diff options
Diffstat (limited to 'security/nss/lib/freebl/ecl/ecp_384.c')
-rw-r--r-- | security/nss/lib/freebl/ecl/ecp_384.c | 258 |
1 files changed, 258 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/ecp_384.c b/security/nss/lib/freebl/ecl/ecp_384.c new file mode 100644 index 0000000000..702fd976ed --- /dev/null +++ b/security/nss/lib/freebl/ecl/ecp_384.c @@ -0,0 +1,258 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "ecp.h" +#include "mpi.h" +#include "mplogic.h" +#include "mpi-priv.h" + +/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r. + * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to + * Elliptic Curve Cryptography. */ +static mp_err +ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth) +{ + mp_err res = MP_OKAY; + int a_bits = mpl_significant_bits(a); + int i; + + /* m1, m2 are statically-allocated mp_int of exactly the size we need */ + mp_int m[10]; + +#ifdef ECL_THIRTY_TWO_BIT + mp_digit s[10][12]; + for (i = 0; i < 10; i++) { + MP_SIGN(&m[i]) = MP_ZPOS; + MP_ALLOC(&m[i]) = 12; + MP_USED(&m[i]) = 12; + MP_DIGITS(&m[i]) = s[i]; + } +#else + mp_digit s[10][6]; + for (i = 0; i < 10; i++) { + MP_SIGN(&m[i]) = MP_ZPOS; + MP_ALLOC(&m[i]) = 6; + MP_USED(&m[i]) = 6; + MP_DIGITS(&m[i]) = s[i]; + } +#endif + +#ifdef ECL_THIRTY_TWO_BIT + /* for polynomials larger than twice the field size or polynomials + * not using all words, use regular reduction */ + if ((a_bits > 768) || (a_bits <= 736)) { + MP_CHECKOK(mp_mod(a, &meth->irr, r)); + } else { + for (i = 0; i < 12; i++) { + s[0][i] = MP_DIGIT(a, i); + } + s[1][0] = 0; + s[1][1] = 0; + s[1][2] = 0; + s[1][3] = 0; + s[1][4] = MP_DIGIT(a, 21); + s[1][5] = MP_DIGIT(a, 22); + s[1][6] = MP_DIGIT(a, 23); + s[1][7] = 0; + s[1][8] = 0; + s[1][9] = 0; + s[1][10] = 0; + s[1][11] = 0; + for (i = 0; i < 12; i++) { + s[2][i] = MP_DIGIT(a, i + 12); + } + s[3][0] = MP_DIGIT(a, 21); + s[3][1] = MP_DIGIT(a, 22); + s[3][2] = MP_DIGIT(a, 23); + for (i = 3; i < 12; i++) { + s[3][i] = MP_DIGIT(a, i + 9); + } + s[4][0] = 0; + s[4][1] = MP_DIGIT(a, 23); + s[4][2] = 0; + s[4][3] = MP_DIGIT(a, 20); + for (i = 4; i < 12; i++) { + s[4][i] = MP_DIGIT(a, i + 8); + } + s[5][0] = 0; + s[5][1] = 0; + s[5][2] = 0; + s[5][3] = 0; + s[5][4] = MP_DIGIT(a, 20); + s[5][5] = MP_DIGIT(a, 21); + s[5][6] = MP_DIGIT(a, 22); + s[5][7] = MP_DIGIT(a, 23); + s[5][8] = 0; + s[5][9] = 0; + s[5][10] = 0; + s[5][11] = 0; + s[6][0] = MP_DIGIT(a, 20); + s[6][1] = 0; + s[6][2] = 0; + s[6][3] = MP_DIGIT(a, 21); + s[6][4] = MP_DIGIT(a, 22); + s[6][5] = MP_DIGIT(a, 23); + s[6][6] = 0; + s[6][7] = 0; + s[6][8] = 0; + s[6][9] = 0; + s[6][10] = 0; + s[6][11] = 0; + s[7][0] = MP_DIGIT(a, 23); + for (i = 1; i < 12; i++) { + s[7][i] = MP_DIGIT(a, i + 11); + } + s[8][0] = 0; + s[8][1] = MP_DIGIT(a, 20); + s[8][2] = MP_DIGIT(a, 21); + s[8][3] = MP_DIGIT(a, 22); + s[8][4] = MP_DIGIT(a, 23); + s[8][5] = 0; + s[8][6] = 0; + s[8][7] = 0; + s[8][8] = 0; + s[8][9] = 0; + s[8][10] = 0; + s[8][11] = 0; + s[9][0] = 0; + s[9][1] = 0; + s[9][2] = 0; + s[9][3] = MP_DIGIT(a, 23); + s[9][4] = MP_DIGIT(a, 23); + s[9][5] = 0; + s[9][6] = 0; + s[9][7] = 0; + s[9][8] = 0; + s[9][9] = 0; + s[9][10] = 0; + s[9][11] = 0; + + MP_CHECKOK(mp_add(&m[0], &m[1], r)); + MP_CHECKOK(mp_add(r, &m[1], r)); + MP_CHECKOK(mp_add(r, &m[2], r)); + MP_CHECKOK(mp_add(r, &m[3], r)); + MP_CHECKOK(mp_add(r, &m[4], r)); + MP_CHECKOK(mp_add(r, &m[5], r)); + MP_CHECKOK(mp_add(r, &m[6], r)); + MP_CHECKOK(mp_sub(r, &m[7], r)); + MP_CHECKOK(mp_sub(r, &m[8], r)); + MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); + s_mp_clamp(r); + } +#else + /* for polynomials larger than twice the field size or polynomials + * not using all words, use regular reduction */ + if ((a_bits > 768) || (a_bits <= 736)) { + MP_CHECKOK(mp_mod(a, &meth->irr, r)); + } else { + for (i = 0; i < 6; i++) { + s[0][i] = MP_DIGIT(a, i); + } + s[1][0] = 0; + s[1][1] = 0; + s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); + s[1][3] = MP_DIGIT(a, 11) >> 32; + s[1][4] = 0; + s[1][5] = 0; + for (i = 0; i < 6; i++) { + s[2][i] = MP_DIGIT(a, i + 6); + } + s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); + s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); + for (i = 2; i < 6; i++) { + s[3][i] = (MP_DIGIT(a, i + 4) >> 32) | (MP_DIGIT(a, i + 5) << 32); + } + s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32; + s[4][1] = MP_DIGIT(a, 10) << 32; + for (i = 2; i < 6; i++) { + s[4][i] = MP_DIGIT(a, i + 4); + } + s[5][0] = 0; + s[5][1] = 0; + s[5][2] = MP_DIGIT(a, 10); + s[5][3] = MP_DIGIT(a, 11); + s[5][4] = 0; + s[5][5] = 0; + s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32; + s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32; + s[6][2] = MP_DIGIT(a, 11); + s[6][3] = 0; + s[6][4] = 0; + s[6][5] = 0; + s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); + for (i = 1; i < 6; i++) { + s[7][i] = (MP_DIGIT(a, i + 5) >> 32) | (MP_DIGIT(a, i + 6) << 32); + } + s[8][0] = MP_DIGIT(a, 10) << 32; + s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); + s[8][2] = MP_DIGIT(a, 11) >> 32; + s[8][3] = 0; + s[8][4] = 0; + s[8][5] = 0; + s[9][0] = 0; + s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32; + s[9][2] = MP_DIGIT(a, 11) >> 32; + s[9][3] = 0; + s[9][4] = 0; + s[9][5] = 0; + + MP_CHECKOK(mp_add(&m[0], &m[1], r)); + MP_CHECKOK(mp_add(r, &m[1], r)); + MP_CHECKOK(mp_add(r, &m[2], r)); + MP_CHECKOK(mp_add(r, &m[3], r)); + MP_CHECKOK(mp_add(r, &m[4], r)); + MP_CHECKOK(mp_add(r, &m[5], r)); + MP_CHECKOK(mp_add(r, &m[6], r)); + MP_CHECKOK(mp_sub(r, &m[7], r)); + MP_CHECKOK(mp_sub(r, &m[8], r)); + MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); + s_mp_clamp(r); + } +#endif + +CLEANUP: + return res; +} + +/* Compute the square of polynomial a, reduce modulo p384. Store the + * result in r. r could be a. Uses optimized modular reduction for p384. + */ +static mp_err +ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) +{ + mp_err res = MP_OKAY; + + MP_CHECKOK(mp_sqr(a, r)); + MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); +CLEANUP: + return res; +} + +/* Compute the product of two polynomials a and b, reduce modulo p384. + * Store the result in r. r could be a or b; a could be b. Uses + * optimized modular reduction for p384. */ +static mp_err +ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r, + const GFMethod *meth) +{ + mp_err res = MP_OKAY; + + MP_CHECKOK(mp_mul(a, b, r)); + MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); +CLEANUP: + return res; +} + +/* Wire in fast field arithmetic and precomputation of base point for + * named curves. */ +mp_err +ec_group_set_gfp384(ECGroup *group, ECCurveName name) +{ + if (name == ECCurve_NIST_P384) { + group->meth->field_mod = &ec_GFp_nistp384_mod; + group->meth->field_mul = &ec_GFp_nistp384_mul; + group->meth->field_sqr = &ec_GFp_nistp384_sqr; + } + return MP_OKAY; +} |