summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/memory/weak_ptr.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/memory/weak_ptr.h')
-rw-r--r--security/sandbox/chromium/base/memory/weak_ptr.h395
1 files changed, 395 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/memory/weak_ptr.h b/security/sandbox/chromium/base/memory/weak_ptr.h
new file mode 100644
index 0000000000..d274987168
--- /dev/null
+++ b/security/sandbox/chromium/base/memory/weak_ptr.h
@@ -0,0 +1,395 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Weak pointers are pointers to an object that do not affect its lifetime,
+// and which may be invalidated (i.e. reset to nullptr) by the object, or its
+// owner, at any time, most commonly when the object is about to be deleted.
+
+// Weak pointers are useful when an object needs to be accessed safely by one
+// or more objects other than its owner, and those callers can cope with the
+// object vanishing and e.g. tasks posted to it being silently dropped.
+// Reference-counting such an object would complicate the ownership graph and
+// make it harder to reason about the object's lifetime.
+
+// EXAMPLE:
+//
+// class Controller {
+// public:
+// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
+// void WorkComplete(const Result& result) { ... }
+// private:
+// // Member variables should appear before the WeakPtrFactory, to ensure
+// // that any WeakPtrs to Controller are invalidated before its members
+// // variable's destructors are executed, rendering them invalid.
+// WeakPtrFactory<Controller> weak_factory_{this};
+// };
+//
+// class Worker {
+// public:
+// static void StartNew(const WeakPtr<Controller>& controller) {
+// Worker* worker = new Worker(controller);
+// // Kick off asynchronous processing...
+// }
+// private:
+// Worker(const WeakPtr<Controller>& controller)
+// : controller_(controller) {}
+// void DidCompleteAsynchronousProcessing(const Result& result) {
+// if (controller_)
+// controller_->WorkComplete(result);
+// }
+// WeakPtr<Controller> controller_;
+// };
+//
+// With this implementation a caller may use SpawnWorker() to dispatch multiple
+// Workers and subsequently delete the Controller, without waiting for all
+// Workers to have completed.
+
+// ------------------------- IMPORTANT: Thread-safety -------------------------
+
+// Weak pointers may be passed safely between sequences, but must always be
+// dereferenced and invalidated on the same SequencedTaskRunner otherwise
+// checking the pointer would be racey.
+//
+// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
+// is dereferenced, the factory and its WeakPtrs become bound to the calling
+// sequence or current SequencedWorkerPool token, and cannot be dereferenced or
+// invalidated on any other task runner. Bound WeakPtrs can still be handed
+// off to other task runners, e.g. to use to post tasks back to object on the
+// bound sequence.
+//
+// If all WeakPtr objects are destroyed or invalidated then the factory is
+// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
+// destroyed, or new WeakPtr objects may be used, from a different sequence.
+//
+// Thus, at least one WeakPtr object must exist and have been dereferenced on
+// the correct sequence to enforce that other WeakPtr objects will enforce they
+// are used on the desired sequence.
+
+#ifndef BASE_MEMORY_WEAK_PTR_H_
+#define BASE_MEMORY_WEAK_PTR_H_
+
+#include <cstddef>
+#include <type_traits>
+
+#include "base/base_export.h"
+#include "base/logging.h"
+#include "base/macros.h"
+#include "base/memory/ref_counted.h"
+#include "base/sequence_checker.h"
+#include "base/synchronization/atomic_flag.h"
+
+namespace base {
+
+template <typename T> class SupportsWeakPtr;
+template <typename T> class WeakPtr;
+
+namespace internal {
+// These classes are part of the WeakPtr implementation.
+// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
+
+class BASE_EXPORT WeakReference {
+ public:
+ // Although Flag is bound to a specific SequencedTaskRunner, it may be
+ // deleted from another via base::WeakPtr::~WeakPtr().
+ class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
+ public:
+ Flag();
+
+ void Invalidate();
+ bool IsValid() const;
+
+ bool MaybeValid() const;
+
+ void DetachFromSequence();
+
+ private:
+ friend class base::RefCountedThreadSafe<Flag>;
+
+ ~Flag();
+
+ SEQUENCE_CHECKER(sequence_checker_);
+ AtomicFlag invalidated_;
+ };
+
+ WeakReference();
+ explicit WeakReference(const scoped_refptr<Flag>& flag);
+ ~WeakReference();
+
+ WeakReference(WeakReference&& other) noexcept;
+ WeakReference(const WeakReference& other);
+ WeakReference& operator=(WeakReference&& other) noexcept = default;
+ WeakReference& operator=(const WeakReference& other) = default;
+
+ bool IsValid() const;
+ bool MaybeValid() const;
+
+ private:
+ scoped_refptr<const Flag> flag_;
+};
+
+class BASE_EXPORT WeakReferenceOwner {
+ public:
+ WeakReferenceOwner();
+ ~WeakReferenceOwner();
+
+ WeakReference GetRef() const;
+
+ bool HasRefs() const { return !flag_->HasOneRef(); }
+
+ void Invalidate();
+
+ private:
+ scoped_refptr<WeakReference::Flag> flag_;
+};
+
+// This class simplifies the implementation of WeakPtr's type conversion
+// constructor by avoiding the need for a public accessor for ref_. A
+// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
+// base class gives us a way to access ref_ in a protected fashion.
