; + PUT_BITS rbx + + ;EMIT_CODE(code, size) + + movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k]; + ; Mask off any extra bits in code + mov rcx, rdi + mov rdx, 1 + shl rdx, cl + dec rdx + and rbx, rdx ; temp2 &= (((JLONG)1)<<nbits) - 1; + PUT_BITS rbx ; PUT_BITS(temp2, nbits) + + shr r11, 1 ; index >>= 1; + add rsi, 2 ; ++k; + jmp .BLOOP +.ELOOP: + ; If the last coef(s) were zero, emit an end-of-block code + lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; + cmp rdi, rsi ; if (r > 0) { + je .EFN + mov ebx, INT [r15] ; code = actbl->ehufco[0]; + movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0]; + EMIT_BITS rbx, r12d +.EFN: + pop r10 + ; Save put_buffer & put_bits + mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer; + mov dword [r10+24], put_bits ; state->cur.put_bits = put_bits; + + pop rbx + uncollect_args 6 + pop_xmm 4 + mov rsp, rbp ; rsp <- aligned rbp + pop rsp ; rsp <- original rbp + pop rbp + ret + +; For some reason, the OS X linker does not honor the request to align the +; segment unless we do this. + align 32 |