+class BASE_EXPORT WeakPtrBase {
+ public:
+ WeakPtrBase();
+ ~WeakPtrBase();
+
+ WeakPtrBase(const WeakPtrBase& other) = default;
+ WeakPtrBase(WeakPtrBase&& other) noexcept = default;
+ WeakPtrBase& operator=(const WeakPtrBase& other) = default;
+ WeakPtrBase& operator=(WeakPtrBase&& other) noexcept = default;
+
+ void reset() {
+ ref_ = internal::WeakReference();
+ ptr_ = 0;
+ }
+
+ protected:
+ WeakPtrBase(const WeakReference& ref, uintptr_t ptr);
+
+ WeakReference ref_;
+
+ // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
+ // value is undefined (as opposed to nullptr).
+ uintptr_t ptr_;
+};
+
+// This class provides a common implementation of common functions that would
+// otherwise get instantiated separately for each distinct instantiation of
+// SupportsWeakPtr<>.
+class SupportsWeakPtrBase {
+ public:
+ // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
+ // conversion will only compile if there is exists a Base which inherits
+ // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
+ // function that makes calling this easier.
+ //
+ // Precondition: t != nullptr
+ template<typename Derived>
+ static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
+ static_assert(
+ std::is_base_of<internal::SupportsWeakPtrBase, Derived>::value,
+ "AsWeakPtr argument must inherit from SupportsWeakPtr");
+ return AsWeakPtrImpl<Derived>(t);
+ }
+
+ private:
+ // This template function uses type inference to find a Base of Derived
+ // which is an instance of SupportsWeakPtr<Base>. We can then safely
+ // static_cast the Base* to a Derived*.
+ template <typename Derived, typename Base>
+ static WeakPtr<Derived> AsWeakPtrImpl(SupportsWeakPtr<Base>* t) {
+ WeakPtr<Base> ptr = t->AsWeakPtr();
+ return WeakPtr<Derived>(
+ ptr.ref_, static_cast<Derived*>(reinterpret_cast<Base*>(ptr.ptr_)));
+ }
+};
+
+} // namespace internal
+
+template <typename T> class WeakPtrFactory;
+
+// The WeakPtr class holds a weak reference to |T*|.
+//
+// This class is designed to be used like a normal pointer. You should always
+// null-test an object of this class before using it or invoking a method that
+// may result in the underlying object being destroyed.
+//
+// EXAMPLE:
+//
+// class Foo { ... };
+// WeakPtr<Foo> foo;
+// if (foo)
+// foo->method();
+//
+template <typename T>
+class WeakPtr : public internal::WeakPtrBase {
+ public:
+ WeakPtr() = default;
+ WeakPtr(std::nullptr_t) {}
+
+ // Allow conversion from U to T provided U "is a" T. Note that this
+ // is separate from the (implicit) copy and move constructors.
+ template <typename U>
+ WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other) {
+ // Need to cast from U* to T* to do pointer adjustment in case of multiple
+ // inheritance. This also enforces the "U is a T" rule.
+ T* t = reinterpret_cast<U*>(other.ptr_);
+ ptr_ = reinterpret_cast<uintptr_t>(t);
+ }
+ template <typename U>
+ WeakPtr(WeakPtr<U>&& other) noexcept : WeakPtrBase(std::move(other)) {
+ // Need to cast from U* to T* to do pointer adjustment in case of multiple
+ // inheritance. This also enforces the "U is a T" rule.
+ T* t = reinterpret_cast<U*>(other.ptr_);
+ ptr_ = reinterpret_cast<uintptr_t>(t);
+ }
+
+ T* get() const {
+ return ref_.IsValid() ? reinterpret_cast<T*>(ptr_) : nullptr;
+ }
+
+ T& operator*() const {
+ DCHECK(get() != nullptr);
+ return *get();
+ }
+ T* operator->() const {
+ DCHECK(get() != nullptr);
+ return get();
+ }
+
+ // Allow conditionals to test validity, e.g. if (weak_ptr) {...};
+ explicit operator bool() const { return get() != nullptr; }
+
+ // Returns false if the WeakPtr is confirmed to be invalid. This call is safe
+ // to make from any thread, e.g. to optimize away unnecessary work, but
+ // operator bool() must always be called, on the correct sequence, before
+ // actually using the pointer.
+ //
+ // Warning: as with any object, this call is only thread-safe if the WeakPtr
+ // instance isn't being re-assigned or reset() racily with this call.
+ bool MaybeValid() const { return ref_.MaybeValid(); }
+
+ // Returns whether the object |this| points to has been invalidated. This can
+ // be used to distinguish a WeakPtr to a destroyed object from one that has
+ // been explicitly set to null.
+ bool WasInvalidated() const { return ptr_ && !ref_.IsValid(); }
+
+ private:
+ friend class internal::SupportsWeakPtrBase;
+ template <typename U> friend class WeakPtr;
+ friend class SupportsWeakPtr<T>;
+ friend class WeakPtrFactory<T>;
+
+ WeakPtr(const internal::WeakReference& ref, T* ptr)
+ : WeakPtrBase(ref, reinterpret_cast<uintptr_t>(ptr)) {}
+};
+
+// Allow callers to compare WeakPtrs against nullptr to test validity.
+template <class T>
+bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
+ return !(weak_ptr == nullptr);
+}
+template <class T>
+bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
+ return weak_ptr != nullptr;
+}
+template <class T>
+bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
+ return weak_ptr.get() == nullptr;
+}
+template <class T>
+bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
+ return weak_ptr == nullptr;
+}
+
+namespace internal {
+class BASE_EXPORT WeakPtrFactoryBase {
+ protected:
+ WeakPtrFactoryBase(uintptr_t ptr);
+ ~WeakPtrFactoryBase();
+ internal::WeakReferenceOwner weak_reference_owner_;
+ uintptr_t ptr_;
+};
+} // namespace internal
+
+// A class may be composed of a WeakPtrFactory and thereby
+// control how it exposes weak pointers to itself. This is helpful if you only
+// need weak pointers within the implementation of a class. This class is also
+// useful when working with primitive types. For example, you could have a
+// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
+template <class T>
+class WeakPtrFactory : public internal::WeakPtrFactoryBase {
+ public:
+ explicit WeakPtrFactory(T* ptr)
+ : WeakPtrFactoryBase(reinterpret_cast<uintptr_t>(ptr)) {}
+
+ ~WeakPtrFactory() = default;
+
+ WeakPtr<T> GetWeakPtr() {
+ return WeakPtr<T>(weak_reference_owner_.GetRef(),
+ reinterpret_cast<T*>(ptr_));
+ }
+
+ // Call this method to invalidate all existing weak pointers.
+ void InvalidateWeakPtrs() {
+ DCHECK(ptr_);
+ weak_reference_owner_.Invalidate();
+ }
+
+ // Call this method to determine if any weak pointers exist.
+ bool HasWeakPtrs() const {
+ DCHECK(ptr_);
+ return weak_reference_owner_.HasRefs();
+ }
+
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
+};
+
+// A class may extend from SupportsWeakPtr to let others take weak pointers to
+// it. This avoids the class itself implementing boilerplate to dispense weak
+// pointers. However, since SupportsWeakPtr's destructor won't invalidate
+// weak pointers to the class until after the derived class' members have been
+// destroyed, its use can lead to subtle use-after-destroy issues.
+template <class T>
+class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
+ public:
+ SupportsWeakPtr() = default;
+
+ WeakPtr<T> AsWeakPtr() {
+ return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
+ }
+
+ protected:
+ ~SupportsWeakPtr() = default;
+
+ private:
+ internal::WeakReferenceOwner weak_reference_owner_;
+ DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
+};
+
+// Helper function that uses type deduction to safely return a WeakPtr<Derived>
+// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
+// extends a Base that extends SupportsWeakPtr<Base>.
+//
+// EXAMPLE:
+// class Base : public base::SupportsWeakPtr<Producer> {};
+// class Derived : public Base {};
+//
+// Derived derived;
+// base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
+//
+// Note that the following doesn't work (invalid type conversion) since
+// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
+// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
+// the caller.
+//
+// base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
+
+template <typename Derived>
+WeakPtr<Derived> AsWeakPtr(Derived* t) {
+ return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
+}
+
+} // namespace base
+
+#endif // BASE_MEMORY_WEAK_PTR_H_